The Relationship between Coronary Flow Reserve and the TyG Index in Patients with Gestational Diabetes Mellitus
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participant Selection
2.3. Ethical Considerations
2.4. Clinical and Laboratory Assessments
2.5. Echocardiographic Evaluation and Coronary Flow Reserve Measurement
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coustan, D.R. Gestational diabetes mellitus. Clin. Chem. 2013, 59, 1310–1321. [Google Scholar] [CrossRef]
- Jawad, F.; Ejaz, K. Gestational diabetes mellitus in South Asia: Epidemiology. J. Pak. Med. Assoc. 2016, 66, S5–S7. [Google Scholar] [PubMed]
- Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64. [Google Scholar] [CrossRef]
- Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat. Rev. Endocrinol. 2012, 8, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Hu, W.; Xia, B.; Liu, L.; Han, X.; Liu, Q. Association Between Gestational Diabetes Mellitus and the Risks of Type-Specific Cardiovascular Diseases. Front. Public Health 2022, 10, 940335. [Google Scholar] [CrossRef] [PubMed]
- Ormazabal, V.; Nair, S.; Carrión, F.; McIntyre, H.D.; Salomon, C. The link between gestational diabetes and cardiovascular diseases: Potential role of extracellular vesicles. Cardiovasc. Diabetol. 2022, 21, 174. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, T.Y.; Cheng, Y.J.; Ma, Y.; Xu, Y.K.; Yang, J.Q.; Zhou, Y.J. Triglyceride-Glucose Index as a Surrogate Marker of Insulin Resistance for Predicting Cardiovascular Outcomes in Nondiabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. J. Atheroscler. Thromb. 2021, 28, 1175–1194. [Google Scholar] [CrossRef]
- Selvi, N.M.K.; Nandhini, S.; Sakthivadivel, V.; Lokesh, S.; Srinivasan, A.R.; Sumathi, S. Association of Triglyceride-Glucose Index (TyG index) with HbA1c and Insulin Resistance in Type 2 Diabetes Mellitus. Maedica 2021, 16, 375–381. [Google Scholar] [CrossRef]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef]
- Rahman, H.; Ryan, M.; Lumley, M.; Modi, B.; McConkey, H.; Ellis, H.; Scannell, C.; Clapp, B.; Marber, M.; Webb, A.; et al. Coronary Microvascular Dysfunction Is Associated With Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation 2019, 140, 1805–1816. [Google Scholar] [CrossRef]
- De Bruyne, B.; Pijls, N.H.J.; Gallinoro, E.; Candreva, A.; Fournier, S.; Keulards, D.C.J.; Sonck, J.; Van’t Veer, M.; Barbato, E.; Bartunek, J.; et al. Microvascular Resistance Reserve for Assessment of Coronary Microvascular Function: JACC Technology Corner. J. Am. Coll. Cardiol. 2021, 78, 1541–1549. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Shah, A.M.; Everett, B.M.; Pradhan, A.D.; Piazza, G.; Bibbo, C.; Hainer, J.; Morgan, V.; de Souza, A.C.D.A.H.; Skali, H.; et al. Coronary Flow Reserve, Inflammation, and Myocardial Strain: The CIRT-CFR Trial. JACC Basic Transl. Sci. 2023, 8, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Association, A.D. Gestational Diabetes Mellitus. Diabetes Care 2003, 26, s103–s105. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.R.; Mulvagh, S.L.; Abdelmoneim, S.S.; Becher, H.; Belcik, J.T.; Bierig, M.; Choy, J.; Gaibazzi, N.; Gillam, L.D.; Janardhanan, R.; et al. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J. Am. Soc. Echocardiogr. 2018, 31, 241–274. [Google Scholar] [CrossRef]
