How to Choose the Right Treatment for Membranous Nephropathy
Abstract
:1. Introduction
2. Membranous Nephropathy: Pathophysiology and Autoantibodies
3. An Open Question: Is Biopsy Still Necessary in Patient with PLA2R Antibodies?
4. Membranous Nephropathy Supportive Therapy
5. History of Immunosuppressive Therapy in Membranous Nephropathy
6. Treatment of Membranous Nephropathy in KDIGO 2021
7. Rituximab
8. Novel Therapeutic Approaches for Membranous Nephropathy
9. Treatment of Secondary Membranous Nephropathy
10. Membranous Nephropathy in Children
11. Membranous Nephropathy in Pregnancy
12. Membranous Nephropathy in Kidney Transplant Recipients
13. Economic Considerations and Patients’ Preference
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ronco, P.; Plaisier, E.; Debiec, H. Advances in Membranous Nephropathy. J. Clin. Med. 2021, 10, 607. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, X.; Zhang, W.; Lv, J.; Lan, P.; Wang, Z.; Sun, J.; Xie, L.; Lu, W.; Feng, X.; et al. Epidemiological characteristics and pathological changes of primary glomerular diseases. PLoS ONE 2022, 17, e0272237. [Google Scholar] [CrossRef] [PubMed]
- Woo, K.T.; Chan, C.M.; Lim, C.; Choo, J.; Chin, Y.M.; Teng, E.W.L.; Mok, I.; Kwek, J.L.; Loh, A.H.; Choong, H.L.; et al. A Global Evolutionary Trend of the Frequency of Primary Glomerulonephritis over the Past Four Decades. Kidney Dis. 2019, 5, 247–258. [Google Scholar] [CrossRef]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous nephropathy. Nat. Rev. Dis. Prim. 2021, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Schieppati, A.; Mosconi, L.; Perna, A.; Mecca, G.; Bertani, T.; Garattini, S.; Remuzzi, G. Prognosis of untreated patients with idiopathic membranous nephropathy. N. Engl. J. Med. 1993, 329, 85–89. [Google Scholar] [CrossRef]
- Hladunewich, M.A.; Troyanov, S.; Calafati, J.; Cattran, D.C.; Registry, M.T.G. The natural history of the non-nephrotic membranous nephropathy patient. Clin. J. Am. Soc. Nephrol. 2009, 4, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Von Haxthausen, F.; Reinhard, L.; Pinnschmidt, H.O.; Rink, M.; Soave, A.; Hoxha, E.; Stahl, R.A.K. Antigen-Specific IgG Subclasses in Primary and Malignancy-Associated Membranous Nephropathy. Front. Immunol. 2018, 9, 3035. [Google Scholar] [CrossRef]
- Stahl, R.A.; Reinhard, L.; Hoxha, E. Characterization of autoantibodies in primary membranous nephropathy and their clinical significance. Expert Rev. Clin. Immunol. 2018, 15, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, T.; Ema, C.; Sato, T.; Isobe, S.; Fujikura, T.; Ohashi, N.; Kato, A.; Yasuda, H. Primary Membranous Nephropathy with Enhanced Staining of Exostosin 1/Exostosin 2 in the Glomeruli: A Report of 2 Cases. Kidney Med. 2021, 3, 669–673. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; Charlesworth, M.C.; Morelle, J.; Gross, L.; Ravindran, A.; Buob, D.; Jadoul, M.; Fervenza, F.C.; et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int. 2020, 97, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Santoro, D.; Debiec, H.; Longhitano, E.; Torreggiani, M.; Barreca, A.; Vegezzi, E.; Mazzeo, A.; Russo, M.; Piccoli, G.B.; Toscano, A.; et al. Contactin 1, a Potential New Antigen Target in Membranous Nephropathy: A Case Report. Am. J. Kidney Dis. 2022, 80, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Debiec, H.; Madden, B.; Vivarelli, M.; Charlesworth, M.C.; Ravindran, A.; Gross, L.; Ulinski, T.; Buob, D.; Tran, C.L.; et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int. 2020, 98, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Hassen, S.I.; Kuperman, M.; Sharma, S.G.; Dvanajscak, Z.; Arthur, J.; Edmondson, R.; Storey, A.; Herzog, C.; Kenan, D.J.; et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int. 2021, 100, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Hassen, S.I.; Kenan, D.J.; Storey, A.; Arthur, J.M.; Herzog, C.; Edmondson, R.D.; Bourne, T.D.; Beck, L.H.; Larsen, C.P. Transforming Growth Factor Beta Receptor 3 (TGFBR3)–Associated Membranous Nephropathy. Kidney360 2021, 2, 1275–1286. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.; Moura, M.C.; Nasr, S.H.; Klomjit, N.; Gross, L.; Negron, V.; Charlesworth, M.C.; Alexander, M.P.; Leung, N.; et al. Hematopoietic Stem Cell Transplant-Membranous Nephropathy Is Associated with Protocadherin FAT1. J. Am. Soc. Nephrol. 2022, 33, 1033–1044. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.; Debiec, H.; Morelle, J.; Charlesworth, M.C.; Gross, L.; Negron, V.; Buob, D.; Chaudhry, S.; Jadoul, M.; et al. Protocadherin 7-Associated Membranous Nephropathy. J. Am. Soc. Nephrol. 2021, 32, 1249–1261. [Google Scholar] [CrossRef]
- Al-Rabadi, L.F.; Caza, T.; Trivin-Avillach, C.; Rodan, A.R.; Andeen, N.; Hayashi, N.; Williams, B.; Revelo, M.P.; Clayton, F.; Abraham, J.; et al. Serine protease HTRA1 as a novel target antigen in primary membranous nephropathy. J. Am. Soc. Nephrol. 2021, 32, 1666–1681. [Google Scholar] [CrossRef]
- Reinhard, L.; Machalitza, M.; Wiech, T.; Gröne, H.-J.; Lassé, M.; Rinschen, M.M.; Ferru, N.; Bräsen, J.H.; Drömann, F.; Rob, P.M.; et al. Netrin G1 is a Novel Target Antigen in Primary Membranous Nephropathy. J. Am. Soc. Nephrol. 2022, 33, 1823–1831. [Google Scholar] [CrossRef]
- Pozdzik, A.; Brochériou, I.; David, C.; Touzani, F.; Goujon, J.M.; Wissing, K.M. Membranous Nephropathy and Anti-Podocytes Antibodies: Implications for the Diagnostic Workup and Disease Management. BioMed Res. Int. 2018, 2018, 6281054. [Google Scholar] [CrossRef]
