Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Database Search
2.2. Screening Process and Data Extraction
3. Results
3.1. Scientific Studies on Medical Thermography: Diseases, Areas of Application, and Primary Study Intentions
3.2. Thermography Cameras and Technical Properties, Imaging Specifications and Procedures
3.3. Diagnostic Performance
3.4. Thermal Reference Values
4. Discussion
4.1. Objectives of Research
4.1.1. Use Cases of Passive Infrared Thermography
4.1.2. Technical and Environmental Modalities of Thermographic Imaging, Patient Management
4.1.3. Diagnostic Performance of Passive Infrared Thermography
4.1.4. Reference Data on the Thermology of Human Skin
4.2. Strengths and Limitations
4.3. Recent Progress in Medical Infrared Thermography and Implications for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ring, E.F.J. The Historical Development of Thermometry and Thermal Imaging in Medicine. J. Med. Eng. Technol. 2006, 30, 192–198. [Google Scholar] [CrossRef]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical Applications of Infrared Thermography: A Review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Nowakowski, A. Active IR-Thermal Imaging in Medicine. J. Nondestruct. Eval. 2016, 35, 19. [Google Scholar] [CrossRef]
- Diakides, N.; Diakides, M.; Lupo, J.; Paul, J.L.; Balcerak, R. Advances in Medical Imaging. In The Biomedical Engineering Handbook, 3rd ed.; The Electrical Engineering Handbook Series; CRC/Taylor & Francis: Boca Raton, FL, USA, 2006; Volume Medical devices and systems, pp. 19.1–19.14. [Google Scholar]
- Vavilov, V. Thermal NDT: Historical Milestones, State-of-the-Art and Trends. Quant. InfraRed Thermogr. J. 2014, 11, 66–83. [Google Scholar] [CrossRef]
- Elliott, A. Medical Imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 2005, 546, 1–13. [Google Scholar] [CrossRef]
- Ammer, K. Medical Thermology 2020—A Literature Survey with a Focus on Applications in the COVID 19 Pandemic. Thermol. Int. 2021, 31, 19–33. [Google Scholar]
- Kesztyüs, D.; Brucher, S.; Kesztyüs, T. Use of Infrared Thermography in Medical Diagnostics: A Scoping Review Protocol. BMJ Open 2022, 12, e059833. [Google Scholar] [CrossRef]
- Amog, K.; Pham, B.; Courvoisier, M.; Mak, M.; Booth, A.; Godfrey, C.; Hwee, J.; Straus, S.E.; Tricco, A.C. The Web-Based “Right Review” Tool Asks Reviewers Simple Questions to Suggest Methods from 41 Knowledge Synthesis Methods. J. Clin. Epidemiol. 2022, 147, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic Review or Scoping Review? Guidance for Authors When Choosing between a Systematic or Scoping Review Approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated Methodological Guidance for the Conduct of Scoping Reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Open Science Framework OSF Registries. Available online: https://osf.io/registries?view_only= (accessed on 28 July 2023).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, U.; Sarigoz, T.; Ertan, T.; Topuz, Ö. Role of Digital Infrared Thermal Imaging in Diagnosis of Acute Appendicitis. Turk. J. Trauma. Emerg. Surg. 2020, 27, 647. [Google Scholar] [CrossRef] [PubMed]
- Sodi, A.; Matteoli, S.; Giacomelli, G.; Finocchio, L.; Corvi, A.; Menchini, U. Ocular Surface Temperature in Age-Related Macular Degeneration. J. Ophthalmol. 2014, 2014, 281010. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Biagioni, P.A.; Lamey, P.-J. The Efficacy of Amelxanox OraDiscTM on the Prevention of Recurrent Minor Aphthous Ulceration. J. Oral. Pathol. Med. 2006, 35, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.; Umapathy, S.; Thanaraj Krishnan, P. Deep Learning Techniques for Automated Detection of Autism Spectrum Disorder Based on Thermal Imaging. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2021, 235, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Kontos, M.; Wilson, R.; Fentiman, I. Digital Infrared Thermal Imaging (DITI) of Breast Lesions: Sensitivity and Specificity of Detection of Primary Breast Cancers. Clin. Radiol. 2011, 66, 536–539. [Google Scholar] [CrossRef]
- Kolarić, D.; Herceg, Z.; Nola, I.A.; Ramljak, V.; Kulis, T.; Holjevac, J.K.; Deutsch, J.A.; Antonini, S. Thermography--a Feasible Method for Screening Breast Cancer? Coll. Antropol. 2013, 37, 583–588. [Google Scholar]
- Yao, X.; Wei, W.; Li, J.; Wang, L.; Xu, Z.; Wan, Y.; Li, K.; Sun, S. A Comparison of Mammography, Ultrasonography, and Far-Infrared Thermography with Pathological Results in Screening and Early Diagnosis of Breast Cancer. Asian Biomed. 2014, 8, 11–19. [Google Scholar] [CrossRef]
- Rassiwala, M.; Mathur, P.; Mathur, R.; Farid, K.; Shukla, S.; Gupta, P.K.; Jain, B. Evaluation of Digital Infra–Red Thermal Imaging as an Adjunctive Screening Method for Breast Carcinoma: A Pilot Study. Int. J. Surg. 2014, 12, 1439–1443. [Google Scholar] [CrossRef]
- Zadeh, H.G.; Haddadnia, J.; Ahmadinejad, N.; Isfahani, S.M.M. Evaluating the Thermal Imaging System in Detecting Certain Types of Breast Tissue Masses. Biomed. Res. 2016, 27, 670–675. [Google Scholar]
- Omranipour, R.; Kazemian, A.; Alipour, S.; Najafi, M.; Alidoosti, M.; Navid, M.; Alikhassi, A.; Ahmadinejad, N.; Bagheri, K.; Izadi, S. Comparison of the Accuracy of Thermography and Mammography in the Detection of Breast Cancer. Breast Care 2016, 11, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cervantes, A.; Kolosovas-Machuca, E.S.; Guevara, E.; Maruris Reducindo, M.; Bello Hernández, A.B.; Ramos García, M.; González, F.J. An Automated Method for the Evaluation of Breast Cancer Using Infrared Thermography. EXCLI J. 2018, 17, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Kakileti, S.T.; Madhu, H.J.; Krishnan, L.; Manjunath, G.; Sampangi, S.; Ramprakash, H.V. Observational Study to Evaluate the Clinical Efficacy of Thermalytix for Detecting Breast Cancer in Symptomatic and Asymptomatic Women. JCO Glob. Oncol. 2020, 6, 1472–1480. [Google Scholar] [CrossRef]
