Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. Surgical Techniques
4. Indications for DBS
4.1. Parkinson’s Disease
4.2. Essential Tremor
4.3. Dystonia
4.4. Obsessive-Compulsive Disorder
4.5. Epilepsy
4.6. Tourette Syndrome
4.7. Major Depressive Disorder
4.8. Eating Disorders and Obesity
4.9. Substance Abuse/Addiction
4.10. Chronic Pain
4.11. Alzheimer’s Disease
4.12. Posttraumatic Stress Disorder and Anxiety Disorder
4.13. Tinnitus
4.14. Refractory Aggression
4.15. Bipolar Disorder
4.16. Headache
4.17. Chorea
4.18. Restless Legs Syndrome
5. DBS Target
6. Efficacy and Clinical Outcomes of DBS Therapy for Movement Disorders
6.1. Dystonia
6.2. Parkinson’s Disease
6.3. Wilson’s Disease
7. Safety and Adverse Effects of DBS Therapy
8. Programming and Follow-Up
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramirez-Zamora, A.; Giordano, J.; Gunduz, A.; Alcantara, J.; Cagle, J.N.; Cernera, S.; Difuntorum, P.; Eisinger, R.S.; Gomez, J.; Long, S.; et al. Proceedings of the Seventh Annual Deep Brain Stimulation Think Tank: Advances in Neurophysiology, Adaptive DBS, Virtual Reality, Neuroethics and Technology. Front. Hum. Neurosci. 2020, 14, 54. [Google Scholar] [CrossRef]
- Deng, H.; Yue, J.K.; Wang, D.D. Trends in Safety and Cost of Deep Brain Stimulation for Treatment of Movement Disorders in the United States: 2002–2014. Br. J. Neurosurg. 2021, 35, 57–64. [Google Scholar] [CrossRef]
- Naesström, M.; Blomstedt, P.; Bodlund, O. A Systematic Review of Psychiatric Indications for Deep Brain Stimulation, with Focus on Major Depressive and Obsessive-Compulsive Disorder. Nord. J. Psychiatry 2016, 70, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, J.; Fishman, P.S. Revisiting Bilateral Thalamotomy for Tremor. Clin. Neurol. Neurosurg. 2017, 158, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.D.; Patel, M.; Miocinovic, S. Surgical Treatment of Parkinson’s Disease: Devices and Lesion Approaches. Neurotherapeutics 2020, 17, 1525–1538. [Google Scholar] [CrossRef]
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of Deep Brain Stimulation. J. Neurophysiol. 2016, 115, 19–38. [Google Scholar] [CrossRef]
- Warren, A.E.L.; Dalic, L.J.; Bulluss, K.J.; BAppSci, A.R.; Thevathasan, W.; Archer, J.S. The Optimal Target and Connectivity for Deep Brain Stimulation in Lennox-Gastaut Syndrome. Ann. Neurol. 2022, 92, 61–74. [Google Scholar] [CrossRef]
- Chiken, S.; Nambu, A. Mechanism of Deep Brain Stimulation: Inhibition, Excitation, or Disruption? Neuroscientist 2016, 22, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Brown, P. Debugging Adaptive Deep Brain Stimulation for Parkinson’s Disease. Mov. Disord. 2020, 35, 555–561. [Google Scholar] [CrossRef]
- Dallapiazza, R.F.; De Vloo, P.; Fomenko, A.; Lee, D.J.; Hamani, C.; Munhoz, R.P.; Hodaie, M.; Lozano, A.M.; Fasano, A.; Kalia, S.K. Considerations for Patient and Target Selection in Deep Brain Stimulation Surgery for Parkinson’s Disease. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Stoker, T.B., Greenland, J.C., Eds.; Codon Publications: Brisbane, Australia, 2018; ISBN 978-0-9944381-6-4. [Google Scholar]
- Ostrem, J.L.; Ziman, N.; Galifianakis, N.B.; Starr, P.A.; Luciano, M.S.; Katz, M.; Racine, C.A.; Martin, A.J.; Markun, L.C.; Larson, P.S. Clinical Outcomes Using ClearPoint Interventional MRI for Deep Brain Stimulation Lead Placement in Parkinson’s Disease. J. Neurosurg. 2016, 124, 908–916. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Ghazanwy, M.; Tewari, A. Anesthetic Challenges for Deep Brain Stimulation: A Systematic Approach. N. Am. J. Med. Sci. 2014, 6, 359–369. [Google Scholar] [CrossRef]
- Piano, C.; Bove, F.; Mulas, D.; Bentivoglio, A.R.; Cioni, B.; Tufo, T. Frameless Stereotaxy in Subthalamic Deep Brain Stimulation: 3-Year Clinical Outcome. Neurol. Sci. 2021, 42, 259–266. [Google Scholar] [CrossRef]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al. Technology of Deep Brain Stimulation: Current Status and Future Directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P.; Bakay, R.A.E. Frameless Deep Brain Stimulation Using Intraoperative O-Arm Technology. Clinical Article. J. Neurosurg. 2011, 115, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A.L.; Benazzouz, A.; Hoffmann, D.; Limousin, P.; Krack, P.; Pollak, P. Long-Term Electrical Inhibition of Deep Brain Targets in Movement Disorders. Mov. Disord. 1998, 13, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Lozano, A.M.; Lang, A.E.; Levy, R.; Hutchison, W.; Dostrovsky, J. Neuronal Recordings in Parkinson’s Disease Patients with Dyskinesias Induced by Apomorphine. Ann. Neurol. 2000, 47, 141–146. [Google Scholar]
- Chudy, D.; Raguž, M.; Vuletić, V.; Rački, V.; Papić, E.; Nenadić Baranašić, N.; Barišić, N. GPi DBS Treatment Outcome in Children with Monogenic Dystonia: A Case Series and Review of the Literature. Front. Neurol. 2023, 14, 1151900. [Google Scholar] [CrossRef]
- Zhuang, P.; Li, Y.; Hallett, M. Neuronal Activity in the Basal Ganglia and Thalamus in Patients with Dystonia. Clin. Neurophysiol. 2004, 115, 2542–2557. [Google Scholar] [CrossRef]
- Okun, M.S.; Wu, S.S.; Fayad, S.; Ward, H.; Bowers, D.; Rosado, C.; Bowen, L.; Jacobson, C.; Butson, C.; Foote, K.D. Acute and Chronic Mood and Apathy Outcomes from a Randomized Study of Unilateral STN and GPi DBS. PLoS ONE 2014, 9, 114140. [Google Scholar] [CrossRef]
- Patel, S.; Fitzgerald, J.J.; Antoniades, C.A. Oculomotor Effects of Medical and Surgical Treatments of Parkinson’s Disease. Prog. Brain Res. 2019, 249, 297–305. [Google Scholar]
- Franzini, A.; Cordella, R.; Messina, G.; Marras, C.E.; Romito, L.M.; Albanese, A.; Rizzi, M.; Nardocci, N.; Zorzi, G.; Zekaj, E.; et al. Targeting the Brain: Considerations in 332 Consecutive Patients Treated by Deep Brain Stimulation (DBS) for Severe Neurological Diseases. Neurol. Sci. 2012, 33, 1285–1303. [Google Scholar] [CrossRef] [PubMed]
- Abou Khzam, R.; El Jalbout, N.D.; Seif, R.; Sadaka, A. An Unusual Presentation of Convergence Insufficiency in a Patient with Parkinson’s Disease Stimulated by Deep Brain Stimulation. Am. J. Ophthalmol. Case Rep. 2022, 26, 101531. [Google Scholar] [CrossRef] [PubMed]