- Vink, C.H.; van de Logt, A.-E.; van der Molen, R.G.; Hofstra, J.M.; Wetzels, J.F. Antibody-Guided Therapy in Phospholipase A2 Receptor-Associated Membranous Nephropathy. Kidney Int. Rep. 2022, 8, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Fervenza, F.C. ‘Precision’ Medicine in Membranous Nephropathy: Serology-Guided Therapy. Kidney Int. Rep. 2023, 8, 397–400. [Google Scholar] [CrossRef]
- Caza, T.N.; Hassen, S.I.; Dvanajscak, Z.; Kuperman, M.; Edmondson, R.; Herzog, C.; Storey, A.; Arthur, J.; Cossey, L.N.; Sharma, S.G.; et al. NELL1 is a target antigen in malignancy-associated membranous nephropathy. Kidney Int. 2021, 99, 967–976. [Google Scholar] [CrossRef]
- Sethi, S. The Many Faces of NELL1 MN. Clin. Kidney J. 2023, 16, 442–446. [Google Scholar] [CrossRef]
- Van de Logt, A.-E.; Fresquet, M.; Wetzels, J.F.; Brenchley, P. The anti-PLA2R antibody in membranous nephropathy: What we know and what remains a decade after its discovery. Kidney Int. 2019, 96, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Bobart, S.A.; De Vriese, A.S.; Pawar, A.S.; Zand, L.; Sethi, S.; Giesen, C.; Lieske, J.C.; Fervenza, F.C. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int. 2019, 95, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Wiech, T.; Stahl, R.A.K.; Hoxha, E. Diagnostic role of renal biopsy in PLA2R1-antibody-positive patients with nephrotic syndrome. Mod. Pathol. 2019, 32, 1320–1328. [Google Scholar] [CrossRef]
- Kodner, C. Diagnosis and management of nephrotic syndrome in adults. Am. Fam. Physician 2016, 93, 479–485. [Google Scholar]
- Jentzer, J.C.; DeWald, T.A.; Hernandez, A.F. Combination of loop diuretics with thiazide-type diuretics in heart failure. J. Am. Coll. Cardiol. 2010, 56, 1527–1534. [Google Scholar] [CrossRef]
- Duffy, M.; Jain, S.; Harrell, N.; Kothari, N.; Reddi, A.S. Albumin and furosemide combination for management of edema in nephrotic syndrome: A review of clinical studies. Cells 2015, 4, 622–630. [Google Scholar] [CrossRef]
- Al Dhaybi, O.; Bakris, G. Mineralocorticoid antagonists in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 50–55. [Google Scholar] [CrossRef]
- Parving, H.-H.; Brenner, B.M.; McMurray, J.J.; de Zeeuw, D.; Haffner, S.M.; Solomon, S.D.; Chaturvedi, N.; Persson, F.; Desai, A.S.; Nicolaides, M.; et al. Cardiorenal End Points in a Trial of Aliskiren for Type 2 Diabetes. N. Engl. J. Med. 2012, 367, 2204–2213. [Google Scholar] [CrossRef] [PubMed]
- Steuber, T.D.; Lee, J.; Holloway, A.; Andrus, M.R. Nondihydropyridine Calcium Channel Blockers for the Treatment of Proteinuria: A Review of the Literature. Ann. Pharmacother. 2019, 53, 1050–1059. [Google Scholar] [CrossRef]
- de Zeeuw, D.; A Anzalone, D.; A Cain, V.; Cressman, M.D.; Heerspink, H.J.L.; A Molitoris, B.; Monyak, J.T.; Parving, H.-H.; Remuzzi, G.; Sowers, J.R.; et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): A randomised clinical trial. Lancet Diabetes Endocrinol. 2015, 3, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yuan, H.; Fan, J.; Li, Z.; Wu, T.; Jiang, L. Lipid-lowering agents for nephrotic syndrome. Cochrane Database Syst. Rev. 2013, 2013, CD005425. [Google Scholar] [CrossRef] [PubMed]
- Barbour, S.J.; Greenwald, A.; Djurdjev, O.; Levin, A.; Hladunewich, M.A.; Nachman, P.H.; Hogan, S.L.; Cattran, D.C.; Reich, H.N. Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis. Kidney Int. 2012, 81, 190–195. [Google Scholar] [CrossRef]
- Hofstra, J.M.; Wetzels, J.F. Should aspirin be used for primary prevention of thrombotic events in patients with membranous nephropathy? Kidney Int. 2016, 89, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Study of the Adult Idiopathic Nephrotic Syndrome. A Controlled Study of Short-Term Prednisone Treatment in Adults with Membranous Nephropathy. N. Engl. J. Med. 1979, 301, 1301–1306. [Google Scholar] [CrossRef]
- Cameron, J.S.; Healy, M.J.; Adu, D. The Medical Research Council trial of short-term high-dose alternate day prednisolone in idiopathic membranous nephropathy with nephrotic syndrome in adults. The MRC Glomerulonephritis Working Party. Q. J. Med. 1990, 74, 133–156. [Google Scholar] [CrossRef]
- Donadio, J.V.; Holley, K.E.; Anderson, C.F.; Taylor, W.F. Controlled trial of cyclophosphamide in idiopathic membranous nephropathy. Kidney Int. 1974, 6, 431–439. [Google Scholar] [CrossRef]
- Lagrue, G.; Bernard, D.; Bariety, J.; Druet, P.; Guenel, J. Treatment with chlorambucil and azathioprine in primary glomerulonephritis. Results of a ‘controlled’ study. J. Urol. Nephrol. 1975, 81, 655–672. [Google Scholar]
- Ponticelli, C.; Zucchelli, P.; Passerini, P.; Cesana, B.; Locatelli, F.; Pasquali, S.; Sasdelli, M.; Redaelli, B.; Grassi, C.; Pozzi, C.; et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995, 48, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Zucchelli, P.; Passerini, P.; Cesana, B. Methylprednisolone plus chlorambucil as compared with methylprednisolone alone for the treatment of idiopathic membranous nephropathy. The Italian Idiopathic Membranous Nephropathy Treatment Study Group. N. Engl. J. Med. 1992, 327, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Altieri, P.; Scolari, F.; Passerini, P.; Roccatello, D.; Cesana, B.; Melis, P.; Valzorio, B.; Sasdelli, M.; Pasquali, S.; et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 1998, 9, 444–450. [Google Scholar] [CrossRef]
- Guasch, A.; Suranyi, M.; Newton, L.; Hall, B.M.; Myers, B.D. Short-term responsiveness of membranous glomerulopathy to cyclosporine. Am. J. Kidney Dis. 1992, 20, 472–481. [Google Scholar] [CrossRef]
- Rostoker, G.; Belghiti, D.; Ben Maadi, A.; Rémy, P.; Lang, P.; Weil, B.; Lagrue, G. Long-term cyclosporin A therapy for severe idiopathic membranous nephropathy. Nephron 1993, 63, 335–341. [Google Scholar] [CrossRef]