- Singh, A.; Bhat, V.; Sudhakar, S.; Namachivayam, A.; Gangadharan, C.; Pulchan, C.; Sigamani, A. Multicentric Study to Evaluate the Effectiveness of Thermalytix as Compared with Standard Screening Modalities in Subjects Who Show Possible Symptoms of Suspected Breast Cancer. BMJ Open 2021, 11, e052098. [Google Scholar] [CrossRef] [PubMed]
- Carrière, M.E.; Haas, L.E.M.; Pijpe, A.; Meij-de Vries, A.; Gardien, K.L.M.; Zuijlen, P.P.M.; Jaspers, M.E.H. Validity of Thermography for Measuring Burn Wound Healing Potential. Wound Repair. Regen. 2020, 28, 347–354. [Google Scholar] [CrossRef]
- Wu, C.-L.; Yu, K.-L.; Chuang, H.-Y.; Huang, M.-H.; Chen, T.-W.; Chen, C.-H. The Application of Infrared Thermography in the Assessment of Patients with Coccygodynia Before and After Manual Therapy Combined with Diathermy. J. Manip. Physiol. Ther. 2009, 32, 287–293. [Google Scholar] [CrossRef]
- Girasol, C.E.; Dibai-Filho, A.V.; De Oliveira, A.K.; De Jesus Guirro, R.R. Correlation Between Skin Temperature Over Myofascial Trigger Points in the Upper Trapezius Muscle and Range of Motion, Electromyographic Activity, and Pain in Chronic Neck Pain Patients. J. Manip. Physiol. Ther. 2018, 41, 350–357. [Google Scholar] [CrossRef]
- Brzezinski, R.Y.; Rabin, N.; Lewis, N.; Peled, R.; Kerpel, A.; Tsur, A.M.; Gendelman, O.; Naftali-Shani, N.; Gringauz, I.; Amital, H.; et al. Automated Processing of Thermal Imaging to Detect COVID-19. Sci. Rep. 2021, 11, 17489. [Google Scholar] [CrossRef]
- Deng, F.; Tang, Q.; Zeng, G.; Wu, H.; Zhang, N.; Zhong, N. Effectiveness of Digital Infrared Thermal Imaging in Detecting Lower Extremity Deep Venous Thrombosis: Effectiveness of Digital Infrared Thermal Imaging. Med. Phys. 2015, 42, 2242–2248. [Google Scholar] [CrossRef]
- Sivanandam, S.; Anburajan, M.; Venkatraman, B.; Menaka, M.; Sharath, D. Medical Thermography: A Diagnostic Approach for Type 2 Diabetes Based on Non-Contact Infrared Thermal Imaging. Endocrine 2012, 42, 343–351. [Google Scholar] [CrossRef]
- Thirunavukkarasu, U.; Umapathy, S.; Janardhanan, K.; Thirunavukkarasu, R. A Computer Aided Diagnostic Method for the Evaluation of Type II Diabetes Mellitus in Facial Thermograms. Phys. Eng. Sci. Med. 2020, 43, 871–888. [Google Scholar] [CrossRef]
- Thirunavukkarasu, U.; Umapathy, S.; Krishnan, P.T.; Janardanan, K. Human Tongue Thermography Could Be a Prognostic Tool for Prescreening the Type II Diabetes Mellitus. Evid. Based Complement Alternat. Med. 2020, 2020, 3186208. [Google Scholar] [CrossRef]
- Nishide, K.; Nagase, T.; Oba, M.; Oe, M.; Ohashi, Y.; Iizaka, S.; Nakagami, G.; Kadowaki, T.; Sanada, H. Ultrasonographic and Thermographic Screening for Latent Inflammation in Diabetic Foot Callus. Diabetes Res. Clin. Pract. 2009, 85, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D. A Method of Selecting Acupoints for Acupuncture Treatment of Peripheral Facial Paralysis by Thermography. Am. J. Chin. Med. 2007, 35, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.V.; Cohen, N.J.; Lipman, H.; Brown, C.M.; Molinari, N.-A.; Jackson, W.L.; Kirking, H.; Szymanowski, P.; Wilson, T.W.; Salhi, B.A.; et al. Comparison of 3 Infrared Thermal Detection Systems and Self-Report for Mass Fever Screening. Emerg. Infect. Dis. 2010, 16, 1710–1717. [Google Scholar] [CrossRef]
- Hewlett, A.L.; Kalil, A.C.; Strum, R.A.; Zeger, W.G.; Smith, P.W. Evaluation of an Infrared Thermal Detection System for Fever Recognition during the H1N1 Influenza Pandemic. Infect. Control Hosp. Epidemiol. 2011, 32, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Selent, M.U.; Molinari, N.M.; Baxter, A.; Nguyen, A.V.; Siegelson, H.; Brown, C.M.; Plummer, A.; Higgins, A.; Podolsky, S.; Spandorfer, P.; et al. Mass Screening for Fever in Children: A Comparison of 3 Infrared Thermal Detection Systems. Pediatr. Emerg. Care 2013, 29, 305–313. [Google Scholar] [CrossRef]
- Chan, L.S.; Lo, J.L.F.; Kumana, C.R.; Cheung, B.M.Y. Utility of Infrared Thermography for Screening Febrile Subjects. Hong Kong Med. J. Xianggang Yi Xue Za Zhi 2013, 19, 109–115. [Google Scholar]
- Ring, E.F.J.; Jung, A.; Kalicki, B.; Zuber, J.; Rustecka, A.; Vardasca, R. New standards for fever screening with thermal imaging systems. J. Mech. Med. Biol. 2013, 13, 1350045. [Google Scholar] [CrossRef]
- Sun, G.; Saga, T.; Shimizu, T.; Hakozaki, Y.; Matsui, T. Fever Screening of Seasonal Influenza Patients Using a Cost-Effective Thermopile Array with Small Pixels for Close-Range Thermometry. Int. J. Infect. Dis. 2014, 25, 56–58. [Google Scholar] [CrossRef]
- Zhou, Y.; Ghassemi, P.; Chen, M.; McBride, D.; Casamento, J.P.; Pfefer, T.J.; Wang, Q. Clinical Evaluation of Fever-Screening Thermography: Impact of Consensus Guidelines and Facial Measurement Location. J. Biomed. Opt. 2020, 25, 097002. [Google Scholar] [CrossRef]
- Rabbani, M.J.; Bhatti, A.Z.; Shahzad, A. Flap Monitoring Using Thermal Imaging Camera: A Contactless Method. J. Coll. Physicians Surg. Pak. 2021, 31, 703–706. [Google Scholar] [CrossRef]