- Strutt, A.M.; Simpson, R.; Jankovic, J.; York, M.K. Changes in Cognitive-Emotional and Physiological Symptoms of Depression Following STN-DBS for the Treatment of Parkinson’s Disease. Eur. J. Neurol. 2012, 19, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Pillon, B.; Ardouin, C.; Damier, P.; Krack, P.; Houeto, J.L.; Klinger, H.; Bonnet, A.M.; Pollak, P.; Benabid, A.L.; Agid, Y. Neuropsychological Changes between “off” and “on” STN or GPi Stimulation in Parkinson’s Disease. Neurology 2000, 55, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Rieu, I.; Derost, P.; Ulla, M.; Marques, A.; Debilly, B.; De Chazeron, I.; Chéreau, I.; Lemaire, J.J.; Boirie, Y.; Llorca, P.M.; et al. Body Weight Gain and Deep Brain Stimulation. J. Neurol. Sci. 2011, 310, 267–270. [Google Scholar] [CrossRef]
- Nazzaro, J.M.; Lyons, K.E.; Pahwa, R.; Ridings, L.W. The Importance of Testing Deep Brain Stimulation Lead Impedances before Final Lead Implantation. Surg. Neurol. Int. 2011, 2, 131. [Google Scholar] [CrossRef]
- Hancu, I.; Boutet, A.; Fiveland, E.; Ranjan, M.; Prusik, J.; Dimarzio, M.; Rashid, T.; Ashe, J.; Xu, D.; Kalia, S.K.; et al. On the (Non-) Equivalency of Monopolar and Bipolar Settings for Deep Brain Stimulation fMRI Studies of Parkinson’s Disease Patients. J. Magn. Reson. Imaging 2019, 49, 1736–1749. [Google Scholar] [CrossRef]
- Sarica, C.; Iorio-Morin, C.; Aguirre-Padilla, D.H.; Najjar, A.; Paff, M.; Fomenko, A.; Yamamoto, K.; Zemmar, A.; Lipsman, N.; Ibrahim, G.M.; et al. Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Front. Hum. Neurosci. 2021, 15, 708481. [Google Scholar] [CrossRef]
- Meissner, W.G.; Laurencin, C.; Tranchant, C.; Witjas, T.; Viallet, F.; Guehl, D.; Damier, P.; Houeto, J.-L.; Tison, F.; Eusebio, A.; et al. Outcome of Deep Brain Stimulation in Slowly Progressive Multiple System Atrophy: A Clinico-Pathological Series and Review of the Literature. Park. Relat. Disord. 2016, 24, 69–75. [Google Scholar] [CrossRef]
- Morishita, T.; Rahman, M.; Foote, K.D.; Fargen, K.M.; Jacobson, C.E., 4th; Fernandez, H.H.; Rodriguez, R.L.; Malaty, I.A.; Bowers, D.; Hass, C.J.; et al. DBS Candidates That Fall Short on a Levodopa Challenge Test: Alternative and Important Indications. Neurologist 2011, 17, 263–268. [Google Scholar] [CrossRef]
- Verhagen Metman, L.; Del Dotto, P.; van den Munckhof, P.; Fang, J.; Mouradian, M.M.; Chase, T.N. Amantadine as Treatment for Dyskinesias and Motor Fluctuations in Parkinson’s Disease. Neurology 1998, 50, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Voon, V.; Kubu, C.; Krack, P.; Houeto, J.-L.; Tröster, A.I. Deep Brain Stimulation: Neuropsychological and Neuropsychiatric Issues. Mov. Disord. 2006, 21, 305–327. [Google Scholar] [CrossRef]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M.; Follett, K.; Stern, M.; Hur, K.; Harris, C.; Marks, W.J.J.; Rothlind, J.; Sagher, O.; Reda, D.; Moy, C.S.; et al. Bilateral Deep Brain Stimulation vs Best Medical Therapy for Patients with Advanced Parkinson Disease: A Randomized Controlled Trial. JAMA 2009, 301, 63–73. [Google Scholar] [CrossRef] [PubMed]
- DeLong, M.R.; Huang, K.T.; Gallis, J.; Lokhnygina, Y.; Parente, B.; Hickey, P.; Turner, D.A.; Lad, S.P. Effect of Advancing Age on Outcomes of Deep Brain Stimulation for Parkinson Disease. JAMA Neurol. 2014, 71, 1290–1295. [Google Scholar] [CrossRef]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s Disease with Early Motor Complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef]
- Knoop, C.D.; Kadish, R.; Hager, K.; Park, M.C.; Loprinzi, P.D.; LaFaver, K. Bridging the Gaps in Patient Education for DBS Surgery in Parkinson’s Disease. Park. Dis. 2017, 2017, 9360354. [Google Scholar] [CrossRef]
- Kalakoti, P.; Ahmed, O.; Bollam, P.; Missios, S.; Wilden, J.; Nanda, A. Predictors of Unfavorable Outcomes Following Deep Brain Stimulation for Movement Disorders and the Effect of Hospital Case Volume on Outcomes: An Analysis of 33, 642 Patients across 234 US Hospitals Using the National (Nationwide) Inpatient Sample from 2002 to 2011. Neurosurg. Focus 2015, 38, E4. [Google Scholar]
- Pozzi, N.G.; Palmisano, C.; Reich, M.M.; Capetian, P.; Pacchetti, C.; Volkmann, J.; Isaias, I.U. Troubleshooting Gait Disturbances in Parkinson’s Disease With Deep Brain Stimulation. Front. Hum. Neurosci. 2022, 16, 806513. [Google Scholar] [CrossRef]
- Castrioto, A.; Lozano, A.M.; Poon, Y.-Y.; Lang, A.E.; Fallis, M.; Moro, E. Ten-Year Outcome of Subthalamic Stimulation in Parkinson Disease: A Blinded Evaluation. Arch. Neurol. 2011, 68, 1550–1556. [Google Scholar] [CrossRef]
- Follett, K.A.; Weaver, F.M.; Stern, M.; Hur, K.; Harris, C.L.; Luo, P.; Marks, W.J.J.; Rothlind, J.; Sagher, O.; Moy, C.; et al. Pallidal versus Subthalamic Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2010, 362, 2077–2091. [Google Scholar] [CrossRef]
- Krack, P.; Pollak, P.; Limousin, P.; Benazzouz, A.; Benabid, A.L. Stimulation of Subthalamic Nucleus Alleviates Tremor in Parkinson’s Disease. Lancet 1997, 350, 1675. [Google Scholar] [CrossRef]
- Joza, S.; Camicioli, R.; Martin, W.R.W.; Wieler, M.; Gee, M.; Ba, F. Pedunculopontine Nucleus Dysconnectivity Correlates With Gait Impairment in Parkinson’s Disease: An Exploratory Study. Front. Aging Neurosci. 2022, 14, 874692. [Google Scholar] [CrossRef]
- Kumbhare, D.; Palys, V.; Toms, J.; Wickramasinghe, C.S.; Amarasinghe, K.; Manic, M.; Hughes, E.; Holloway, K.L. Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations. Front. Neurosci. 2018, 12, 614. [Google Scholar] [CrossRef]
- Brusa, L.; Iani, C.; Ceravolo, R.; Galati, S.; Moschella, V.; Marzetti, F.; Stanzione, P.; Stefani, A. Implantation of the Nucleus Tegmenti Pedunculopontini in a PSP-P Patient: Safe Procedure, Modest Benefits. Mov. Disord. 2009, 24, 2020–2022. [Google Scholar] [CrossRef] [PubMed]
- Scelzo, E.; Lozano, A.M.; Hamani, C.; Poon, Y.-Y.; Aldakheel, A.; Zadikoff, C.; Lang, A.E.; Moro, E. Peduncolopontine Nucleus Stimulation in Progressive Supranuclear Palsy: A Randomised Trial. J. Neurol. Neurosurg. Psychiatry 2017, 88, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J. A History of Deep Brain Stimulation: Technological Innovation and the Role of Clinical Assessment Tools. Soc. Stud. Sci. 2013, 43, 707–728. [Google Scholar] [CrossRef]