- DeSanto, N.G.; Capodicasa, G.; Giordano, C. Treatment of idiopathic membranous nephropathy unresponsive to methylprednisolone and chlorambucil with cyclosporin. Am. J. Nephrol. 1987, 7, 74–76. [Google Scholar] [CrossRef]
- Cattran, D.C.; Greenwood, C.; Ritchie, S.; Bernstein, K.; Churchill, D.N.; Clark, W.F.; Morrin, P.A.; Lavoie, S. A controlled trial of cyclosporine in patients with progressive membranous nephropathy. Canadian Glomerulonephritis Study Group. Kidney Int. 1995, 47, 1130–1135. [Google Scholar] [CrossRef]
- Cattran, D.C.; Appel, G.B.; Hebert, L.A.; Hunsicker, L.G.; Pohl, M.A.; Hoy, W.E.; Maxwell, D.R.; Kunis, C.L.; For The North American Nephrotic Syndrome. Cyclosporine in patients with steroid-resistant membranous nephropathy: A randomized trial. Kidney Int. 2001, 59, 1484–1490. [Google Scholar] [CrossRef]
- Shang, S.-L.; Cai, G.-Y.; Duan, S.-W.; Li, P.; Li, Q.-G.; Chen, X.-M. Retrospective analysis of tacrolimus combined with Tripterygium wilfordii polyglycoside for treating idiopathic membranous nephropathy. BMC Nephrol. 2018, 19, 182. [Google Scholar] [CrossRef]
- Caro, J.; Gutierrez-Solis, E.; Rojas-Rivera, J.; Agraz, I.; Ramos, N.; Rabasco, C.; Espinosa, M.; Valera, A.; Martin, M.; Frutos, M.A.; et al. Predictors of response and relapse in patients with idiopathic membranous nephropathy treated with tacrolimus. Nephrol. Dial. Transplant. 2015, 30, 467–474. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.-Y.; Li, H.; Li, X.-W.; Li, X.-Y.; Chen, J.-H.; Lu, F.-M.; Ni, Z.-H.; Xu, F.-F. Tacrolimus combined with corticosteroids in treatment of nephrotic idiopathic membranous nephropathy: A multicenter randomized controlled trial. Am. J. Med. Sci. 2010, 339, 233–238. [Google Scholar] [CrossRef]
- Di, J.; Qian, Q.; Yang, M.; Jiang, Y.; Zhou, H.; Li, M.; Zou, Y. Efficacy and safety of long-course tacrolimus treatment for idiopathic membranous nephropathy. Exp. Ther. Med. 2018, 16, 979–984. [Google Scholar] [CrossRef]
- Branten, A.J.; du Buf-Vereijken, P.W.; Vervloet, M.; Wetzels, J.F. Mycophenolate mofetil in idiopathic membranous nephropathy: A clinical trial with comparison to a historic control group treated with cyclophosphamide. Am. J. Kidney Dis. 2007, 50, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Nayagam, L.S.; Ganguli, A.; Rathi, M.; Kohli, H.S.; Gupta, K.L.; Joshi, K.; Sakhuja, V.; Jha, V.; Cianciaruso, B.; Pota, A.; et al. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: A pilot study. Nephrol. Dial. Transplant. 2008, 23, 1926–1930. [Google Scholar] [CrossRef]
- Dussol, B.; Morange, S.; Burtey, S.; Indreies, M.; Cassuto, E.; Mourad, G.; Villar, E.; Pouteil-Noble, C.; Karaaslan, H.; Sichez, H.; et al. Mycophenolate mofetil monotherapy in membranous nephropathy: A 1-year randomized controlled trial. Am. J. Kidney Dis. 2008, 52, 699–705. [Google Scholar] [CrossRef]
- Dahan, K.; Debiec, H.; Plaisier, E.; Cachanado, M.; Rousseau, A.; Wakselman, L.; Michel, P.-A.; Mihout, F.; Dussol, B.; Matignon, M.; et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. J. Am. Soc. Nephrol. 2017, 28, 348–358. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Juárez, G.; Rojas-Rivera, J.; van de Logt, A.-E.; Justino, J.; Sevillano, A.; Rabasco, C.; Cabello, V.; Varela, A.; Martín-Reyes, G.; Diezhandino, M.G.; et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 2021, 99, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Fervenza, F.C.; Appel, G.B.; Barbour, S.J.; Rovin, B.H.; Lafayette, R.A.; Aslam, N.; Jefferson, J.A.; Gipson, P.E.; Rizk, D.V.; Sedor, J.R.; et al. Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. N. Engl. J. Med. 2019, 381, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Scolari, F.; Delbarba, E.; Santoro, D.; Gesualdo, L.; Pani, A.; Dallera, N.; Mani, L.-Y.; Santostefano, M.; Feriozzi, S.; Quaglia, M.; et al. Rituximab or Cyclophosphamide in the Treatment of Membranous Nephropathy: The RI-CYCLO Randomized Trial. J. Am. Soc. Nephrol. 2021, 32, 972–982. [Google Scholar] [CrossRef]
- Cravedi, P.; Ruggenenti, P.; Sghirlanzoni, M.C.; Remuzzi, G. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2007, 2, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Polski, B.; Dahan, K.; Debiec, H.; Rousseau, A.; Andreani, M.; Zaghrini, C.; Ticchioni, M.; Rosenthal, A.; Benzaken, S.; Bernard, G.; et al. High-Dose Rituximab and Early Remission in PLA2R1-Related Membranous Nephropathy. Clin. J. Am. Soc. Nephrol. 2019, 14, 1173–1182. [Google Scholar] [CrossRef]
- Moroni, G.; Depetri, F.; Del Vecchio, L.; Gallelli, B.; Raffiotta, F.; Giglio, E.; Brunini, F.; D’Amico, M.; Longhi, S.; Radice, A.; et al. Low-dose rituximab is poorly effective in patients with primary membranous nephropathy. Nephrol. Dial. Transplant. 2017, 32, 1691–1696. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Emery, P.; O Bingham, C.; Keystone, E.C.; Fleischmann, R.M.; E Furst, D.; Tyson, N.; Collinson, N.; Lehane, P.B. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 2013, 72, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- van Vollenhoven, R.F.; Emery, P.; Bingham, C.O.; Keystone, E.C.; Fleischmann, R.; Furst, D.E.; Macey, K.; Sweetser, M.; Kelman, A.; Rao, R. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J. Rheumatol. 2010, 37, 558–567. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, J.A.J.G.; Ruggenenti, P.; Chianca, A.; Hofstra, J.M.; Perna, A.; Ruggiero, B.; Wetzels, J.F.M.; Remuzzi, G. Safety of Rituximab Compared with Steroids and Cyclophosphamide for Idiopathic Membranous Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 2729–2737. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Yandian, F.; Fervenza, F.C. Future landscape for the management of membranous nephropathy. Clin. Kidney J. 2023, 16, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Rivera, J.E.; Ortiz, A.; Fervenza, F.C. Novel Treatments Paradigms: Membranous Nephropathy. Kidney Int. Rep. 2023, 8, 419–431. [Google Scholar] [CrossRef]