- Leshno, A.; Stern, O.; Barkana, Y.; Kapelushnik, N.; Singer, R.; Prat, D.L.; Cohen, G.; Ben-David, G.; Abrahami, D.; Huna-Baron, R.; et al. Ocular Surface Temperature Differences in Glaucoma. Eur. J. Ophthalmol. 2022, 32, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Varju, G. Assessment of Hand Osteoarthritis: Correlation between Thermographic and Radiographic Methods. Rheumatology 2004, 43, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.H.; Lui, P.W.; Hu, J.S.; Ting, C.K.; Yin, Y.C.; Lo, Y.L.; Liu, L.; Lee, T.Y. Thermal Symmetry of Skin Temperature: Normative Data of Normal Subjects in Taiwan. Chin. Med. J. 2001, 64, 459–468. [Google Scholar]
- Vardasca, R. Symmetry of Temperature Distribution in the Upper and Lower Extremities. Thermol. Int. 2012, 18, 154–155. [Google Scholar]
- Gatt, A.; Formosa, C.; Cassar, K.; Camilleri, K.P.; De Raffaele, C.; Mizzi, A.; Azzopardi, C.; Mizzi, S.; Falzon, O.; Cristina, S.; et al. Thermographic Patterns of the Upper and Lower Limbs: Baseline Data. Int. J. Vasc. Med. 2015, 2015, 831369. [Google Scholar] [CrossRef]
- Vardasca, R.; Magalhaes, C.; Marques, D.; Moreira, J.; Frade, R.; Seixas, A.; Mendes, J.; Ring, F. Bilateral Assessment of Body Core Temperature through Axillar, Tympanic and Inner Canthi Thermometers in a Young Population. Physiol. Meas. 2019, 40, 094001. [Google Scholar] [CrossRef]
- Matteoli, S.; Vannetti, F.; Sodi, A.; Corvi, A. Infrared Thermographic Investigation on the Ocular Surface Temperature of Normal Subjects. Physiol. Meas. 2020, 41, 045003. [Google Scholar] [CrossRef]
- Lubkowska, A.; Chudecka, M. Thermal Characteristics of Breast Surface Temperature in Healthy Women. Int. J. Environ. Res. Public Health 2021, 18, 1097. [Google Scholar] [CrossRef]
- Matsui, T.; Hakozaki, Y.; Suzuki, S.; Usui, T.; Kato, T.; Hasegawa, K.; Sugiyama, Y.; Sugamata, M.; Abe, S. A Novel Screening Method for Influenza Patients Using a Newly Developed Non-Contact Screening System. J. Infect. 2010, 60, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.Y.; Ben-David, G.; Singer, R.; Benyosef, S.; Shemesh, R.; Leshno, A.; Barkana, Y.; Skaat, A. Ocular Surface Temperature: Characterization in a Large Cohort of Healthy Human Eyes and Correlations to Systemic Cardiovascular Risk Factors. Diagnostics 2021, 11, 1877. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Sakane, Y.; Kamao, T.; Zheng, X.; Goto, T.; Shiraishi, A.; Ohashi, Y. Noninvasive Dry Eye Assessment Using High-Technology Ophthalmic Examination Devices. Cornea 2016, 35, S38–S48. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Sanjay, S.; Morgan, P.B. Screening for Dry Eye Disease Using Infrared Ocular Thermography. Contact Lens Anterior Eye 2016, 39, 442–449. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Song, Y.; Qin, G.; Yang, L.; Talwar, S.S.; Lin, T.; Talwar, G.D.S.; Zhang, H.; Xu, L.; et al. Screening Evaporative Dry Eyes Severity Using an Infrared Image. J. Ophthalmol. 2021, 2021, 8396503. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Hope, L.A.; Karim, M.J.; Sultan Mahmood, A.; Al Kawsar, A.; Khair, A.; Betts, H.; Douglass, J.; Forrer, A.; Taylor, M.J. Infrared Thermal Imaging as a Novel Non-Invasive Point-of-Care Tool to Assess Filarial Lymphoedema. J. Clin. Med. 2021, 10, 2301. [Google Scholar] [CrossRef]
- Su, T.-Y.; Ho, W.-T.; Chiang, S.-C.; Lu, C.-Y.; Chiang, H.K.; Chang, S.-W. Infrared Thermography in the Evaluation of Meibomian Gland Dysfunction. J. Formos. Med. Assoc. 2017, 116, 554–559. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Ahmed, O.; Kocherginsky, M.; Shustakova, G.; Kistner-Griffin, E.; Salama, J.K.; Yefremenko, V.; Novosad, V. Study of Functional Infrared Imaging for Early Detection of Mucositis in Locally Advanced Head and Neck Cancer Treated with Chemoradiotherapy. Oral. Oncol. 2013, 49, 1025–1031. [Google Scholar] [CrossRef]
- Rashmi, R.; Snekhalatha, U.; Krishnan, P.T.; Dhanraj, V. Fat-Based Studies for Computer-Assisted Screening of Child Obesity Using Thermal Imaging Based on Deep Learning Techniques: A Comparison with Quantum Machine Learning Approach. Soft Comput. 2023, 27, 13093–13114. [Google Scholar] [CrossRef]
- Kyle, D.; Allen, J.; Overbeck, K.; Stansby, G. Exploratory Thermal Imaging Assessments of the Feet in Patients with Lower Limb Peripheral Arterial Disease. In Application of Infrared to Biomedical Sciences; Ng, E.Y., Etehadtavakol, M., Eds.; Series in BioEngineering; Springer: Singapore, 2017; pp. 249–263. [Google Scholar]
- Ilo, A.; Romsi, P.; Mäkelä, J. Infrared Thermography as a Diagnostic Tool for Peripheral Artery Disease. Adv. Skin. Wound Care 2020, 33, 482–488. [Google Scholar] [CrossRef]
- Romanò, C.L.; D’Anchise, R.; Calamita, M.; Manzi, G.; Romanò, D.; Sansone, V. Value of Digital Telethermography for the Diagnosis of Septic Knee Prosthesis: A Prospective Cohort Study. BMC Musculoskelet. Disord. 2013, 14, 7. [Google Scholar] [CrossRef]
- Han, S.S.; Jung, C.H.; Lee, S.C.; Jung, H.J.; Kim, Y.H. Does Skin Temperature Difference as Measured by Infrared Thermography within 6 Months of Acute Herpes Zoster Infection Correlate with Pain Level? Skin Res. Technol. 2010, 16, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Matzen, L.H.; Schou, S.; Væth, M.; Wenzel, A. Is Thermography Useful for Assessment of Postoperative Inflammation After Surgical Removal of Mandibular Third Molars When Methylprednisolone Is Administered and How Does It Correlate with Patients’ Perception of Swelling? J. Oral. Maxillofac. Surg. 2014, 72, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Kaes, L.; Martinez, M.; Moles, D. A Prospective, Observational Study to Assess the Use of Thermography to Predict Progression of Discolored Intact Skin to Necrosis Among Patients in Skilled Nursing Facilities. Ostomy. Wound Manag. 2016, 62, 14–33. [Google Scholar]