- deSouza, R.-M.; Moro, E.; Lang, A.E.; Schapira, A.H.V. Timing of Deep Brain Stimulation in Parkinson Disease: A Need for Reappraisal? Ann. Neurol. 2013, 73, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Zesiewicz, T.A.; Elble, R.; Louis, E.D.; Hauser, R.A.; Sullivan, K.L.; Dewey, R.B.J.; Ondo, W.G.; Gronseth, G.S.; Weiner, W.J. Practice Parameter: Therapies for Essential Tremor: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2005, 64, 2008–2020. [Google Scholar] [CrossRef]
- Blomstedt, Y.; Stenmark Persson, R.; Awad, A.; Hariz, G.-M.; Philipson, J.; Hariz, M.; Fytagoridis, A.; Blomstedt, P. 10 Years Follow-Up of Deep Brain Stimulation in the Caudal Zona Incerta/Posterior Subthalamic Area for Essential Tremor. Mov. Disord. Clin. Pract. 2023, 10, 783–793. [Google Scholar] [CrossRef]
- Dallapiazza, R.F.; Lee, D.J.; De Vloo, P.; Fomenko, A.; Hamani, C.; Hodaie, M.; Kalia, S.K.; Fasano, A.; Lozano, A.M. Outcomes from Stereotactic Surgery for Essential Tremor. J. Neurol. Neurosurg. Psychiatry 2019, 90, 474–482. [Google Scholar] [CrossRef]
- Hallett, M. Tremor: Pathophysiology. Park. Relat. Disord. 2014, 20 (Suppl. S1), 118–122. [Google Scholar] [CrossRef] [PubMed]
- Tasker, R.R. Deep Brain Stimulation Is Preferable to Thalamotomy for Tremor Suppression. Surg. Neurol. 1998, 49, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Ostrem, J.L.; Starr, P.A. Treatment of Dystonia with Deep Brain Stimulation. Neurotherapeutics 2008, 5, 320–330. [Google Scholar] [CrossRef]
- Reese, R.; Volkmann, J. Deep Brain Stimulation for the Dystonias: Evidence, Knowledge Gaps, and Practical Considerations. Mov. Disord. Clin. Pract. 2017, 4, 486–494. [Google Scholar] [CrossRef]
- Kurtis, M.M.; Rajah, T.; Delgado, L.F.; Dafsari, H.S. The Effect of Deep Brain Stimulation on the Non-Motor Symptoms of Parkinson’s Disease: A Critical Review of the Current Evidence. NPJ Park. Dis. 2017, 3, 16024. [Google Scholar] [CrossRef] [PubMed]
- Calzà, J.; Gürsel, D.A.; Schmitz-Koep, B.; Bremer, B.; Reinholz, L.; Berberich, G.; Koch, K. Altered Cortico-Striatal Functional Connectivity During Resting State in Obsessive-Compulsive Disorder. Front. Psychiatry 2019, 10, 319. [Google Scholar] [CrossRef]
- Lozano, A.M.; Lipsman, N.; Bergman, H.; Brown, P.; Chabardes, S.; Chang, J.W.; Matthews, K.; McIntyre, C.C.; Schlaepfer, T.E.; Schulder, M.; et al. Deep Brain Stimulation: Current Challenges and Future Directions. Nat. Rev. Neurol. 2019, 15, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, B.D.; Gabriels, L.A.; Malone, D.A.J.; Rezai, A.R.; Friehs, G.M.; Okun, M.S.; Shapira, N.A.; Foote, K.D.; Cosyns, P.R.; Kubu, C.S.; et al. Deep Brain Stimulation of the Ventral Internal Capsule/Ventral Striatum for Obsessive-Compulsive Disorder: Worldwide Experience. Mol. Psychiatry 2010, 15, 64–79. [Google Scholar] [CrossRef]
- van Westen, M.; Rietveld, E.; Figee, M.; Denys, D. Clinical Outcome and Mechanisms of Deep Brain Stimulation for Obsessive-Compulsive Disorder. Curr. Behav. Neurosci. Rep. 2015, 2, 41–48. [Google Scholar] [CrossRef]
- Atkin, T.; Comai, S.; Gobbi, G. Drugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol. Rev. 2018, 70, 197–245. [Google Scholar] [CrossRef]
- Caprara, A.L.F.; Rissardo, J.P.; Leite, M.T.B.; Silveira, J.O.F.; Jauris, P.G.M.; Arend, J.; Kegler, A.; Royes, L.F.F.; Fighera, M.R. Course and Prognosis of Adult-Onset Epilepsy in Brazil: A Cohort Study. Epilepsy Behav. 2020, 105, 106969. [Google Scholar] [CrossRef]
- Benazzouz, A.; Hallett, M. Mechanism of Action of Deep Brain Stimulation. Neurology 2000, 55, 13–16. [Google Scholar]
- Sander, J.W. The Epidemiology of Epilepsy Revisited. Curr. Opin. Neurol. 2003, 16, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Cooper, I.S.; Amin, I.; Riklan, M.; Waltz, J.M.; Poon, T.P. Chronic Cerebellar Stimulation in Epilepsy. Clinical and Anatomical Studies. Arch. Neurol. 1976, 33, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Velasco, A.L.; Velasco, M.; Jiménez, F.; Carrillo-Ruiz, J.D.; Castro, G. Deep Brain Stimulation for Treatment of the Epilepsies: The Centromedian Thalamic Target. Acta Neurochir. Suppl. 2007, 97, 337–342. [Google Scholar] [PubMed]
- Fisher, R.; Salanova, V.; Witt, T.; Worth, R.; Henry, T.; Gross, R.; Oommen, K.; Osorio, I.; Nazzaro, J.; Labar, D.; et al. Electrical Stimulation of the Anterior Nucleus of Thalamus for Treatment of Refractory Epilepsy. Epilepsia 2010, 51, 899–908. [Google Scholar] [CrossRef]
- Caprara, A.L.F.; Tharwat Ali, H.; Elrefaey, A.; Elejla, S.A.; Rissardo, J.P. Somatosensory Auras in Epilepsy: A Narrative Review of the Literature. Medicines 2023, 10, 49. [Google Scholar] [CrossRef]
- Chan, A.Y.; Rolston, J.D.; Rao, V.R.; Chang, E.F. Effect of Neurostimulation on Cognition and Mood in Refractory Epilepsy. Epilepsia Open 2018, 3, 18–29. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Liao, Y.-S.; Yeh, W.-H.; Liang, S.-F.; Shaw, F.-Z. Directions of Deep Brain Stimulation for Epilepsy and Parkinson’s Disease. Front. Neurosci. 2021, 15, 680938. [Google Scholar] [CrossRef]
- Salam, M.T.; Perez Velazquez, J.L.; Genov, R. Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy. IEEE Trans. Neural. Syst. Rehabil. Eng. 2016, 24, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.C.B.; Cury, R.G.; Alho, E.J.L.; Fonoff, E.T. Deep Brain Stimulation in Tourette’s Syndrome: Evidence to Date. Neuropsychiatr. Dis. Treat. 2019, 15, 1061–1075. [Google Scholar] [CrossRef]
- Baldermann, J.C.; Schüller, T.; Huys, D.; Becker, I.; Timmermann, L.; Jessen, F.; Visser-Vandewalle, V.; Kuhn, J. Deep Brain Stimulation for Tourette-Syndrome: A Systematic Review and Meta-Analysis. Brain Stimul. 2016, 9, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, M.P.; Fenoy, A.J.; Carvalho, A.F.; Soares, J.C.; Quevedo, J. Deep Brain Stimulation for Treatment-Resistant Depression: An Integrative Review of Preclinical and Clinical Findings and Translational Implications. Mol. Psychiatry 2018, 23, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Holtzheimer, P.E.; Husain, M.M.; Lisanby, S.H.; Taylor, S.F.; Whitworth, L.A.; McClintock, S.; Slavin, K.V.; Berman, J.; McKhann, G.M.; Patil, P.G.; et al. Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Depression: A Multisite, Randomised, Sham-Controlled Trial. Lancet Psychiatry 2017, 4, 839–849. [Google Scholar] [CrossRef]
- Whiting, A.C.; Oh, M.Y.; Whiting, D.M. Deep Brain Stimulation for Appetite Disorders: A Review. Neurosurg. Focus 2018, 45, E9. [Google Scholar] [CrossRef]