- Olsen, R.H.; Pedersen, L.R.; Snoer, M.; Christensen, T.E.; Ghotbi, A.A.; Hasbak, P.; Kjaer, A.; Haugaard, S.B.; Prescott, E. Coronary flow velocity reserve by echocardiography: Feasibility, reproducibility and agreement with PET in overweight and obese patients with stable and revascularized coronary artery disease. Cardiovasc. Ultrasound 2016, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Schroder, J.; Prescott, E. Doppler Echocardiography Assessment of Coronary Microvascular Function in Patients With Angina and No Obstructive Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 723542. [Google Scholar] [CrossRef]
- Buchanan, T.A.; Xiang, A.H. Gestational diabetes mellitus. J. Clin. Investig. 2005, 115, 485–491. [Google Scholar] [CrossRef]
- Sun, J.; Kim, G.R.; Lee, S.J.; Kim, H.C. Gestational diabetes mellitus and the role of intercurrent type 2 diabetes on long-term risk of cardiovascular events. Sci. Rep. 2021, 11, 21140. [Google Scholar] [CrossRef]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Liang, S.; Wang, C.; Zhang, J.; Liu, Z.; Bai, Y.; Chen, Z.; Huang, H.; He, Y. Triglyceride-glucose index and coronary artery disease: A systematic review and meta-analysis of risk, severity, and prognosis. Cardiovasc. Diabetol. 2023, 22, 170. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, K.H.; Doh, J.-H.; Nam, C.-W.; Shin, E.-S.; Hoshino, M.; Murai, T.; Yonetsu, T.; Mejía-Rentería, H.; Kakuta, T.; et al. Long-term Patient Prognostication by Coronary Flow Reserve and Index of Microcirculatory Resistance: International Registry of Comprehensive Physiologic Assessment. Korean Circ. J. 2020, 50, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, M.; Turan, Y.; Caliskan, Z.; Gullu, H.; Ciftci, F.C.; Avci, E.; Duran, C.; Kostek, O.; Telci Caklili, O.; Koca, H.; et al. Previous gestational diabetes history is associated with impaired coronary flow reserve. Ann. Med. 2015, 47, 615–623. [Google Scholar] [CrossRef]
- Kul, Ş.; Güvenç, T.S.; Baycan, Ö.F.; Çelik, F.B.; Çalışkan, Z.; Çetin Güvenç, R.; Çiftçi, F.C.; Caliskan, M. Combined past preeclampsia and gestational diabetes is associated with a very high frequency of coronary microvascular dysfunction. Microvasc. Res. 2021, 134, 104104. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Quesada, O.; Cook-Wiens, G.; Wei, J.; Minissian, M.; Handberg, E.M.; Merz, N.B.; Pepine, C.J. Adverse Pregnancy Outcomes Are Associated with Reduced Coronary Flow Reserve in Women With Signs and Symptoms of Ischemia Without Obstructive Coronary Artery Disease: A Report from the Women’s Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction Study. J. Womens Health 2020, 29, 487–492. [Google Scholar] [CrossRef]