- Cai, F.; Jiang, X.; Hou, X.; Wang, D.; Wang, Y.; Deng, H.; Guo, H.; Wang, H.; Li, X. Application of Infrared Thermography in the Early Warning of Pressure Injury: A Prospective Observational Study. J. Clin. Nurs. 2021, 30, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Lasanen, R.; Piippo-Savolainen, E.; Remes-Pakarinen, T.; Kröger, L.; Heikkilä, A.; Julkunen, P.; Karhu, J.; Töyräs, J. Thermal Imaging in Screening of Joint Inflammation and Rheumatoid Arthritis in Children. Physiol. Meas. 2015, 36, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Hassan, I.; Tsuyuki, R.T.; Dos Santos, M.F.; Russell, A.S.; Yacyshyn, E. Hot Joints: Myth or Reality? A Thermographic Joint Assessment of Inflammatory Arthritis Patients. Clin. Rheumatol. 2018, 37, 2567–2571. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, S.; Thulasi, R.; Gupta, N.; Sivanadhan, S. Thermography and Colour Doppler Ultrasound: A Potential Complementary Diagnostic Tool in Evaluation of Rheumatoid Arthritis in the Knee Region. Biomed. Eng. Biomed. Tech. 2020, 65, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Gatt, A.; Mercieca, C.; Borg, A.; Grech, A.; Camilleri, L.; Gatt, C.; Chockalingam, N.; Formosa, C. Thermal Characteristics of Rheumatoid Feet in Remission: Baseline Data. PLoS ONE 2020, 15, e0243078. [Google Scholar] [CrossRef]
- Tan, Y.K.; Hong, C.; Li, H.; Allen, J.C.; Thumboo, J. Thermography in Rheumatoid Arthritis: A Comparison with Ultrasonography and Clinical Joint Assessment. Clin. Radiol. 2020, 75, e17–e963. [Google Scholar] [CrossRef]
- Alarcón-Paredes, A.; Guzmán-Guzmán, I.P.; Hernández-Rosales, D.E.; Navarro-Zarza, J.E.; Cantillo-Negrete, J.; Cuevas-Valencia, R.E.; Alonso, G.A. Computer-Aided Diagnosis Based on Hand Thermal, RGB Images, and Grip Force Using Artificial Intelligence as Screening Tool for Rheumatoid Arthritis in Women. Med. Biol. Eng. Comput. 2021, 59, 287–300. [Google Scholar] [CrossRef]
- Weibel, L.; Howell, K.J.; Visentin, M.T.; Rudiger, A.; Denton, C.P.; Zulian, F.; Woo, P.; Harper, J.I. Laser Doppler Flowmetry for Assessing Localized Scleroderma in Children. Arthritis Rheum. 2007, 56, 3489–3495. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, A.; Bouisse, C.; Mottard, N.; Thiollière, F.; Anselin, S.; Piriou, V.; Allaouchiche, B. Mottling Score and Skin Temperature in Septic Shock: Relation and Impact on Prognosis in ICU. PLoS ONE 2018, 13, e0202329. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Hyun, J.K.; Seo, J.-B. The Effectiveness of Digital Infrared Thermographic Imaging in Patients with Shoulder Impingement Syndrome. J. Shoulder Elbow Surg. 2007, 16, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Sillero-Quintana, M.; Fernández-Jaén, T.; Fernández-Cuevas, I.; Gómez-Carmona, P.M.; Arnaiz-Lastras, J.; Pérez, M.-D.; Guillén, P. Infrared Thermography as a Support Tool for Screening and Early Diagnosis in Emergencies. J. Med. Imaging Health Inform. 2015, 5, 1223–1228. [Google Scholar] [CrossRef]
- Stokholm, J.; Ahmed, A.A.B.O.; Birkmose, L.K.H.; Csillag, C.; Kjær, T.W.; Christensen, T. Facial Skin Temperature in Acute Stroke Patients with Delirium—A Pilot Study. J. Neurol. Sci. 2021, 431, 120036. [Google Scholar] [CrossRef] [PubMed]
- Dibai Filho, A.V.; Packer, A.C.; Costa, A.C.D.S.; Rodrigues-Bigaton, D. Accuracy of Infrared Thermography of the Masticatory Muscles for the Diagnosis of Myogenous Temporomandibular Disorder. J. Manip. Physiol. Ther. 2013, 36, 245–252. [Google Scholar] [CrossRef]
- Woźniak, K.; Szyszka-Sommerfeld, L.; Trybek, G.; Piątkowska, D. Assessment of the Sensitivity, Specificity, and Accuracy of Thermography in Identifying Patients with TMD. Med. Sci. Monit. 2015, 21, 1485–1493. [Google Scholar] [CrossRef]
- Damião, C.P.; Montero, J.R.G.; Moran, M.B.H.; De Oliveira Marçal E Silva Carvalho, M.E.; De Farias, C.G.; Brito, I.B.; Saad, M.A.N.; Fontes, C.A.P.; Fainstein, C.; Rodrigues, M.F.O.; et al. Application of Thermography in the Diagnostic Investigation of Thyroid Nodules. Endocr. J. 2021, 68, 573–581. [Google Scholar] [CrossRef]
- Romanò, C.L.; Romanò, D.; Dell’Oro, F.; Logoluso, N.; Drago, L. Healing of Surgical Site after Total Hip and Knee Replacements Show Similar Telethermographic Patterns. J. Orthop. Traumatol. 2011, 12, 81–86. [Google Scholar] [CrossRef]
- Windisch, C.; Brodt, S.; Roehner, E.; Matziolis, G. Regional Differences in Temperature Course after Knee Arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2686–2691. [Google Scholar] [CrossRef]
- Childs, C.; Wright, N.; Willmott, J.; Davies, M.; Kilner, K.; Ousey, K.; Soltani, H.; Madhuvrata, P.; Stephenson, J. The Surgical Wound in Infrared: Thermographic Profiles and Early Stage Test-Accuracy to Predict Surgical Site Infection in Obese Women during the First 30 Days after Caesarean Section. Antimicrob. Resist. Infect. Control 2019, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Ring, E.F.J.; Ammer, K. The Technique of Infrared Imaging in Medicine. Thermol. Int. 2000, 10, 7–14. [Google Scholar]
- International Academy of Clinical Thermology IACT Quality Assurance Guidelines. Standards and Protocols in Clinical Thermographic Imaging. 2015. Available online: https://www.advancedthermalimagingllc.com/wp-content/uploads/2020/04/IACT-Standards-and-Guidelines.pdf (accessed on 6 September 2023).