- Lee, D.J.; Lozano, C.S.; Dallapiazza, R.F.; Lozano, A.M. Current and Future Directions of Deep Brain Stimulation for Neurological and Psychiatric Disorders. J. Neurosurg. 2019, 131, 333–342. [Google Scholar] [CrossRef]
- Whiting, D.M.; Tomycz, N.D.; Bailes, J.; de Jonge, L.; Lecoultre, V.; Wilent, B.; Alcindor, D.; Prostko, E.R.; Cheng, B.C.; Angle, C.; et al. Lateral Hypothalamic Area Deep Brain Stimulation for Refractory Obesity: A Pilot Study with Preliminary Data on Safety, Body Weight, and Energy Metabolism. J. Neurosurg. 2013, 119, 56–63. [Google Scholar] [CrossRef]
- Harat, M.; Rudaś, M.; Zieliński, P.; Birska, J.; Sokal, P. Nucleus Accumbens Stimulation in Pathological Obesity. Neurol. Neurochir. Pol. 2016, 50, 207–210. [Google Scholar] [CrossRef]
- Lee, D.J.; Elias, G.J.B.; Lozano, A.M. Neuromodulation for the Treatment of Eating Disorders and Obesity. Ther. Adv. Psychopharmacol. 2018, 8, 73–92. [Google Scholar] [CrossRef]
- Nunn, K.; Frampton, I.; Gordon, I.; Lask, B. The Fault Is Not in Her Parents but in Her Insula--a Neurobiological Hypothesis of Anorexia Nervosa. Eur. Eat Disord. Rev. 2008, 16, 355–360. [Google Scholar] [CrossRef]
- Park, R.J.; Singh, I.; Pike, A.C.; Tan, J.O.A. Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework. Front. Psychiatry 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.J.; Voges, J.; Steiner, J.; Galazky, I.; Heinze, H.-J.; Möller, M.; Pisapia, J.; Halpern, C.; Caplan, A.; Bogerts, B.; et al. Deep Brain Stimulation of the Nucleus Accumbens for the Treatment of Addiction. Ann. N. Y. Acad. Sci. 2013, 1282, 119–128. [Google Scholar] [CrossRef]
- Chen, L.; Li, N.; Ge, S.; Lozano, A.M.; Lee, D.J.; Yang, C.; Li, L.; Bai, Q.; Lu, H.; Wang, J.; et al. Long-Term Results after Deep Brain Stimulation of Nucleus Accumbens and the Anterior Limb of the Internal Capsule for Preventing Heroin Relapse: An Open-Label Pilot Study. Brain Stimul. 2019, 12, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, H.T.J.; Cassidy, W.L.; Flanagan, N.B.; Marino, R.J. Stereotaxic Anterior Cingulotomy for Neuropsychiatric Illness and Intractable Pain. J. Neurosurg. 1967, 26, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Frizon, L.A.; Yamamoto, E.A.; Nagel, S.J.; Simonson, M.T.; Hogue, O.; Machado, A.G. Deep Brain Stimulation for Pain in the Modern Era: A Systematic Review. Neurosurgery 2020, 86, 191–202. [Google Scholar] [CrossRef]
- Monsalve, G.A. Motor Cortex Stimulation for Facial Chronic Neuropathic Pain: A Review of the Literature. Surg. Neurol. Int. 2012, 3, 290–311. [Google Scholar] [CrossRef]
- Rafii, M.S.; Baumann, T.L.; Bakay, R.A.E.; Ostrove, J.M.; Siffert, J.; Fleisher, A.S.; Herzog, C.D.; Barba, D.; Pay, M.; Salmon, D.P.; et al. A Phase1 Study of Stereotactic Gene Delivery of AAV2-NGF for Alzheimer’s Disease. Alzheimers Dement. 2014, 10, 571–581. [Google Scholar] [CrossRef]
- Sperling, R.A.; Dickerson, B.C.; Pihlajamaki, M.; Vannini, P.; LaViolette, P.S.; Vitolo, O.V.; Hedden, T.; Becker, J.A.; Rentz, D.M.; Selkoe, D.J.; et al. Functional Alterations in Memory Networks in Early Alzheimer’s Disease. Neuromolecular Med. 2010, 12, 27–43. [Google Scholar] [CrossRef]
- Lozano, A.M.; Fosdick, L.; Chakravarty, M.M.; Leoutsakos, J.-M.; Munro, C.; Oh, E.; Drake, K.E.; Lyman, C.H.; Rosenberg, P.B.; Anderson, W.S.; et al. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease. J. Alzheimers Dis. 2016, 54, 777–787. [Google Scholar] [CrossRef]
- Laxton, A.W.; Tang-Wai, D.F.; McAndrews, M.P.; Zumsteg, D.; Wennberg, R.; Keren, R.; Wherrett, J.; Naglie, G.; Hamani, C.; Smith, G.S.; et al. A Phase I Trial of Deep Brain Stimulation of Memory Circuits in Alzheimer’s Disease. Ann. Neurol. 2010, 68, 521–534. [Google Scholar] [CrossRef]
- Arendt, T.; Bigl, V.; Arendt, A.; Tennstedt, A. Loss of Neurons in the Nucleus Basalis of Meynert in Alzheimer’s Disease, Paralysis Agitans and Korsakoff’s Disease. Acta Neuropathol. 1983, 61, 101–108. [Google Scholar] [CrossRef]
- Kuhn, J.; Hardenacke, K.; Lenartz, D.; Gruendler, T.; Ullsperger, M.; Bartsch, C.; Mai, J.K.; Zilles, K.; Bauer, A.; Matusch, A.; et al. Deep Brain Stimulation of the Nucleus Basalis of Meynert in Alzheimer’s Dementia. Mol. Psychiatry 2015, 20, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Scharre, D.W.; Weichart, E.; Nielson, D.; Zhang, J.; Agrawal, P.; Sederberg, P.B.; Knopp, M.V.; Rezai, A.R. Deep Brain Stimulation of Frontal Lobe Networks to Treat Alzheimer’s Disease. J. Alzheimers Dis. 2018, 62, 621–633. [Google Scholar] [CrossRef]
- Lavano, A.; Guzzi, G.; Della Torre, A.; Lavano, S.M.; Tiriolo, R.; Volpentesta, G. DBS in Treatment of Post-Traumatic Stress Disorder. Brain Sci. 2018, 8, 18. [Google Scholar] [CrossRef]
- Koek, R.J.; Roach, J.; Athanasiou, N.; van ’t Wout-Frank, M.; Philip, N.S. Neuromodulatory Treatments for Post-Traumatic Stress Disorder (PTSD). Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 148–160. [Google Scholar] [CrossRef]
- Shapira, N.A.; Okun, M.S.; Wint, D.; Foote, K.D.; Byars, J.A.; Bowers, D.; Springer, U.S.; Lang, P.J.; Greenberg, B.D.; Haber, S.N.; et al. Panic and Fear Induced by Deep Brain Stimulation. J. Neurol. Neurosurg. Psychiatry 2006, 77, 410–412. [Google Scholar] [CrossRef]
- Shi, Y.; Burchiel, K.J.; Anderson, V.C.; Martin, W.H. Deep Brain Stimulation Effects in Patients with Tinnitus. Otolaryngol. Head Neck Surg. 2009, 141, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Larson, P.S. Tinnitus Modulation by Deep Brain Stimulation in Locus of Caudate Neurons (Area LC). Neuroscience 2010, 169, 1768–1778. [Google Scholar] [CrossRef]
- Blanchard, D.C.; Blanchard, R.J. What Can Animal Aggression Research Tell Us about Human Aggression? Horm. Behav. 2003, 44, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Franzini, A.; Broggi, G.; Cordella, R.; Dones, I.; Messina, G. Deep-Brain Stimulation for Aggressive and Disruptive Behavior. World Neurosurg. 2013, 80, 11–14. [Google Scholar] [CrossRef]
- Widge, A.S.; Licon, E.; Zorowitz, S.; Corse, A.; Arulpragasam, A.R.; Camprodon, J.A.; Cusin, C.; Eskandar, E.N.; Deckersbach, T.; Dougherty, D.D. Predictors of Hypomania During Ventral Capsule/Ventral Striatum Deep Brain Stimulation. J. Neuropsychiatry Clin. Neurosci. 2016, 28, 38–44. [Google Scholar] [CrossRef]