- Berg, A.-L.; Arnadottir, M. ACTH-induced improvement in the nephrotic syndrome in patients with a variety of diagnoses. Nephrol. Dial. Transplant. 2004, 19, 1305–1307. [Google Scholar] [CrossRef]
- Ponticelli, C.; Passerini, P.; Salvadori, M.; Manno, C.; Viola, B.F.; Pasquali, S.; Mandolfo, S.; Messa, P. A randomized pilot trial comparing methylprednisolone plus a cytotoxic agent versus synthetic adrenocorticotropic hormone in idiopathic membranous nephropathy. Am. J. Kidney Dis. 2006, 47, 233–240. [Google Scholar] [CrossRef]
- van de Logt, A.-E.; Beerenhout, C.H.; Brink, H.S.; van de Kerkhof, J.J.; Wetzels, J.F.; Hofstra, J.M. Synthetic ACTH in High Risk Patients with Idiopathic Membranous Nephropathy: A Prospective, Open Label Cohort Study. PLoS ONE 2015, 10, e0142033. [Google Scholar] [CrossRef]
- Bagchi, S.; Behera, V.; Agarwal, S.K. ACTH (corticotrophin) therapy in resistant primary membranous nephropathy. Kidney Int. 2019, 96, 250–251. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.; Willcocks, L.C.; Jones, R.B.; Tarzi, R.M.; Henderson, R.B.; Cai, G.; I Gisbert, S.; Belson, A.S.; O Savage, C. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Nephrol. Dial. Transplant. 2020, 35, 599–606. [Google Scholar] [CrossRef]
- Salhi, S.; Ribes, D.; Colombat, M.; Fortenfant, F.; Faguer, S. Bortezomib plus dexamethasone for rituximab-resistant PLA2R+ membranous nephropathy. Kidney Int. 2021, 100, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Hartono, C.; Chung, M.; Kuo, S.F.; Seshan, S.V.; Muthukumar, T. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J. Nephrol. 2014, 27, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Geara, A.S.; Bhoj, V.; Hogan, J.J. Bortezomib Treatment for Refractory PLA2R-Positive Membranous Nephropathy. Glomerular Dis. 2021, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Vink, C.H.; van Cranenbroek, B.; van der Heijden, J.W.; Koenen, H.P.; Wetzels, J.F. Daratumumab for multidrug-resistant phospholipase-A2 receptor-related membranous nephropathy. Kidney Int. 2022, 101, 646–647. [Google Scholar] [CrossRef]
- So, B.Y.F.; Chan, G.C.W.; Yap, D.Y.H.; Chan, T.M. The role of the complement system in primary membranous nephropathy: A narrative review in the era of new therapeutic targets. Front. Immunol. 2022, 13, 1009864. [Google Scholar] [CrossRef]
- Weinmann-Menke, J.; Holtz, S.; Sollinger, D.; Dörken, M.; Boedecker, S.; Schamberger, B.; Pfister, F.; Amann, K.; Lutz, J. Treatment of Membranous Nephropathy in Patients with THSD7A Antibodies Using Immunoadsorption. Am. J. Kidney Dis. 2019, 74, 849–852. [Google Scholar] [CrossRef]
- Podestà, M.A.; Gennarini, A.; Portalupi, V.; Rota, S.; Alessio, M.G.; Remuzzi, G.; Ruggenenti, P. Accelerating the Depletion of Circulating Anti-Phospholipase A2 Receptor Antibodies in Patients with Severe Membranous Nephropathy: Preliminary Findings with Double Filtration Plasmapheresis and Ofatumumab. Nephron 2020, 144, 30–35. [Google Scholar] [CrossRef]
- Arghiani, M.; Zamani, B.H.; Nazemian, F.; Samadi, S.; Afsharian, M.S.; Habibzadeh, M.; Eslami, S.; Sabbagh, M.G. A cohort study of membranous nephropathy, primary or secondary. BMC Nephrol. 2021, 22, 138. [Google Scholar] [CrossRef]
- Alsharhan, L.; Beck, L.H., Jr. Membranous Nephropathy: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 77, 440–453. [Google Scholar] [CrossRef]
- Ohtani, H.; Wakui, H.; Komatsuda, A.; Okuyama, S.; Masai, R.; Maki, N.; Kigawa, A.; Sawada, K.-I.; Imai, H. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol. Dial. Transplant. 2004, 19, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.-K.; Kim, Y.H.; Choi, D.E.; Choi, S.-Y.; Kim, K.-H.; Suh, K.-S. The Usefulness of Phospholipase A2 Receptor and IgG4 Detection in Differentiation Primary Membranous Nephropathy from Secondary Membranous Nephropathy in Renal Biopsy. Appl. Immunohistochem. Mol. Morphol. AIMM 2018, 26, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.H., Jr. Moroni, G.; Ponticelli, C. Secondary Membranous Nephropathy. A Narrative Review. Front. Med. 2020, 7, 611317. [Google Scholar] [CrossRef]
- Morimoto, N.; Nagahama, K.; Tsuura, Y.; Terai, A.; Tanabe, M.; Otani, M.; Shioji, S.; Hirasawa, S.; Aki, S.; Aoyagi, M.; et al. Membranous nephropathy in a patient with pulmonary tuberculosis infection and lung adenocarcinoma: A case report. CEN Case Rep. 2022, 11, 126–133. [Google Scholar] [CrossRef]
- Kaneko, T.; Shimizu, A.; Aoki, M.; Tsuruoka, S. A case of gefitinib-associated membranous nephropathy in treatment for pulmonary adenocarcinoma. CEN Case Rep. 2015, 4, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ratanasrimetha, P.; Reddy, V.D.; Kala, J.; Tchakarov, A.; Glass, W.F.; Msaouel, P.; Lin, J.S. Case Report: Successful treatment of late-onset immune checkpoint inhibitor-associated membranous nephropathy in a patient with advanced renal cell carcinoma. Front. Immunol. 2022, 13, 898811. [Google Scholar] [CrossRef]
- Pathak, N.; Gunasekaran, I.; Ambriose, M.; Nanda, S.K. Nell1 as Target Antigen for Mercury Related Membranous Nephropathy: A Case Report. Indian J. Nephrol. 2022, 32, 502–505. [Google Scholar] [CrossRef]