- International Academy of Clinical Thermology IACT Standards and Protocols in Clinical Thermographic Imaging. 2002. Available online: http://www.iact-org.org/professionals/thermog-guidelines.html (accessed on 6 September 2023).
- Ammer, K. The Glamorgan Protocol for Recording and Evaluation of Thermal Images of the Human Body. Thermol. Int. 2008, 18, 125–129. [Google Scholar]
- Uematsu, S.; Edwin, D.H.; Jankel, W.R.; Kozikowski, J.; Trattner, M. Quantification of Thermal Asymmetry Part 1: Normal Values and Reproducibility. J. Neurosurg. 1988, 69, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Husaini, M.A.S.A.; Habaebi, M.H.; Hameed, S.A.; Islam, M.R.; Gunawan, T.S. A Systematic Review of Breast Cancer Detection Using Thermography and Neural Networks. IEEE Access 2020, 8, 208922–208937. [Google Scholar] [CrossRef]
- Yu, Y.R.; Shah, S.R. Can the Diagnosis of Appendicitis Be Made Without a Computed Tomography Scan? Adv. Surg. 2017, 51, 11–28. [Google Scholar] [CrossRef]
- Wilkinson, L.; Gathani, T. Understanding Breast Cancer as a Global Health Concern. Br. J. Radiol. 2022, 95, 20211033. [Google Scholar] [CrossRef]
- Newman, L.A. Breast Cancer Screening in Low and Middle-Income Countries. Best. Pract. Res. Clin. Obstet. Gynaecol. 2022, 83, 15–23. [Google Scholar] [CrossRef]
- Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.-A.; Safiri, S. Neck Pain: Global Epidemiology, Trends and Risk Factors. BMC Musculoskelet. Disord. 2022, 23, 26. [Google Scholar] [CrossRef]
- International Diabetes Federation, I.D.F. Diabetes Is “a Pandemic of Unprecedented Magnitude” Now Affecting One in 10 Adults Worldwide. Diabetes Res. Clin. Pract. 2021, 181, 109133. [Google Scholar] [CrossRef]
- Philpotts, L. The Days of Double Reading Are Numbered: AI Matches Human Performance for Mammography Screening. Radiology 2023, 308, e232034. [Google Scholar] [CrossRef]
- Wilson, A.N.; Gupta, K.A.; Koduru, B.H.; Kumar, A.; Jha, A.; Cenkeramaddi, L.R. Recent Advances in Thermal Imaging and Its Applications Using Machine Learning: A Review. IEEE Sens. J. 2023, 23, 3395–3407. [Google Scholar] [CrossRef]
- Hollingsworth, A.B. Redefining the Sensitivity of Screening Mammography: A Review. Am. J. Surg. 2019, 218, 411–418. [Google Scholar] [CrossRef]
- Ortiz, A.R.; Secco, L.G.; Zangaro, R.A.; Alves, L.P. Thermography Applied to Breast Cancer Diagnosis: Proposal for a New Methodological Approach. Res. Biomed. Eng. 2023, 39, 297–310. [Google Scholar] [CrossRef]
- Arora, N.; Martins, D.; Ruggerio, D.; Tousimis, E.; Swistel, A.J.; Osborne, M.P.; Simmons, R.M. Effectiveness of a Noninvasive Digital Infrared Thermal Imaging System in the Detection of Breast Cancer. Am. J. Surg. 2008, 196, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.; Peng, J.; Xu, F.; Liu, N.; Wang, F.; Huang, X.; Jia, Y. Ultrasound and Clinical Characteristics of False-Negative Results in Mammography Screening of Dense Breasts. Clin. Breast Cancer 2020, 20, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Collison, S. Modern Artificial Intelligence Enhanced Breast Thermography: Better Cameras, Better Algorithms Have Led to Acceptable Clinical Performance. EAS J. Radiol. Imaging Technol. 2023, 5, 27–32. [Google Scholar] [CrossRef]
- Schramm, S.; Osterhold, P.; Schmoll, R.; Kroll, A. Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time. Quant. InfraRed Thermogr. J. 2022, 19, 295–311. [Google Scholar] [CrossRef]
- Mibae, Y.; Noguchi, H. Visualization System of 3D Foot Plantar Model with Temperature Information Using RGB-D and Thermography Cameras for Prevention of Foot Ulcer in Diabetic Patients. In Proceedings of the 2022 IEEE/SICE International Symposium on System Integration (SII), Narvik, Norway, 9 January 2022; IEEE: Piscataway, NJ, USA; pp. 537–542. [Google Scholar]
- Abreu De Souza, M.; Alka Cordeiro, D.C.; Oliveira, J.D.; Oliveira, M.F.A.D.; Bonafini, B.L. 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction. Sensors 2023, 23, 1610. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, W.; Zhang, R.; Wang, R.; Robbins, D. Dual-Channel Cascade Pose Estimation Network Trained on Infrared Thermal Image and Groundtruth Annotation for Real-Time Gait Measurement. Med. Image Anal. 2022, 79, 102435. [Google Scholar] [CrossRef] [PubMed]
- Vergilio, M.M.; Gomes, G.; Aiello, L.M.; Fontana, M.; Aldred, A.; Ribeiro, J.A.D.S.; Gabbi, T.V.B.; Leonardi, G.R. Evaluation of Skin Using Infrared Thermal Imaging for Dermatology and Aesthetic Applications. J. Cosmet. Dermatol. 2022, 21, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Maurya, L.; Zwiggelaar, R.; Chawla, D.; Mahapatra, P. Non-Contact Respiratory Rate Monitoring Using Thermal and Visible Imaging: A Pilot Study on Neonates. J. Clin. Monit. Comput. 2023, 37, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Delaney, L.R.; Gunderman, R.B. Hand Hygiene. Radiology 2008, 246, 15–19. [Google Scholar] [CrossRef]