- Liu, Y.; Chi, R.; Jiang, Y.; Chen, B.; Chen, Y.; Chen, Z. Triglyceride glycemic index as a biomarker for gestational diabetes mellitus: A systemic review and meta-analysis. Endocr. Connect. 2021, 10, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Miao, C.; Liu, W.; Gao, H.; Li, W.; Wu, Z.; Cao, H.; Zhu, Y. First-Trimester Triglyceride-Glucose Index and Risk of Pregnancy-Related Complications: A Prospective Birth Cohort Study in Southeast China. Diabetes Metab. Syndr. Obes. 2022, 15, 3705–3715. [Google Scholar] [CrossRef] [PubMed]
- Gallinoro, E.; Paolisso, P.; Candreva, A.; Bermpeis, K.; Fabbricatore, D.; Esposito, G.; Bertolone, D.; Fernandez Peregrina, E.; Munhoz, D.; Mileva, N.; et al. Microvascular Dysfunction in Patients With Type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve. Front. Cardiovasc. Med. 2021, 8, 765071. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, J. Elevated triglyceride-glucose (TyG) index predicts impaired islet β-cell function: A hospital-based cross-sectional study. Front. Endocrinol. 2022, 13, 973655. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef]
- Allaqaband, H.; Gutterman, D.D.; Kadlec, A.O. Physiological Consequences of Coronary Arteriolar Dysfunction and Its Influence on Cardiovascular Disease. Physiology 2018, 33, 338–347. [Google Scholar] [CrossRef]
- Sánchez-Íñigo, L.; Navarro-González, D.; Fernández-Montero, A.; Pastrana-Delgado, J.; Martínez, J.A. The TyG index may predict the development of cardiovascular events. Eur. J. Clin. Investig. 2016, 46, 189–197. [Google Scholar] [CrossRef] [PubMed]
GDM (n = 87) | Control (n = 36) | p | |
---|---|---|---|
Age (years) | 34.1 ± 5.3 | 33.1 ± 4.9 | 0.364 |
Gestational age (years) | 33.3 ± 4.4 | - | - |
Gender, female n (%) | 87 (%100) | 36 (%100) | - |
BMI, kg/m2 | 26.7 ± 3.4 | 26.1 ± 2.7 | 0.407 |
BSA (m2) | 1.81 ± 0.16 | 1.88 ± 0.15 | 0.036 |
SBP (mmHg) | 119.9 ± 8.9 | 116.6 ± 11.8 | 0.098 |
DBP (mmHg) | 75.8 ± 4.9 | 73.8 ± 7.6 | 0.155 |
Heart rate (beats/min) | 72.4 ± 4.3 | 72.6 ± 4.5 | 0.776 |
TyG index | 4.6 ± 0.1 | 4.3 ± 0.4 | <0.001 |
FBG (mg/dL) | 93.5 ± 7.0 | 92.9 ± 4.5 | 0.681 |
PBG (mg/dL) | 110.5 ± 15.1 | 115.5 ± 11.8 | 0.093 |
HBA1C (mmol/L %) | 5.3 ± 0.3 | 4.9 ± 0.1 | <0.001 |
HOMA-IR | 2.7 ± 1.4 | 2.4 ± 1.0 | 0.216 |
Uric acid (μmol/L) | 4.8 ± 1.2 | 4.2 ± 1.4 | 0.023 |
CRP (mg/L) | 2.6 (1.3–4.2) | 1.2 (0.9–3.5) | 0.066 |
Hgb (g/dl) | 13.8 ± 2.8 | 14.1 ± 1.3 | 0.676 |
TC (mg/dL) | 193.0 ± 24.3 | 178.1 ± 29.8 | 0.005 |
LDL (mg/dL) | 121.6 ± 21.1 | 108.3 ± 27.4 | 0.005 |
HDL (mg/dL) | 45.5 ± 8.9 | 45.6 ± 10.2 | 0.999 |
Triglyceride (mg/dL) | 131.0 ± 45.6 | 122.5 ± 57.4 | 0.391 |
GDM (n = 87) | Control (n = 36) | p | |
---|---|---|---|
LVEF (%) | 62.1 ± 5.0 | 61.7 ± 3.4 | 0.705 |
LVEDD (cm) | 45.3± 4.1 | 44.8 ± 3.3 | 0.522 |
LVESD (cm) | 28.3 ± 2.9 | 28.0± 2.2 | 0.700 |
LVEDV (mL) | 137.8 ± 25.8 | 134.3 ± 20.8 | 0.468 |
LVESV (mL) | 51.9 ± 11.3 | 51.2 ± 8.8 | 0.719 |
Stroke volume | 85.8 ± 18.9 | 83.0 ± 14.6 | 0.432 |