- Sewaralthahab, K.; Rennke, H.; Sewaralthahab, S.; Madias, N.E.; Jaber, B.L. Potential association between membranous nephropathy and sargramostim therapy for pulmonary alveolar proteinosis. Clin. Nephrol.—Case Stud. 2014, 3, 31–36. [Google Scholar] [CrossRef]
- Dauvergne, M.; Moktefi, A.; Rabant, M.; Vigneau, C.; Kofman, T.; Burtey, S.; Corpechot, C.; Stehlé, T.; Desvaux, D.; Rioux-Leclercq, N.; et al. Membranous Nephropathy Associated with Immunological Disorder-Related Liver Disease. Medicine 2015, 94, e1243. [Google Scholar] [CrossRef] [PubMed]
- Iida, A.; Wada, Y.; Hayashi, J.; Tachibana, S.; Inaba, T.; Iyoda, M.; Honda, K.; Shibata, T. Membranous nephropathy caused by rheumatoid arthritis. CEN Case Rep. 2019, 8, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, F.; Xie, Q.; Xue, J.; Lai, L.; Liu, S.; Zhang, L.; Hao, C. Membranous nephropathy in a patient with ankylosing spondylitis. Medicine 2017, 96, e8201. [Google Scholar] [CrossRef] [PubMed]
- Moniwa, N.; Shioya, Y.; Gocho, Y.; Takahashi, S.; Tanaka, M.; Furuhashi, M.; Kuroda, S.; Hama, T.; Shima, Y.; Ogawa, Y.; et al. A case of membranous nephropathy secondary to asymptomatic Graves’ disease. CEN Case Rep. 2022, 11, 309–313. [Google Scholar] [CrossRef]
- Neves, P.D.M.d.M.; Muniz, M.P.R.; Morgantetti, G.F.; Cutrim, M.M.; Macieira, C.d.A.; Salgado-Filho, N.; Lages, J.S.; Brito, D.J.d.A.; Cunha, K.d.A.; Gatto, G.C.; et al. Membranous Nephropathy Secondary to Graves’ Disease: A Case Report. Front. Immunol. 2022, 13, 824124. [Google Scholar] [CrossRef]
- Shima, Y.; Nakanishi, K.; Togawa, H.; Obana, M.; Sako, M.; Miyawaki, M.; Nozu, K.; Iijima, K.; Yoshikawa, N. Membranous nephropathy associated with thyroid-peroxidase antigen. Pediatr. Nephrol. 2009, 24, 605–608. [Google Scholar] [CrossRef]
- Hanna, R.M.; Arman, F.; Selamet, U.; Wallace, W.D.; Barsoum, M.; Rastogi, A.; Nobakht, N.; Shieh, P. Secondary membranous nephropathy in a patient with myasthenia gravis without thymic disease, and partial remission induced by adrenocorticotropic hormone therapy. SAGE Open Med Case Rep. 2019, 7, 2050313X19869764. [Google Scholar] [CrossRef]
- Pestana, N.; Vida, C.; Vieira, P.; Durães, J.; Silva, G. Celiac Disease as a Rare Cause of Membranous Nephropathy: A Case Report Case Presentation. Cureus 2021, 13, 13–15. [Google Scholar] [CrossRef]
- Matsunaga, T.; Kanaji, N.; Kushida, Y.; Bandoh, S.; Ishii, T.; Haba, R.; Tadokoro, A.; Watanabe, N.; Takahama, T.; Kita, N.; et al. Membranous glomerulonephritis associated with Mycobacterium shimoidei pulmonary infection. Am. J. Case Rep. 2013, 14, 543–547. [Google Scholar] [CrossRef]
- Balwani, M.R.; Kute, V.B.; Shah, P.R.; Shah, M.; Shinde, S.G.; Shah, J.; Trivedi, H.L. Hepatitis B viremia manifesting as polyarteritis nodosa and secondary membranous nephropathy. J. Nephropharmacol. 2016, 5, 119–121. [Google Scholar]
- Inayat, F.; Almas, T.; Bokhari, S.R.A.; Muhammad, A.; Sharshir, M.A. Membranous Glomerulonephritis as an Uncommon Presentation of Secondary Syphilis: A Reminder on Therapeutic Decision-Making in Clinical Practice. J. Investig. Med. High Impact Case Rep. 2020, 8, 2324709620967212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hever, A.; Bhasin, N.; A Kujubu, D. Secondary Syphilis Associated with Membranous Nephropathy and Acute Hepatitis in a Patient with HIV: A Case Report. Perm. J. 2018, 22, 17-062. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Uchida, T.; Iwama, S.; Sugisaki, K.; Yamada, M.; Inamoto, Y.; Oda, T. Chronic Graft-versus-host Disease-associated Membranous Nephropathy Following Bone Marrow Transplantation, Successfully Treated with Rituximab. Intern. Med. 2023, 62, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Gembillo, G.; Siligato, R.; Cernaro, V.; Santoro, D. Complement Inhibition Therapy and Dialytic Strategies in Paroxysmal Nocturnal Hemoglobinuria: The Nephrologist’s Opinion. J. Clin. Med. 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Saiki, R.; Katayama, K.; Hirabayashi, Y.; Oda, K.; Fujimoto, M.; Murata, T.; Nakajima, A.; Dohi, K. Membranous nephropathy associated with multicentric Castleman’s disease that was successfully treated with tocilizumab: A case report and review of the literature. BMC Nephrol. 2021, 22, 216. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Cui, Z.; Wang, S.; Zheng, D.; Deng, Z.; Tian, X.; Guo, H.; Bao, W.; Zhou, S.; Wang, Y. Idiopathic multicentric Castleman disease with Sjögren’s syndrome and secondary membranous nephropathy: A case report and review of the literature. BMC Nephrol. 2020, 21, 4–9. [Google Scholar] [CrossRef]
- Lovato, E.; Gangemi, C.; Krampera, M.; Visco, C.; Ferrarini, I. Case Report: Rapid renal response to venetoclax monotherapy in a CLL patient with secondary membranous glomerulonephritis. Front. Oncol. 2023, 13, 1108994. [Google Scholar] [CrossRef]
- Tang, K.-T.; Tseng, C.-H.; Hsieh, T.-Y.; Chen, D.-Y. Induction therapy for membranous lupus nephritis: A systematic review and network meta-analysis. Int. J. Rheum. Dis. 2018, 1, 1163–1172. [Google Scholar] [CrossRef]
- Zilberman, T.; Zahavi, T.; Osadchy, A.; Nacasch, N.; Korzets, Z. Membranous Nephropathy Associated with Sarcoidosis: A Primary or Secondary Glomerulopathy? Isr. Med. Assoc. J. 2014, 16, 390–392. [Google Scholar]
- Gadegbeku, C.A.; Gipson, D.S.; Holzman, L.B.; Ojo, A.O.; Song, P.X.; Barisoni, L.; Sampson, M.G.; Kopp, J.B.; Lemley, K.V.; Nelson, P.J.; et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 2013, 83, 749–756. [Google Scholar] [CrossRef]