- Grimes, D.A. Technology Follies: The Uncritical Acceptance of Medical Innovation. JAMA 1993, 269, 3030. [Google Scholar] [CrossRef]
Inclusion | Exclusion | |
---|---|---|
Population | Human participants (all ages, all sexes) | Animal or in vitro testing |
Concept | Application of passive infrared thermographic imaging or temperature measurement for diagnosis (prevention and control), monitoring, or collection of reference data/normal values | Non-medical application, active dynamic thermography, liquid crystal thermography, (functional) near-infrared spectroscopy ((f)NIRS), Fourier infrared spectroscopy (FTIR), diffuse optical imaging (DOS), infrared fundus imaging (no thermography), infrared video recording, infrared tympanic thermometry, dynamic infrared imaging (DIRI) |
Context | Clinical, ambulatory, or pre-clinical sites. Any health condition, disease, or medical procedure correlated with the following:
| Secondary use of thermographic data for analytical or technical optimization |
Types of sources | Articles, systematic reviews, meta-analyses, scoping reviews, conference papers, grey literature (theses, dissertations, reports, etc.) reporting quantitative studies with experimental or diagnostic study designs including randomized controlled trials, non-randomized controlled trials, quasi-experimental, case-control studies, and analytical cross-sectional studies Sample size in studies at least 25 per group Any language but title and abstract available in English or German Time period of publication 2000–current | Editorials, viewpoints, opinions, comments, letters, conference abstracts/reports/reviews or summaries, qualitative studies, publications from potential predatory journals and publishers, case reports, case series, retrospective evaluations, technical studies (e.g., image processing, modelling techniques) |
Type of information | Basic description of the following:
| Missing information |
Search Step | Search String | Hits |
---|---|---|
1. | thermography[MeSH Terms] OR spectrophotometry, infrared[MeSH Terms] | 81,393 |
2. | “infrared”[Text Word] AND “temperature”[Text Word] | 36,209 |
3. | “thermology”[Text Word] OR “infrared camera”[Text Word] | 1028 |
4. | (“contact”[Text Word] OR “infrared”[Text Word]) AND thermography[Text Word] | 3730 |
5. | (“therm*”[Text Word] OR “infrared”[Text Word]) AND “imag*”[Text Word] | 58,741 |
6. | diagnosis/prevention and control[MeSH Terms] OR diagnostic techniques and procedures[MeSH Terms:noexp] OR disease progression[MeSH Terms] OR monitoring/physiologic[MeSH Terms] OR mass screening[MeSH Terms:noexp] OR early diagnosis[MeSH Terms] | 555,204 |
7. | reference value[MeSH Terms] OR normal value*[Text Word] | 184,175 |
8. | #1 OR #2 OR #3 OR #4 OR #5 | 151,614 |
9. | #6 OR #7 | 732,765 |
10. | #8 AND #9 | 2848 |
11. | #10 AND (humans[Filter]) AND (2000/1/1:2022/03/17[pdat]) AND (Clinical Study[Filter] OR Comparative Study[Filter] OR Controlled Clinical Trial[Filter] OR Evaluation Study[Filter] OR Journal Article[Filter] OR Pragmatic Clinical Trial[Filter] OR Review[Filter] OR Systematic Review[Filter] OR Technical Report[Filter]) | 1620 |
Author, Year | Area of Application, Therapeutic Speciality | Country, Number of Participants (Diseased, Control) | Study Intention |
---|---|---|---|
Aydemir, U. et al., 2021 [14] | Acute appendicitis, surgery (abdominal) | Turkey, 224 (112, 112) | Diagnosis |
Sodi, A. et al., 2014 [15] | Age-related macular degeneration, ophthalmology | Italy, 162 (118, 44) | Monitoring |
Murray, B. et al., 2006 [16] | Aphthous ulcers, orthodontics and dentistry | The UK, 52 (26, 26) | Diagnosis |
Ganesh, K. et al., 2021 [17] | Autism, neurology | India, 100 (50, 50) | Diagnosis |
Kontos, M. et al., 2011 [18] | Breast cancer, oncology (gynaecology) | The UK, 63 | Screening |
Kolaric, D. et al., 2013 [19] | Breast cancer, oncology (gynaecology) | Croatia, 26 | Screening |
Yao, X. et al., 2014 [20] | Breast cancer, oncology (gynaecology) | China, 2036 | Screening |
Rassiwala, M.et al., 2014 [21] | Breast cancer, oncology (gynaecology) | India, 1008 | Screening |
Zadeh, H.G. et al., 2016 [22] | Breast cancer, oncology (gynaecology) | Iran, 60 | Screening |
Omranipour, R. et al., 2016 [23] | Breast cancer, oncology (gynaecology) | Iran, 132 | Screening |
Morales-Cervantes, A. et al., 2018 [24] | Breast cancer, oncology (gynaecology) | Mexico, 206 | Screening |
Kakileti, S.T. et al., 2020 [25] | Breast cancer, oncology (gynaecology) | India, 470 | Screening |
Singh, A. et al., 2021 [26] | Breast cancer, oncology (gynaecology) | India, 258 | Screening |
Carrière, M. et al., 2020 [27] | Burns, wound care | The Netherlands, 32 | Monitoring |
Wu, C. et al., 2009 [28] | Coccygodynia, orthopaedics | Taiwan, 53 | Monitoring |
Girasol, C.E. et al., 2018 [29] | Chronic neck pain, orthopaedics | Brazil, 40 | Monitoring |
Brzezinski, R.Y. et al., 2021 [30] | COVID-19, infectious disease | Israel, 101 | Screening |