- Riva-Posse, P.; Choi, K.S.; Holtzheimer, P.E.; Crowell, A.L.; Garlow, S.J.; Rajendra, J.K.; McIntyre, C.C.; Gross, R.E.; Mayberg, H.S. A Connectomic Approach for Subcallosal Cingulate Deep Brain Stimulation Surgery: Prospective Targeting in Treatment-Resistant Depression. Mol. Psychiatry 2018, 23, 843–849. [Google Scholar] [CrossRef]
- Akram, H.; Miller, S.; Lagrata, S.; Hariz, M.; Ashburner, J.; Behrens, T.; Matharu, M.; Zrinzo, L. Optimal Deep Brain Stimulation Site and Target Connectivity for Chronic Cluster Headache. Neurology 2017, 89, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Matharu, M.S.; Zrinzo, L. Deep Brain Stimulation in Cluster Headache: Hypothalamus or Midbrain Tegmentum? Curr. Pain Headache Rep. 2010, 14, 151–159. [Google Scholar] [CrossRef]
- Edwards, T.C.; Zrinzo, L.; Limousin, P.; Foltynie, T. Deep Brain Stimulation in the Treatment of Chorea. Mov. Disord. 2012, 27, 357–363. [Google Scholar] [CrossRef]
- Klepitskaya, O.; Liu, Y.; Sharma, S.; Sillau, S.H.; Tsai, J.; Walters, A.S. Deep brain stimulation improves restless legs syndrome in patients with Parkinson disease. Neurology 2018, 91, e1013–e1021. [Google Scholar] [CrossRef] [PubMed]
- Casoni, F.; Galbiati, T.F.; Ferini-Strambi, L.; Marelli, S.; Zucconi, M.; Servello, D. DBS in restless legs syndrome: A new therapeutic approach? Sleep Med. 2020, 76, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G.; Bassareo, V.; Fenu, S.; De Luca, M.A.; Spina, L.; Cadoni, C.; Acquas, E.; Carboni, E.; Valentini, V.; Lecca, D. Dopamine and Drug Addiction: The Nucleus Accumbens Shell Connection. Neuropharmacology 2004, 47, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Hashikawa, Y.; Hashikawa, K.; Falkner, A.L.; Lin, D. Ventromedial Hypothalamus and the Generation of Aggression. Front. Syst. Neurosci. 2017, 11, 94. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, W.-H.; Wu, D.-L.; Zhang, K.; Zhang, J.-G. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer’s Disease. Chin. Med. J. 2015, 128, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Bittar, R.G.; Kar-Purkayastha, I.; Owen, S.L.; Bear, R.E.; Green, A.; Wang, S.; Aziz, T.Z. Deep Brain Stimulation for Pain Relief: A Meta-Analysis. J. Clin. Neurosci. 2005, 12, 515–519. [Google Scholar] [CrossRef]
- Franzini, A.; Ferroli, P.; Leone, M.; Broggi, G. Stimulation of the Posterior Hypothalamus for Treatment of Chronic Intractable Cluster Headaches: First Reported Series. Neurosurgery 2003, 52, 1095–1099. [Google Scholar]
- Gratwicke, J.; Kahan, J.; Zrinzo, L.; Hariz, M.; Limousin, P.; Foltynie, T.; Jahanshahi, M. The Nucleus Basalis of Meynert: A New Target for Deep Brain Stimulation in Dementia? Neurosci. Biobehav. Rev. 2013, 37, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
- Bergfeld, I.O.; Mantione, M.; Hoogendoorn, M.L.C.; Ruhé, H.G.; Notten, P.; van Laarhoven, J.; Visser, I.; Figee, M.; de Kwaasteniet, B.P.; Horst, F.; et al. Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatry 2016, 73, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Kupsch, A.; Kuehn, A.; Klaffke, S.; Meissner, W.; Harnack, D.; Winter, C.; Haelbig, T.D.; Kivi, A.; Arnold, G.; Einhäupl, K.-M.; et al. Deep Brain Stimulation in Dystonia. J. Neurol. 2003, 250, 47–52. [Google Scholar] [CrossRef]
- Oterdoom, D.L.M.; Lok, R.; van Beek, A.P.; den Dunnen, W.F.A.; Emous, M.; van Dijk, J.M.C.; van Dijk, G. Deep Brain Stimulation in the Nucleus Accumbens for Binge Eating Disorder: A Study in Rats. Obes. Surg. 2020, 30, 4145–4148. [Google Scholar] [CrossRef] [PubMed]
- Klinger, N.; Mittal, S. Deep Brain Stimulation for Seizure Control in Drug-Resistant Epilepsy. Neurosurg. Focus 2018, 45, E4. [Google Scholar] [CrossRef]
- Hebb, M.O.; Garcia, R.; Gaudet, P.; Mendez, I.M. Bilateral Stimulation of the Globus Pallidus Internus to Treat Choreathetosis in Huntington’s Disease: Technical Case Report. Neurosurgery 2006, 58, 383. [Google Scholar] [CrossRef]
- Boccard, S.G.J.; Pereira, E.A.C.; Moir, L.; Aziz, T.Z.; Green, A.L. Long-Term Outcomes of Deep Brain Stimulation for Neuropathic Pain. Neurosurgery 2013, 72, 221–230. [Google Scholar] [CrossRef]
- Chabardès, S.; Polosan, M.; Krack, P.; Bastin, J.; Krainik, A.; David, O.; Bougerol, T.; Benabid, A.L. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Subthalamic Nucleus Target. World Neurosurg. 2013, 80, 31. [Google Scholar] [CrossRef]
- Odekerken, V.J.J.; van Laar, T.; Staal, M.J.; Mosch, A.; Hoffmann, C.F.E.; Nijssen, P.C.G.; Beute, G.N.; van Vugt, J.P.P.; Lenders, M.W.P.M.; Contarino, M.F.; et al. Subthalamic Nucleus versus Globus Pallidus Bilateral Deep Brain Stimulation for Advanced Parkinson’s Disease (NSTAPS Study): A Randomised Controlled Trial. Lancet Neurol. 2013, 12, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Neuner, I.; Podoll, K.; Lenartz, D.; Sturm, V.; Schneider, F. Deep Brain Stimulation in the Nucleus Accumbens for Intractable Tourette’s Syndrome: Follow-up Report of 36 Months. Biol. Psychiatry 2009, 65, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A.L.; Pollak, P.; Gervason, C.; Hoffmann, D.; Gao, D.M.; Hommel, M.; Perret, J.E.; de Rougemont, J. Long-Term Suppression of Tremor by Chronic Stimulation of the Ventral Intermediate Thalamic Nucleus. Lancet 1991, 337, 403–406. [Google Scholar] [CrossRef]
- Groiss, S.J.; Wojtecki, L.; Südmeyer, M.; Schnitzler, A. Deep Brain Stimulation in Parkinson’s Disease. Ther. Adv. Neurol. Disord. 2009, 2, 20–28. [Google Scholar] [CrossRef]
- França, C.; Carra, R.B.; Diniz, J.M.; Munhoz, R.P.; Cury, R.G. Deep Brain Stimulation in Parkinson’s Disease: State of the Art and Future Perspectives. Arq. Neuropsiquiatr. 2022, 80, 105–115. [Google Scholar] [CrossRef]
- Fan, H.; Zheng, Z.; Yin, Z.; Zhang, J.; Lu, G. Deep Brain Stimulation Treating Dystonia: A Systematic Review of Targets, Body Distributions and Etiology Classifications. Front. Hum. Neurosci. 2021, 15, 757579. [Google Scholar] [CrossRef]
- Bratsos, S.; Karponis, D.; Saleh, S.N. Efficacy and Safety of Deep Brain Stimulation in the Treatment of Parkinson’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cureus 2018, 10, 3474. [Google Scholar] [CrossRef]
- Peng, L.; Fu, J.; Ming, Y.; Zeng, S.; He, H.; Chen, L. The Long-Term Efficacy of STN vs GPi Deep Brain Stimulation for Parkinson Disease: A Meta-Analysis. Medicine 2018, 97, 12153. [Google Scholar] [CrossRef]