- Nie, S.; He, W.; Huang, T.; Liu, D.; Wang, G.; Geng, J.; Chen, N.; Xu, G.; Zhang, P.; Luo, Y.; et al. The Spectrum of Biopsy-Proven Glomerular Diseases among Children in China. Clin. J. Am. Soc. Nephrol. 2018, 13, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, M.; Kazi, J.I.; Lanewala, A.; Hashmi, S.; Akhter, F. Pathology of idiopathic nephrotic syndrome in children: Are the adolescents different from young children? Nephrol. Dial. Transplant. 2012, 27, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Rheault, M.N.; Wenderfer, S.E. Evolving Epidemiology of Pediatric Glomerular Disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 977–978. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Y.; Zhang, C.; Zhang, W.; Zou, J.; Jiang, G. Pathology-Research and Practice Compared staining of the phospholipase A2 receptor in the glomeruli of Chinese adults and children with idiopathic membranous nephropathy. Pathol. Res. Pract. 2019, 215, 952–956. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Xia, Z.; Gao, C.; Shi, Z.; Fang, X.; Wu, H.; Peng, Y. Long-term renal survival and related risk factors for primary membranous nephropathy in Chinese children: A retrospective analysis of 217 cases. J. Nephrol. 2020, 34, 589–596. [Google Scholar] [CrossRef]
- Ramachandran, R.; Nayak, S.; Kumar, V.; Kumar, A.; Agrawal, N.; Bansal, R.; Tiewsoh, K.; Nada, R.; Rathi, M.; Kohli, H.S. Primary membranous nephropathy in children and adolescents: A single-centre report from South Asia. Pediatr. Nephrol. 2021, 36, 1217–1226. [Google Scholar] [CrossRef]
- Dettmar, A.K.; for the Pediatric MN Study Group; Wiech, T.; Kemper, M.J.; Soave, A.; Rink, M.; Oh, J.; Stahl, R.A.K.; Hoxha, E. Immunohistochemical and serological characterization of membranous nephropathy in children and adolescents. Pediatr. Nephrol. 2017, 33, 463–472. [Google Scholar] [CrossRef]
- Miller, P.; Lei, L.; Charu, V.; Higgins, J.; Troxell, M.; Kambham, N. Clinicopathologic features of non-lupus membranous nephropathy in a pediatric population. Pediatr. Nephrol. 2022, 37, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Malatesta-Muncher, R.; Eldin, K.W.; Beck, L.H.; Michael, M. Idiopathic membranous nephropathy in children treated with rituximab: Report of two cases Case description. Pediatr. Nephrol. 2018, 33, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Valentini, R.P.; Mattoo, T.K.; Kapur, G.; Imam, A. Membranous glomerulonephritis: Treatment response and outcome in children. Pediatr. Nephrol. 2009, 24, 301–308. [Google Scholar] [CrossRef]
- Lee, B.H.; Cho, H.Y.; Kang, H.G.; Ha, I.S.; Cheong, H.I.; Moon, K.C.; Lim, I.S.; Choi, Y. Idiopathic membranous nephropathy in pediatric patients: Presentation, response to therapy, and long-term outcome. Pediatr. Nephrol. 2006, 21, 1707–1715. [Google Scholar] [CrossRef]
- Chen, A.; Frank, R.; Vento, S.; Crosby, V.; Chandra, M.; Gauthier, B.; Valderrama, E.; Trachtman, H. Idiopathic membranous nephropathy in pediatric patients: Presentation, response to therapy, and long-term outcome. BMC Nephrol. 2007, 8, 11. [Google Scholar] [CrossRef]
- Bhimma, R.; Naicker, E.; Ramdial, P.K. Mycophenolate mofetil therapy in children with idiopathic membranous nephropathy. Clin. Nephrol. 2013, 80, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Bayram, M.T.; Soylu, A.; Kavukçu, S. Rituximab-induced serum sickness and anaphylaxis in a child with nephrotic syndrome. Turk. J. Pediatr. 2020, 62, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, F.; Yu, L.; Wang, J.; Chen, J.; Mao, J. Pediatric membranous nephropathy: In the novel antigens era. Front. Immunol. 2022, 13, 962502. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tsuji, S.; Akagawa, S.; Akagawa, Y.; Kino, J.; Yamanouchi, S.; Kimata, T.; Hashiyada, M.; Akane, A.; Kaneko, K. Clinical Significance of Probiotics for Children with Idiopathic Nephrotic Syndrome. Nutrients 2021, 13, 365. [Google Scholar] [CrossRef]
- Irish, G.; Jesudason, S. Case study of tacrolimus as an effective treatment for idiopathic membranous glomerulonephritis in pregnancy. Obstet. Med. 2020, 13, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.L.G.; Kattah, A.; Grande, J.P.; Garovic, V. Renal Disorders in Pregnancy: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 119–130. [Google Scholar] [CrossRef]
- Sebestyen, A.; Varbiro, S.; Sara, L.; Deak, G.; Kerkovits, L.; Szabo, I.; Kiss, I.; Paulin, F. Successful management of pregnancy with nephrotic syndrome due to preexisting membranous glomerulonephritis: A case report. Fetal Diagn. Ther. 2008, 24, 186–189. [Google Scholar] [CrossRef]
- Packham, D.K.; A North, R.; Fairley, K.F.; A Whitworth, J.; Kincaid-Smith, P. Membranous glomerulonephritis and pregnancy. Clin. Nephrol. 1987, 28, 56–64. [Google Scholar] [CrossRef]
- Liu, Z.-N.; Cui, Z.; He, Y.-D.; Zhang, Y.-M.; Wang, F.; Wang, X.; Meng, L.-Q.; Cheng, X.-Y.; Liu, G.; Zhao, M.-H. Membranous Nephropathy in Pregnancy. Am. J. Nephrol. 2020, 51, 304–317. [Google Scholar] [CrossRef]
- Bateman, B.T.; Huybrechts, K.F.; Fischer, M.A.; Seely, E.W.; Ecker, J.L.; Oberg, A.S.; Franklin, J.M.; Mogun, H.; Hernandez-Diaz, S. Chronic hypertension in pregnancy and the risk of congenital malformations: A cohort study. Am. J. Obstet. Gynecol. 2015, 212, 337.e1–14. [Google Scholar] [CrossRef]
- Siligato, R.; Gembillo, G.; Cernaro, V.; Torre, F.; Salvo, A.; Granese, R.; Santoro, D. Maternal and Fetal Outcomes of Pregnancy in Nephrotic Syndrome Due to Primary Glomerulonephritis. Front. Med. 2020, 7, 563094. [Google Scholar] [CrossRef]
- Chakravarty, E.F.; Murray, E.R.; Kelman, A.; Farmer, P. Pregnancy outcomes after maternal exposure to rituximab. Blood 2011, 117, 1499–1506. [Google Scholar] [CrossRef]