LV—septal wall (cm) | 8.9± 0.9 | 8.9 ± 1.0 | 0.931 |
LV—posterior wall (cm) | 8.4± 1.2 | 8.5 ± 0.8 | 0.642 |
LV mass index | 71.3 ± 15.2 | 67.6 ± 13.7 | 0.212 |
Left atrium (mm) | 31.9 ± 3.4 | 30.8 ± 3.4 | 0.101 |
E (cm/s) | 81.8 ± 11.9 | 81.5 ± 6.8 | 0.858 |
A (cm/s) | 70.2 ± 13.2 | 62.0 ± 7.9 | 0.001 |
E/A ratio | 1.1 ± 0.2 | 1.3 ± 0.1 | 0.003 |
MDT | 196.4 ± 28.9 | 184.5 ± 22.3 | 0.031 |
ET | 5.4 ± 1.3 | 4.3 ± 1.1 | <0.001 |
IVRT | 104.2 ± 11.7 | 96.4 ± 14.0 | 0.002 |
Lateral E’ (cm/s) | 20.7 ± 4.0 | 19.7 ± 4.6 | 0.239 |
Lateral A’ (cm/s) | 17.1 ± 2.9 | 14.6 ± 2.0 | <0.001 |
Lateral E’/A’ ratio | 1.2 ± 0.2 | 1.3 ± 0.1 | 0.022 |
Lateral S (cm/s) | 15.7 ± 3.3 | 14.6 ± 3.0 | 0.108 |
Lateral IVCT (ms) | 53.7 ± 10.4 | 47.7 ± 6.0 | 0.002 |
Lateral IVRT (ms) | 95.5 ± 16.8 | 95.0 ± 12.6 | 0.854 |
Lateral ET | 269.2 ± 21.4 | 274.7 ± 21.8 | 0.208 |
Basal DBFV | 26.1 ± 5.9 | 23.0 ± 5.0 | 0.007 |
Hyperemic DBFV | 59.2 ± 9.3 | 65.1 ± 15.3 | 0.011 |
CFR | 2.3 ± 0.4 | 2.8 ± 0.2 | <0.001 |
Coefficients a | ||||
Model | Unstandardized Coefficients | Standardized Coefficients | p-value | |
B | Std. Error | Beta | ||
(Constant) | 7.200 | 0.619 | <0.001 | |
TyG index | −0.649 | 0.114 | −0.496 | <0.001 |
HbA1c | −0.232 | 0.100 | 0.200 | 0.023 |
TC | −0.003 | 0.001 | −0.179 | 0.035 |
Excluded Variables b | ||||
Model | B | Partial Correlation | Collinearity Statistics | p-value |
Tolerance | ||||
Age | −0.088 | −0.115 | 0.970 | 0.288 |
Hemoglobin | 0.081 | 0.105 | 0.965 | 0.331 |
LV mass index | −0.021 | −0.028 | 0.945 | 0.800 |
Uric acid | 0.060 | 0.075 | 0.880 | 0.491 |
BMI | 0.075 | 0.094 | 0.900 | 0.387 |
CRP | 0.099 | 0.122 | 0.860 | 0.262 |
SBP | −0.115 | −0.148 | 0.935 | 0.172 |
Lateral E/A | 0.016 | 0.021 | 0.909 | 0.850 |
MDT | −0.019 | −0.024 | 0.897 | 0.823 |
IVRT | 0.014 | 0.017 | 0.763 | 0.879 |
Lateral IVCT | −0.074 | −0.096 | 0.949 | 0.376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozyildirim, S.; Barman, H.A.; Dogan, O.; Ersanli, M.K.; Dogan, S.M. The Relationship between Coronary Flow Reserve and the TyG Index in Patients with Gestational Diabetes Mellitus. Medicina 2023, 59, 1811. https://doi.org/10.3390/medicina59101811
Ozyildirim S, Barman HA, Dogan O, Ersanli MK, Dogan SM. The Relationship between Coronary Flow Reserve and the TyG Index in Patients with Gestational Diabetes Mellitus. Medicina. 2023; 59(10):1811. https://doi.org/10.3390/medicina59101811
Chicago/Turabian StyleOzyildirim, Serhan, Hasan Ali Barman, Omer Dogan, Murat Kazim Ersanli, and Sait Mesut Dogan. 2023. "The Relationship between Coronary Flow Reserve and the TyG Index in Patients with Gestational Diabetes Mellitus" Medicina 59, no. 10: 1811. https://doi.org/10.3390/medicina59101811
APA StyleOzyildirim, S., Barman, H. A., Dogan, O., Ersanli, M. K., & Dogan, S. M. (2023). The Relationship between Coronary Flow Reserve and the TyG Index in Patients with Gestational Diabetes Mellitus. Medicina, 59(10), 1811. https://doi.org/10.3390/medicina59101811