- Sidiropoulos, C.; Hutchison, W.; Mestre, T.; Moro, E.; Prescott, I.A.; Mizrachi, A.V.; Fallis, M.; Rughani, A.I.; Kalia, S.K.; Lozano, A.; et al. Bilateral Pallidal Stimulation for Wilson’s Disease. Mov. Disord. 2013, 28, 1292–1295. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, M.Z.; Domitrz, I. Stimulation-Induced Side Effects after Deep Brain Stimulation—A Systematic Review. Acta Neuropsychiatr. 2020, 32, 57–64. [Google Scholar] [CrossRef]
- Jung, I.-H.; Chang, K.W.; Park, S.H.; Chang, W.S.; Jung, H.H.; Chang, J.W. Complications After Deep Brain Stimulation: A 21-Year Experience in 426 Patients. Front. Aging Neurosci. 2022, 14, 819730. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Bruno, V.; Arena, J.; Cammarota, Á.; Merello, M. Challenges in PD Patient Management After DBS: A Pragmatic Review. Mov. Disord. Clin. Pract. 2018, 5, 246–254. [Google Scholar] [CrossRef]
- Muthuraman, M.; Bange, M.; Koirala, N.; Ciolac, D.; Pintea, B.; Glaser, M.; Tinkhauser, G.; Brown, P.; Deuschl, G.; Groppa, S. Cross-Frequency Coupling between Gamma Oscillations and Deep Brain Stimulation Frequency in Parkinson’s Disease. Brain 2020, 143, 3393–3407. [Google Scholar] [CrossRef] [PubMed]
- Buhmann, C.; Huckhagel, T.; Engel, K.; Gulberti, A.; Hidding, U.; Poetter-Nerger, M.; Goerendt, I.; Ludewig, P.; Braass, H.; Choe, C.-U.; et al. Adverse Events in Deep Brain Stimulation: A Retrospective Long-Term Analysis of Neurological, Psychiatric and Other Occurrences. PLoS ONE 2017, 12, 0178984. [Google Scholar] [CrossRef]
- Limousin, P.; Foltynie, T. Long-Term Outcomes of Deep Brain Stimulation in Parkinson Disease. Nat. Rev. Neurol. 2019, 15, 234–242. [Google Scholar] [CrossRef]
- Voges, J.; Waerzeggers, Y.; Maarouf, M.; Lehrke, R.; Koulousakis, A.; Lenartz, D.; Sturm, V. Deep-Brain Stimulation: Long-Term Analysis of Complications Caused by Hardware and Surgery—Experiences from a Single Centre. J. Neurol. Neurosurg. Psychiatry 2006, 77, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Baizabal Carvallo, J.F.; Simpson, R.; Jankovic, J. Diagnosis and Treatment of Complications Related to Deep Brain Stimulation Hardware. Mov. Disord. 2011, 26, 1398–1406. [Google Scholar] [CrossRef]
Year | Description |
---|---|
1874 | Electrical stimulation of the human cortex was performed by American physician Robert Bartholow |
1947 | The stereotactic frame was developed for human neurosurgery. Ernest A. Spiegel developed a stereotactic frame, which was followed in 1949 by the arc-based Leksell frame |
1948 | J. Lawrence Pool performed the first chronic DBS implantation using an electrode connected to an induction coil |
1952 | The first stereotactic atlas with coronal photographs of the brain was published |
1954 | Acute thalamic DBS to target chronic pain. It is considered one of the first functional applications for DBS |
Acute DBS used in pre-lesion targeting for psychiatric disorder | |
1958 | The first definitive cardiac pacemaker was implanted. The first temporary transcutaneous cardiac pacing device was made in 1952 |
1960 | Acute DBS is used to identify lesion targets in essential tremor |
Frequency-dependent effects of DBS reported | |
1961 | The first human intraoperative microelectrode recordings |
1963 | José Manuel Rodríguez Delgado used a “stimoceiver” to inhibit the aggressive behavior of a bull |
1968 | Medtronic implantable pulse generator. Also, the first spinal cord stimulator was commercially available |
1970s | Computed tomography is used for stereotactic targeting |
Radiofrequency control on an “external” transmitter on DBS systems | |
1972 | The first chronic DBS implant for PD |
1973 | Thalamic DBS for denervation pain |
1977 | Periventricular DBS for pain |
1980s | MRI is used for stereotactic targeting |
The first fully intracranial DBS devices were available. Also, the long-lasting implantable lithium batteries greatly extend implant life and the maintenance of the device | |
1980 | DBS for multiple sclerosis tremor |
1987 | DBS of the ventral intermediate nucleus of the thalamus was effective in the management of tremor in individuals with PD |
DBS therapy for the management of tremors was successfully reported by Alim-Louis Benabid | |
1990 | Refinement of battery-driven pacemakers |
DBS reverses motor symptoms in MPTP-induced parkinsonism in monkeys | |
1994 | DBS of the subthalamic nucleus is used in the management of tremors in patients with PD |
1997 | The FDA approves DBS of the ventral intermediate nucleus of the thalamus for the management of essential tremors |
1999 | DBS of the anterior limb of the internal capsule was first used to manage obsessive-compulsive disorder |
Visser-Vanderwalle reported the effective use of DBS of the medial thalamus in three patients with Tourette’s syndrome | |
Globus pallidus internus DBS for the management of refractory dystonia | |
Implantable pulse generators with dual-channel technology, which was developed after the creation of dual chamber cardiac pacing in 1998 | |
2000s | DBS therapy is refined for treating essential tremors, PD, and dystonia |
2002 | US FDA approves DBS in PD |
Quadripolar electrodes are commercially available | |
2003 | The US FDA approves DBS for dystonia |
2004 | Computer models of DBS |
2005 | DBS is used to treat depression |
2007 | DBS is used to treat minimally conscious states |
2009 | DBS of the bilateral anterior limb of the internal capsule for the management of obsessive-compulsive disorder received a humanitarian device exemption from the FDA |
Rechargeable DBS batteries are available | |
2010 | Sin Alzheimer’s pilot trial evaluates the DBS of the fornix |
2011 | Close-loop stimulation for epilepsy management |
2013 | DBS device capable of simultaneous stimulation and recording activities of the local field potential signal processing. |
DBS of the subcallosal cingulate gyrus in an anorexia pilot trial | |
A closed-loop, responsive DBS system was introduced to treat epilepsy. These devices need to have neural activity sensitivity, leading to a decreased number of side effects and a longer battery life | |
2015 | The emergence of directional DBS leads can lead to an adjustment of the electrical field along the lead axis |