- Infante, B.; Rossini, M.; Leo, S.; Troise, D.; Netti, G.S.; Ranieri, E.; Gesualdo, L.; Castellano, G.; Stallone, G. Recurrent glomerulonephritis after renal transplantation: The clinical problem. Int. J. Mol. Sci. 2020, 21, 5954. [Google Scholar] [CrossRef]
- Leon, J.; Pérez-Sáez, M.J.; Batal, I.; Beck, L.H.; Rennke, H.G.; Canaud, G.; Legendre, C.; Pascual, J.; Riella, L.V. Membranous Nephropathy Posttransplantation: An Update of the Pathophysiology and Management. Transplantation 2019, 103, 1990–2002. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Glassock, R.J. De novo membranous nephropathy (MN) in kidney allografts. A peculiar form of alloimmune disease? Transpl. Int. 2012, 25, 1205–1210. [Google Scholar] [CrossRef]
- TDoke, T.; Sato, W.; Takahashi, K.; Hayashi, H.; Koide, S.; Sasaki, H.; Kusaka, M.; Shiroki, R.; Hoshinaga, K.; Takeda, A.; et al. Post-Transplant Membranous Nephropathy Associated with Chronic Active Antibody-Mediated Rejection and Hepatitis C Infection after Deceased Donor Renal Transplantation. Intern. Med. 2016, 55, 375–380. [Google Scholar] [CrossRef]
- Teixeira e Costa, F.; Pinto, J.R.; Carvalho, F.; Galvão, M.J. An early case of de novo membranous nephropathy in a renal transplant patient. Transplant. Proc. 2002, 34, 364. [Google Scholar] [CrossRef]
- Kurkowski, S.C.; Thimmesch, M.J.; Abdelghani, A.; Abdelgadir, Y.H. A Case of De Novo Membranous Nephropathy Causing Renal Transplant Rejection. Cureus 2022, 11, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Dabade, T.S.; Grande, J.P.; Norby, S.M.; Fervenza, F.C.; Cosio, F.G. Recurrent idiopathic membranous nephropathy after kidney transplantation: A surveillance biopsy study. Am. J. Transplant. 2008, 8, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Kattah, A.; Ayalon, R.; Beck, L.; Sethi, S.; Sandor, D.G.; Cosio, F.G.; Gandhi, M.J.; Lorenz, E.C.; Salant, D.J.; Fervenza, F.C. Anti-phospholipase A2 receptor antibodies in recurrent membranous nephropathy. Am. J. Transplant. 2015, 15, 1349–1359. [Google Scholar] [CrossRef]
- Berchtold, L.; Letouzé, E.; Alexander, M.P.; Canaud, G.; van de Logt, A.-E.; Hamilton, P.; Mousson, C.; Vuiblet, V.; Moyer, A.M.; Guibert, S.; et al. HLA-D and PLA2R1 risk alleles associate with recurrent primary membranous nephropathy in kidney transplant recipients. Kidney Int. 2021, 99, 671–685. [Google Scholar] [CrossRef]
- Kearney, N.; Podolak, J.; Matsumura, L.; Houghton, D.; Troxell, M. Patterns of IgG subclass deposits in membranous glomerulonephritis in renal allografts. Transplant. Proc. 2011, 43, 3743–3746. [Google Scholar] [CrossRef] [PubMed]
- Batal, I.; Vasilescu, E.-R.; Dadhania, D.M.; Adel, A.A.; Husain, S.A.; Avasare, R.; Serban, G.; Santoriello, D.; Khairallah, P.; Patel, A.; et al. Association of HLA Typing and Alloimmunity with Posttransplantation Membranous Nephropathy: A Multicenter Case Series. Am. J. Kidney Dis. 2020, 76, 374–383. [Google Scholar] [CrossRef]
- Grupper, A.; Cornell, L.D.; Fervenza, F.C.; Beck, L.H.; Lorenz, E.; Cosio, F.G. Recurrent Membranous Nephropathy After Kidney Transplantation: Treatment and Long-Term Implications. Transplantation 2016, 100, 2710–2716. [Google Scholar] [CrossRef] [PubMed]
- Uffing, A.; Hullekes, F.; Riella, L.V.; Hogan, J.J. Recurrent glomerular disease after kidney transplantation diagnostic and management dilemmas. Clin. J. Am. Soc. Nephrol. 2021, 16, 1730–1742. [Google Scholar] [CrossRef]
- El-Zoghby, Z.M.; Grande, J.P.; Fraile, M.G.; Norby, S.M.; Fervenza, F.C.; Cosio, F.G. Recurrent idiopathic membranous nephropathy: Early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am. J. Transplant. 2009, 9, 2800–2807. [Google Scholar] [CrossRef]
- Darji, P.I.; Patel, H.A.; Darji, B.P.; Sharma, A.; Halawa, A. Is de novo membranous nephropathy suggestive of alloimmunity in renal transplantation? A case report. World J. Transplant. 2022, 12, 15–20. [Google Scholar] [CrossRef]
- Münch, J.; Krüger, B.M.; Weimann, A.; Wiech, T.; Reinhard, L.; Hoxha, E.; Pfister, F.; Halbritter, J. Posttransplant nephrotic syndrome resulting from NELL1-positive membranous nephropathy. Am. J. Transplant. 2021, 21, 3175–3179. [Google Scholar] [CrossRef]
- Fila, M.; Debiec, H.; Perrochia, H.; Djouadi, N.; Verpont, M.-C.; Buob, D.; Ronco, P. Recurrence of Anti-semaphorin-3B Mediated Membranous Nephropathy after Kidney Transplantation. J. Am. Soc. Nephrol. 2022, 33, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, Z.; Li, D.; Dai, W.; Pan, C.; Guo, M.; Zhao, Y.; Cui, X. Immunosuppressive therapy for progressive idiopathic membranous nephropathy: A cost-effectiveness analysis in China. BMC Health Serv. Res. 2023, 23, 361. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.; Kanigicherla, D.; Venning, M.; Brenchley, P.; Meads, D. Rituximab versus the modified Ponticelli regimen in the treatment of primary membranous nephropathy: A health economic model. Nephrol. Dial. Transplant. 2018, 33, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Dai, P.; Xie, W.; Yu, X.; Sun, J.; Wang, S.; Kawuki, J. Efficacy and cost of different treatment in patients with idiopathic membranous nephropathy: A network meta-analysis and cost-effectiveness analysis. Int. Immunopharmacol. 2021, 94, 107376. [Google Scholar] [CrossRef]
- Fenoglio, R.; Baldovino, S.; Sciascia, S.; De Simone, E.; Del Vecchio, G.; Ferro, M.; Quattrocchio, G.; Naretto, C.; Roccatello, D. Efficacy of low or standard rituximab-based protocols and comparison to Ponticelli’s regimen in membranous nephropathy. J. Nephrol. 2021, 34, 565–571. [Google Scholar] [CrossRef] [PubMed]
Autoantibody | Year | Protein | Association | Positivity Rate | IgG Subtype | Circulating Ab |