Deng, F. et al., 2015 [31] | Deep venous thrombosis, cardiology (phlebology) | China, 128 (64, 64) | Diagnosis |
Sivanandam, S. et al., 2012 [32] | Diabetes type II, endocrinology | India, 62 (30, 32) | Diagnosis |
Thirunavukkarasu, U. et al., 2020 [33] | Diabetes type II, endocrinology | India, 160 (80,80) | Diagnosis |
Thirunavukkarasu, U. et al., 2020 [34] | Diabetes type II, endocrinology | India, 140 (70, 70) | Diagnosis |
Nishide, K. et al., 2009 [35] | Diabetic foot, endocrinology | Japan, 60 (30, 30) | Screening |
Zhang, D. 2007 [36] | Facial paresis, neurology | China, 180 (60, 120) | Monitoring |
Nguyen, A.V. et al., 2010 [37] | Fever, infectious disease | The USA, 2873 | Screening |
Hewlett, A.L. et al., 2011 [38] | Fever, infectious disease | The USA, 566 | Screening |
Selent, M.U. et al., 2013 [39] | Fever, infectious disease | The USA, 855 | Screening |
Chan, L.S. et al., 2013 [40] | Fever, infectious disease | Hong Kong, 1517 | Screening |
Ring, E.F.J. et al., 2013 [41] | Fever, infectious disease | Poland, 402 | Screening |
Sun, G. et al., 2014 [42] | Fever, infectious disease | Japan, 155 | Screening |
Zhou, Y. et al., 2020 [43] | Fever, infectious disease | USA, 596 | Screening |
Rabbani, M.J. et al., 2021 [44] | Flap monitoring, surgery (plastic) | Pakistan, 84 | Monitoring |
Leshno, A. et al., 2022 [45] | Glaucoma, ophthalmology | Israel, 118 (52, 66) | Monitoring |
Varju, G. et al., 2004 [46] | Hand osteoarthritis, rheumatology | The USA, 91 | Monitoring |
Niu, H.H. et al., 2001 [47] | Healthy volunteers, thermal evaluation | Taiwan, 57 | Normative data |
Vardasca, R. et al., 2012 [48] | Healthy volunteers, thermal evaluation | The UK, 39 | Normative data |
Gatt, A. et al., 2015 [49] | Healthy volunteers, thermal evaluation | Malta, 63 | Normative data |
Vardasca, R. et al., 2019 [50] | Healthy volunteers, thermal evaluation | Portugal, 206 | Normative data |
Matteoli, S. et al., 2020 [51] | Healthy volunteers, thermal evaluation | Italy, 220 | Normative data |
Lubkowska, A. et al., 2021 [52] | Healthy volunteers thermal evaluation | Poland, 105 | Normative data |
Matsui, T. et al., 2010 [53] | Influenza, infectious disease | Japan, 92 (57, 35) | Screening |
Cohen, G.Y. et al., 2021 [54] | Ischaemic heart disease, cardiology | Israel, 150 | Screening |
Yamaguchi, M. et al., 2016 [55] | Keratoconjunctivitis sicca, ophthalmology | Japan, 60 (30, 30) | Screening |
Tan, L.L. et al., 2016 [56] | Keratoconjunctivitis sicca, ophthalmology | Singapore, 125 (62, 63) | Screening |
Zhang, Q. et al., 2021 [57] | Keratoconjunctivitis sicca, ophthalmology | China, 184 (138, 46) | Screening |
Kelly-Hope, L.A. et al., 2021 [58] | Lymphatic filariasis, infectious disease | Bangladesh, 153 | Monitoring |
Su, T. et al., 2017 [59] | Meibomian gland dysfunction, ophthalmology | Taiwan, 154 (89, 65) | Screening |
Cohen, E.E.W. et al., 2013 [60] | Mucositis, oncology (otolaryngology) | The USA, 34 | Monitoring |
Rashmi, R. et al., 2022 [61] | Obesity, endocrinology | India, 150 (50, 50) | Screening |
Kyle, D. et al., 2017 [62] | Peripheral arterial disease, cardiology | The UK, 44 | Diagnosis |
Ilo, A. et al., 2020 [63] | Peripheral arterial disease, cardiology | Finland, 257 (164, 93) | Diagnosis |
Romanò, C.L. et al., 2013 [64] | Periprosthetic joint infection, orthopaedics | Italy, 70 (36, 34) | Diagnosis |
Han, S.S. et al., 2010 [65] | Post-zoster neuralgia, neurology | Korea, 110 | Diagnosis |
Christensen, J. et al., 2014 [66] | Postoperative inflammation, orthodontics and dentistry | Denmark, 124 (62, 62) | Monitoring |
Cox, J. et al., 2016 [67] | Pressure ulcer, necrosis, wound care | The USA, 67 | Monitoring |
Cai, F. et al., 2021 [68] | Pressure injury, wound care | China, 349 (82, 267) | Screening |
Lasanen, R. et al., 2015 [69] | Rheumatoid arthritis, rheumatology | Finland, 58 | Screening |
Jones, B. et al., 2018 [70] | Rheumatoid arthritis, rheumatology | Canada, 79 (49, 30) | Monitoring |
Umapathy, S. et al., 2019 [71] | Rheumatoid arthritis, rheumatology | India, 60 (30, 30) | Screening |
Gatt, A. et al., 2020 [72] | Rheumatoid arthritis, rheumatology | Malta, 83 (32, 51) | Screening |
Tan, Y.K. et al., 2020 [73] | Rheumatoid arthritis, rheumatology | Singapore, 37 | Monitoring |
Alarcón-Paredes, A. et al., 2021 [74] | Rheumatoid arthritis, rheumatology | Mexico, 200 (100, 100) | Screening |
Weibel, L. et al., 2007 [75] | Scleroderma, rheumatology | The UK, 41 | Monitoring |
Ferraris, A. et al., 2018 [76] | Septic shock, trauma and emergency care | France, 46 | Monitoring |
Park, J.Y. et al., 2007 [77] | Shoulder impingement syndrome, orthopaedics | Korea, 130 (100, 30) | Diagnosis |
Sillero-Quintana, M. et al., 2015 [78] | Sports injury, trauma and emergency care | Spain, 201 | Diagnosis |
Stokholm, J. et al., 2021 [79] | Stroke, neurology | Denmark, 64 | Diagnosis |
Dibai Filho, A.V.D. et al., 2013 [80] | Temporomandibular disorder, orthodontics | Brazil, 104 (52, 52) | Diagnosis |