2018 | The US FDA has approved DBS as an add-on treatment for drug-resistant epilepsy in adults |
2020 | The US FDA approves a DBS device capable of neurosensitivity and directional leads |
Wireless devices with three Tesla MRI compatibility |
Adverse Event | DBS Target | Region Related to the Side Effect | Correctional | Reference |
---|---|---|---|---|
Dyskinesias | GPe, GPi, STN | Excessive modulation of the indirect pathway | Decrease frequency. Removal of leads | [17] |
Dysphonia, dysarthria | STN, GPi | Internal capsule and associate circuits of basal ganglia | If possible, change the hemisphere | [18] |
Muscle contractions | STN, GPi, VOP | Corticospinal tract of the internal capsule | Move posterior | [19] |
Mood changes, risky behavior | GPi, STN | Associative and limbic circuits of the basal ganglia | Move dorsal | [20] |
Oculomotor disturbances | GPi, STN | Internal capsule for conjugate eye deviation Third nerve medial to STN for ipsilateral eye movements | Move medial; Move lateral | [21] |
Paresthesia | Vim, STN, VOP, PPN | Lemniscal fibers | Move anterior | [22] |
Phosphenes | GPi | Optic tract | Move medial | [23] |
Sadness, depression | STN | Ventromedial STN, substantia nigra pars reticularis | Move dorsal | [24] |
Verbal fluency, working memory | GPi, STN | Associative circuits of the basal ganglia | Move dorsal | [25] |
Weight gain | STN, GPi | Normalization of energy metabolism | Increase physical activity | [26] |
Model | No. of Chambers | Weight (g) | Size (mm) | Rechargeable Cell | Frequency Range (Hz) | Pulse Width (μs) | Temporal Fractionation | Current Fractionation | Directional Lead | Magnetic Resonance Safety | Local Field Potential |
---|---|---|---|---|---|---|---|---|---|---|---|
St. Jude (Abbott) Infinity 5 a | 2 | 49 | 56 × 50 × 13 | No | 2–240 | 20–500 | Multi-stim set | Coactivation | Yes | Conditional: more than 1.5T requires specific conditions | No |
St. Jude (Abbott) Infinity 7 a | 2 | 58 | 67 × 50 × 14 | No | 2–240 | 20–500 | Multi-stim set | Coactivation | Yes | Conditional: more than 1.5T requires specific conditions | No |
Boston Scientific Vercise PC b | 2 | 55 | 71 × 50 × 11 | No | 2–255 | 10–450 | Areas | Multiple independent current controls | Yes | Unsafe failure of the equipment | No |
Boston Scientific Vercise Gevia b | 2 | 26 | 51 × 46 × 11 | Yes | 2–255 | 20–450 | Areas | Multiple independent current controls | Yes | Conditional | No |
Boston Scientific Vercise Genus P8/P16 b | 1 or 2 | 58 | 72 × 50 × 12 | No | 2–255 | 20–450 | Areas | Multiple independent current controls | Yes | Conditional | No |
Boston Scientific Vercise Genus R16 b | 2 | 27 | 52 × 46 × 11 | Yes | 2–255 | 20–450 | Areas | Multiple independent current controls | Yes | Conditional | No |
Medtronic Activa PC c | 2 | 67 | 65 × 49 × 15 | No | 2–250 | 60–450 | Interleaving | No | No | Conditional, certain requirements | No |
Medtronic Activa RC c | 2 | 40 | 54 × 54 × 9 | Yes | 2–250 | 60–450 | Interleaving | No | No | Conditional, 1.5T MRI | No |
Medtronic Activa SC c | 1 | 44 | 55 × 60 × 11 | No | 3–250 | 60–450 | Interleaving | No | No | Conditional, but not eligible for full-body MRI | No |
Medtronic Perpcept PC c | 2 | 61 | 68 × 51 × 12 | No | 2–250 | 20–450 | Interleaving | No | No | Conditional, 3T, and 1.5T MRI | Yes |
Condition | Identifier Number |
---|---|
Abdominal pain, functional abdominal pain | NCT03558009 |
Action tremor | NCT03156517, NCT02960243, NCT02087046 |
Addiction, methamphetamine, and nicotine use disorders | NCT01274988, NCT01245075, NCT01658592, NCT03424616, NCT03952455, NCT02892851, NCT05558358, NCT04432064, NCT02594306, NCT03347474 |
Alcohol use disorder | NCT05522751, NCT03660124, NCT05786872, NCT05884619, NCT01798888 |
Alzheimer disease | NCT03622905, NCT01094145, NCT00658125, NCT03115814, NCT04856072, NCT01608061, NCT03352739, NCT03290274, NCT05882344, NCT03959124, NCT00888056, NCT01559220, NCT03347084 |
Anorexia nervosa | NCT01678014, NCT05245643, NCT03168893, NCT01476540, NCT02593695, NCT01924598 |
Autism spectrum disorder, self-injurious behavior | NCT03982888 |
Binge eating disorder | NCT02868619 |
Bipolar disorder | NCT01372722, NCT01476527 |
Central post-stroke pain | NCT05708729, NCT05204472 |
Cerebellar ataxia | NCT03341416 |
Chronic and severe post-coma disorders of consciousness | NCT01718249, NCT02667899, NCT04502550 |
Chronic pain, low back pain, refractory neuropathic pain, and neuralgia | NCT04085406, NCT01072656, NCT06019793, NCT03029884, NCT03399942, NCT01899170, NCT05404581, NCT04151043, NCT02006433, NCT05451251 |
Cluster headache | NCT00662935, NCT02782533, NCT05857098 |
Cognitive impairment, mild cognitive impairment | NCT02763397, NCT00947934, NCT05417555, NCT04696978, NCT04279548 |
Dementia with Lewy bodies | NCT02263937, NCT01340001 |
Depressive disorder, major depressive disorder | NCT00837486, NCT01834560, NCT01069952, NCT00122031, NCT00555698, NCT01331330, NCT05716555, NCT01983904, NCT01095263, NCT01778790, NCT03437928, NCT00296920, NCT01921543, NCT00367003, NCT04004169, NCT01569711, NCT04530942, NCT01973478, NCT02046330, NCT05773755, NCT04106466, NCT01268137, NCT01984710, NCT02889250, NCT01435148, NCT00565617, NCT00531726, NCT04021823, NCT04009928, NCT01801319, NCT03360942, NCT01898429, NCT05418894, NCT03952962, NCT03667872, NCT03347487, NCT01798407, NCT03254017, NCT03653858, NCT05777876 |
Dyskinetic cerebral palsy | NCT02097693 |
Dystonia, cervical, generalized | NCT05416905, NCT05715138, NCT04432285, NCT00132990, NCT01671527, NCT00148889, NCT00132340, NCT00169338, NCT00142259, NCT00971854, NCT03017586, NCT02686125, NCT00580658, NCT00004421, NCT02263417, NCT00773604, NCT03078816, NCT00169403, NCT02583074, NCT04650958, NCT04568681, NCT03409120, NCT02468843, NCT05097001, NCT02982304, NCT02911103, NCT00105430, NCT00331669, NCT05870020, NCT01435681, NCT02509338, NCT02877836, NCT05506085, NCT05150093, NCT04618887, NCT04810325, NCT01497639, NCT02552628 |
Epilepsy | NCT03900468, NCT00772421, NCT01141764, NCT00101933, NCT03870308, NCT04692701, NCT00736424, NCT00194870, NCT04181229, NCT04164056, NCT04897776, NCT03819738, NCT00228371, NCT05437393, NCT03465163, NCT05600738, NCT05327387, NCT01210781 |