---|---|---|---|---|---|---|
PLA2R | 2009 | Transmembrane protein | pMN | 70% of pMNs | IgG4 | Yes |
THSD7A | 2014 | Transmembrane protein | Malignancy | 5% of all MNs | IgG4 | Yes |
Exostosin 1-2 | 2019 | Glycosyl transferase | MLN | 50% of cases with class V | IgG1 | No |
NELL-1 | 2020 | Protein kinase C-binding protein | Malignancy | 10% of all MNs | IgG1 | Yes |
SEMA-3b | 2020 | Transmembrane protein | Family history | 15% of pediatric cases | IgG1 | Yes |
Contactin-1 | 2021 | Neural cell glycoprotein | Autoimmune neuropathy | 80% of autoimmune neuropathies | IgG4 | Yes |
PCDH7 | 2021 | Transmembrane protein | Prostate carcinoma | 5.7% of PLA2R − cases | IgG1/4 | Yes |
HTRA1 | 2021 | Serine protease | pMN | 4.2% of pMNs | IgG4 | Yes |
NCAM | 2021 | Immunoglobulin proteins | LES | 6.6% of MLNs | Unknown | Yes |
TGFBR3 | 2021 | Transmembrane protein | LES | 6% of MLNs | IgG1/2/3 | No |
FAT1 | 2022 | Transmembrane protein | HSCT | 83% of HSCT MNs | IgG4 | Yes |
Netrin G1 | 2022 | Secreted glycoprotein | pMN | 0.003% of MNs | IgG4 | Yes |
Drug | Protocol |
---|---|
CYCLICAL CYCLOPHOSPHAMIDE | Methylprednisolone 1 g for 3 days at months 1, 3, 5 |
Prednisone 0.5 mg/kg/d at months 1, 3, 5 | |
Cyclophosphamide 2.5 mg/kg/d at months 2, 4, 6 | |
CONTINUOUS CYCLOPHOSPHAMIDE | Methylprednisolone 1g for 3 days at months 1, 3, 5 |
Prednisone 0.5 mg/kg/d every other day for 6 months and subsequent tapering Cyclophosphamide 1.5 mg/kg/day continuously for 6 months | |
RITUXIMAB | Rituximab 1 g twice two weeks apart or 375 mg/m2 up to 4 times at weekly intervals |
TACROLIMUS | Tacrolimus 0.05–0.1 mg/kg/d. Plasma level: 3–8 ng/mL |
CYCLOSPORINE | Cyclosporine 3.5 mg/kg/g. Plasma level: 125–225 ng/mL |
GEMRITUX (2017) | MENTOR (2019) | STARMEN (2020) | RICYCLO (2021) | |
---|---|---|---|---|
Patients (n) | 75 | 130 | 86 | 74 |
RTX group | RTX 375 mg/m2 on days 1–8 + Supportive therapy | RTX 1g on days 1–15 + RTX second course at 6 months if no complete remission + Supportive therapy | Oral tacrolimus (blood levels 5–7 ng/mL) for 6 months + RTX 1 g at day 180 with tacrolimus tapering and complete withdrawal at month 9 | RTX 1g on days 1–15 + Supportive therapy |
Control group | Supportive therapy | Cyclosporine (blood target levels 125 to 175 ng/mL) and tapering after 6 months if remission achieved + Supportive therapy | Methylprednisolone 1 g × 3 (months 1, 3, 5) and oral prednisone (0.5 mg/kg/day) for the following 27 days + Oral cyclophosphamide (1–2 mg/kg/days) at months 2, 4, 6 | Methylprednisolone 1 g × 3 (months 1–3–5) and oral prednisone (0.5 mg/kg/day) for the following 27 days + Oral cyclophosphamide (2 mg/kg/days) at months 2, 4, 6 |
Primary endpoint | Complete or partial remission of proteinuria after 6 months | Complete or partial remission of proteinuria after 24 months | Complete or partial remission of proteinuria after 24 months | Complete or partial remission of proteinuria after 12 months |
Primary outcome | RTX n = 13 (35.1%) vs. control group n = 8 (21.1%) p = 0.21 | RTX n = 39 (60%) vs. control group n = 13 (20%) p < 0.001 | RTX group n = 25 (58.1%) vs. control group n = 36 (83.7%) | RTX group n = 23 (62%) vs. control group n = 27 (73%) |
PLA2R antibodies trend | RTX group = 50% of deletion after 6 months vs. control group = 12% p = 0.004 | Better reduction in RTX group compared with control group | Significant reduction in both groups. Higher immunological response at months 3 and 6 in control group compared with RTX group (month 3: 77% vs. 45; month 6: 92% vs. 70%) | Reduction in both groups during follow up but faster decrease in RTX group |
Adverse events | Serious events in 21% of both groups | Serious events in 11 patients in RTX group (17%) vs. 20 in control group (31%) p = 0.04 | More adverse events in control group (19%) than in RTX group (14%) p = 0.04 | Serious adverse events in 19% in RTX group vs. 14% in control group |
DE NOVO MEMBRANOUS NEPHROPATHY | RECURRENT MEMBRANOUS NEPHROPATHY |
---|---|
Different cause of native kidney failure | MN diagnosis already made in native kidneys |
Prevalence: 2% in adult; 9% in pediatric | 40% of the cases |
Prevalently IgG1 autoantibodies | Prevalently IgG4 autoantibodies |
Higher risk of antibody-mediated rejection | Lower risk of antibody-mediated rejection compared with de novo membranous nephropathy |
Increase immunosuppressive therapy or consider plasmapheresis | Immunosuppressive therapy may cause the disappearance of antibodies |
Rituximab or cyclophosphamide for worsening disease | Rituximab for worsening disease |
Worse graft survival | Better graft survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peritore, L.; Labbozzetta, V.; Maressa, V.; Casuscelli, C.; Conti, G.; Gembillo, G.; Santoro, D. How to Choose the Right Treatment for Membranous Nephropathy. Medicina 2023, 59, 1997. https://doi.org/10.3390/medicina59111997
Peritore L, Labbozzetta V, Maressa V, Casuscelli C, Conti G, Gembillo G, Santoro D. How to Choose the Right Treatment for Membranous Nephropathy. Medicina. 2023; 59(11):1997. https://doi.org/10.3390/medicina59111997
Chicago/Turabian StylePeritore, Luigi, Vincenzo Labbozzetta, Veronica Maressa, Chiara Casuscelli, Giovanni Conti, Guido Gembillo, and Domenico Santoro. 2023. "How to Choose the Right Treatment for Membranous Nephropathy" Medicina 59, no. 11: 1997. https://doi.org/10.3390/medicina59111997
APA StylePeritore, L., Labbozzetta, V., Maressa, V., Casuscelli, C., Conti, G., Gembillo, G., & Santoro, D. (2023). How to Choose the Right Treatment for Membranous Nephropathy. Medicina, 59(11), 1997. https://doi.org/10.3390/medicina59111997