Essential tremor | NCT03795935, NCT02491554, NCT01334814, NCT02264925, NCT03832712, NCT00906412, NCT05096572, NCT05177900, NCT05671848, NCT05362448, NCT03984643, NCT02678429, NCT05795218, NCT02418858, NCT00634478, NCT03051178, NCT03875404, NCT05909839, NCT04260971, NCT03760406, NCT04758624 NCT04828798, NCT04032470, NCT05976074, NCT03778060, NCT04581941, NCT04212780, NCT02443181, NCT03696420, NCT02947841, NCT03769961, NCT05968976, NCT05381688, NCT03305588, NCT03811405, NCT03794661, NCT01705301, NCT05897775 |
Frontotemporal dementia | NCT05699330 |
Hypothalamic obesity due to craniopharyngioma | NCT03708913 |
Huntington’s Disease | NCT02535884, NCT04244513, NCT00902889, NCT02263430 |
Impulsive behavior | NCT04811807 |
Mania disorder | NCT05444907 |
Metabolic disorder, obesity | NCT02440945, NCT03279432, NCT02232919, NCT04453020, NCT01512134, NCT02254395, NCT01933113, NCT03650309 |
Multiple systems atrophy | NCT05197816, NCT04617873, NCT03593512 |
Multiple sclerosis | NCT00954421, NCT04062331 |
Neurogenic bladder | NCT03202251 |
Obsessive-compulsive disorder | NCT03184454, NCT01135745, NCT00169377, NCT02398318, NCT02601677, NCT00724490, NCT01879254, NCT05160129, NCT01506206, NCT01485263, NCT01985815, NCT02377375, NCT02590445, NCT03457675, NCT00057603, NCT00640133, NCT04919785, NCT01061983, NCT01329133, NCT05995951, NCT04967560, NCT01429558, NCT02844049, NCT03244852, NCT04217408, NCT05623306, NCT04806516, NCT02655926, NCT03894397, NCT01807403, NCT03463590, NCT04958096, NCT03217123, NCT04281134, NCT05915741, NCT02537795, NCT03605316, NCT02773082, NCT05422469, NCT04228744, NCT02685280, NCT05577598 |
Opioid-related disorder | NCT02440152, NCT02282072, NCT03950492, NCT05903495, NCT04354077 |
Parkinson’s disease | NCT02154724, NCT04361955, NCT05774041, NCT04725773, NCT05962489, NCT05193825, NCT02982512, NCT02937727, NCT00663312, NCT01221948, NCT00985517, NCT00664157, NCT01883973, NCT03884231, NCT04071847, NCT00355927, NCT05089682, and others. The approximate number of clinical trials with Parkinson’s disease and DBS is 300. |
Parkinson’s disease and dementia | NCT01701544 |
Persistent development stutters | NCT05641701 |
Postoperative delirium | NCT05197439 |
Post-traumatic stress disorder | NCT01658748, NCT03416894, NCT02091843 |
Prader-Willi syndrome | NCT02297022 |
Refractory epilepsy | NCT04771065, NCT01521754, NCT05292183, NCT04753983, NCT02602899, NCT03404128, NCT05493722 |
Refractory schizophrenia | NCT02377505, NCT05694000, NCT02361554, NCT05337904 |
Spasmodic dysphonia | NCT04938154, NCT02558634 |
Spinal cord injury | NCT04144972, NCT04325165, NCT03053791, NCT00959296 |
Stroke sequelae | NCT02835443, NCT05968248, NCT05701280 |
Tardive dyskinesia | NCT02524886 |
Temporal-lobe epilepsy | NCT00717431 |
Tinnitus | NCT04296097, NCT03976908, NCT01988688 |
Tourette syndrome | NCT00478842, NCT04449068, NCT00311909, NCT04342754, NCT02056873, NCT01817517, NCT03958617, NCT01647269, NCT05371041, NCT02112253, NCT02619084 |
Tremor refractory to medical therapy | NCT02095600, NCT02585583 |
Target | STN | GPi | Vim |
---|---|---|---|
Tremors | ++ | + | +++ |
Bradykinesia/rigidity | ++ | ++ | - |
Reduction of the dose of dopaminergic therapy | ++ | - | - |
Reduction of dyskinesias | + | ++ | - |
Worsening of cognitive function after DBS therapy | +++ | + | + |
Worsening of speech after DBS therapy | + | + | ++ |
Occurrence of bleeding after surgery | + | +++ | + |
Indication | DBS Target | Reference |
---|---|---|
Addiction | Nucleus accumbens | [110] |
Aggressive behavior | Hypothalamus | [111] |
Alzheimer’s disease | Fornix, hypothalamus, and entorhinal cortex | [112] |
Chronic pain | Dorsal anterior cingulate cortex, centromedian and parafascicular nuclei, thalamus, periventricular/periaqueductal gray | [113] |
Cluster headache | Posterior hypothalamus | [114] |
Dementia | Nucleus basalis of Meynert | [115] |
Depression | Subcallosal cingulate gyrus, anterior limb of the internal capsule, nucleus accumbens | [116] |
Dystonia | Globus pallidus internus, thalamus ventrolateral intermedius nucleus | [117] |
Eating disorders | Nucleus accumbens | [118] |
Epilepsy | Anterior nucleus of the thalamus; centromedian and parafascicular nuclei; inferior caudate nucleus; subthalamic nucleus | [119] |
Huntington’s disease | Globus pallidus externus (in combination with globus pallidus internus) | [120] |
Neuropathic deafferentation pain | Ventral posteromedial nucleus/ ventral posterolateral nucleus | [121] |
Obesity | Lateral hypothalamic area | [79] |
Obsessive-compulsive disorder | Anterior limb of the internal capsule, subthalamic nucleus | [122] |
Parkinson’s disease | Globus pallidus internus, subthalamic nucleus | [123] |
Tourette syndrome | Nucleus accumbens, globus pallidus internus, centromedian nucleus, ventro-oralis internus | [124] |
Tremor | Ventral intermediate thalamus | [125] |
Surgical Complications | Long Term Adverse Effects |
---|---|
Hemorrhage (intracerebral/intraventricular) | Dysarthria |
Venous infarct | Malignant DBS withdrawal syndrome |
Pneumocephalus | Impulse control disorder |
Seizures | Paresthesia |
Implant infections | Ataxia |
Lead dislocation and lead fracture | Diplopia |
Post-operative delirium | Twiddler’s syndrome |
Worsening dyskinesia | Reduced verbal fluency |
Post-operative atelectasis | Changes in memory and executive functions |
Pulmonary embolism | Gait disturbances |
Deep vein thrombosis | Weight gain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rissardo, J.P.; Vora, N.M.; Tariq, I.; Mujtaba, A.; Caprara, A.L.F. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. Medicina 2023, 59, 1991. https://doi.org/10.3390/medicina59111991
Rissardo JP, Vora NM, Tariq I, Mujtaba A, Caprara ALF. Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. Medicina. 2023; 59(11):1991. https://doi.org/10.3390/medicina59111991
Chicago/Turabian StyleRissardo, Jamir Pitton, Nilofar Murtaza Vora, Irra Tariq, Amna Mujtaba, and Ana Letícia Fornari Caprara. 2023. "Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review" Medicina 59, no. 11: 1991. https://doi.org/10.3390/medicina59111991
APA StyleRissardo, J. P., Vora, N. M., Tariq, I., Mujtaba, A., & Caprara, A. L. F. (2023). Deep Brain Stimulation for the Management of Refractory Neurological Disorders: A Comprehensive Review. Medicina, 59(11), 1991. https://doi.org/10.3390/medicina59111991