Woźniak, K. et al., 2015 [81] | Temporomandibular disorder, orthodontics | Poland, 100 (50, 50) | Diagnosis |
Damião, C.P. et al., 2021 [82] | Thyroid nodules, endocrinology | Brazil, 113 | Diagnosis |
Romanò, C.L. et al., 2011 [83] | Total joint arthroplasty, orthopaedics | Italy, 80 | Monitoring |
Windisch, C. et al., 2016 [84] | Total knee arthroplasty, orthopaedics | Germany, 42 | Monitoring |
Childs, C. et al., 2019 [85] | Wound infection caesarean section, wound care | The UK, 53 | Monitoring |
Manufacturer, City, Country/Region Camera Model | Technical Properties Resolution (Pixel), Thermal Sensitivity, Accuracy (C/%) | Use Case, Year of Publication |
---|---|---|
AGEMA Infrared Systems, Darmstadt, Germany, AGA Thermovision 900 | 256 × 240, 0.08 °C at 30 °C, ±1 °C/±1% | Aphthous ulcers, 2006 [16] |
AGEMA Infrared Systems, Darmstadt, Germany, AGA Thermovision 782 | 435 × 435, 0.1 °C at 30 °C | Facial paresis, 2007 [36] |
AG Digital Technology Corp., Taipei, Taiwan, ATIR-M301 | 320 × 240, 0.1 °C, <±1% | Deep venous thrombosis, 2015 [31] |
CHINO Corp., Tokyo, Japan, thermopile array | 48 × 47, 0.5 °C | Fever, 2014 [42] |
Compix Inc., Tualatin, OR, USA, PC200e | 244 × 193, 0.1 °C | Hand osteoarthritis [46] |
FLIR Systems, Wilsonsville, OR, USA, SC305 | 320 × 240, <0.05 °C at 30 °C, ±2 °C/±2% | Autism, 2021 [17], Diabetes type II, 2020 [33,34] |
FLIR Systems, Wilsonsville, OR, USA, ThermoVision A20 | 160 × 120, 0.12 °C at 30 °C, ±2 °C/±2% | Breast cancer, 2014 [21] Fever, 2010 [37] |
FLIR Systems, Wilsonsville, OR, USA, A315 | 320 × 240, 0.05 °C, ±1 °C/±1% | Breast cancer, 2020 [25] |
FLIR Systems, Wilsonsville, OR, USA, T650sc | 640 × 480, 0.02 °C, ±1 °C/±1% | Breast cancer, 2020 [25] |
FLIR, Wilsonsville, OR, USA, One Pro | 160 × 120, 0.1 °C, ±3 °C/±5% | Burns, 2020 [27], Keratoconjunctivitis, 2021 [57], Pressure injury, 2016 [68] |
FLIR Systems, Wilsonsville, OR, USA, T300 | 320 × 240, 0.05 °C at 30 °C, ±2% | Chronic neck pain, 2018 [29] |
FLIR Systems, Wilsonsville, OR, USA, One® | 160 × 120, 0.1 °C ±3 °C/±5% | COVID-19, 2021 [30], Flap monitoring, 2021 [44] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM T400 | 320 × 240, <0.07 °C at 30 °C, ±2 °C/± 2% | Diabetes type II, 2012 [32] |
FLIR Systems, Wilsonsville, OR, USA, T360 | 320 × 240, <0.06 °C at 30 °C, ±2 °C/±2% | Fever, 2013 [39], Temporomandibular disorder, 2013 [80] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM S40 | 320 × 240, 0.08 °C, ±2 °C/±2% | Fever, 2013 [40] |
FLIR Systems, Wilsonsville, OR, USA, SC640 | 640 × 480, 0.3 °C at 30 °C, ±2 °C/±2% | Fever, 2013 [41] |
FLIR Systems, Wilsonsville, OR, USA, A325sc | 320 × 240, <0.05 °C, ±2 °C/±2% | Fever, 2020 [43], Obesity, 2022 [61], Peripheral arterial disease, 2020 [63], Rheumatoid arthritis, 2015 [69] |
FLIR, Wilsonsville, OR, USA, ThermoVision A40 | 320 × 240, <0.1 °C at 30 °C ±2 °C | Healthy volunteers, 2012 [48] |
FLIR, Wilsonsville, OR, USA, SC7000 | 640 × 512 @15μm or 320 × 256 @30μm, <0.03 °C at 30 °C ±1 °C/±1% | Healthy volunteers, 2015 [49] |
FLIR Systems, Wilsonsville, OR, USA, E60 | 320 × 240 <0.05 °C ±2% | Healthy volunteers, 2019 [50] |
FLIR Systems, Wilsonsville, OR, USA, A320 | 320 × 240, <0.05 °C at 30 °C, ±2% | Age-related macular degeneration, 2014 [15], Healthy volunteers, 2020 [51] |
FLIR Systems, Wilsonsville, OR, USA, T1030sc | 1024 × 678, <0.02 °C, ±1 °C/±1% | Healthy volunteers, 2021 [52] |
FLIR Systems, Wilsonsville, OR, USA, C3 | 128×96, 0.07 °C, ±3 °C/±3% | Lymphatic filariasis, 2021 [58] |
FLIR Systems, Wilsonsville, OR, USA, SC300 | 320 × 240, <0.05 °C, ±2 °C/±2% | Peripheral arterial disease, 2017 [62] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM E320 | 320 × 240, 0.08 °C at 30 °C, ±2 °C/±2% | Postoperative inflammation, 2014 [66] |
FLIR Systems, Wilsonsville, OR, USA, FLIR i7 | 140 × 140, <0.1 °C, ±2 °C/±2% | Pressure ulcer, 2016 [67] |
FLIR Systems, Wilsonsville, OR, USA, T300 | 320 × 240, <0.05 °C, ±2% | Rheumatoid arthritis, 2018 [70] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM T400 | 320 × 240, <0.07 °C at 30 °C, ±2 °C/±2% | Rheumatoid arthritis, 2019 [71] |
FLIR Systems, Wilsonsville, OR, USA, T630 | 640 × 480, <0.04 °C at 30 °C, ±2 °C/±2% | Rheumatoid arthritis, 2020 [72] |
FLIR Systems, Wilsonsville, OR, USA, T640 | 640 × 480, <0.03 °C at 30 °C, ±2 °C/±2% | Rheumatoid arthritis, 2020 [73] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM SC500 | 320 × 240, 0.07 °C, ±2 °C/±2% | Scleroderma, 2007 [75] |
FLIR Systems, Wilsonsville, OR, USA, FLIR-E | 320 × 240, <0.1 °C, <2% | Septic shock, 2018 [76] |
FLIR Systems, Wilsonsville, OR, USA, T335 | 320 × 240, 0.05 °C, ±2 °C/±2% | Sports injury, 2015 [78] |
FLIR Systems, Wilsonsville, OR, USA, T430sc | 320 × 240, <0.03 °C, ±2 °C/±2% | Stroke, 2021 [79] |
FLIR Systems, Wilsonsville, OR, USA, ThermaCAM SC500 | 320 × 240, 0.07 °C at 30 °C, ±2 °C/±2% | Temporomandibular disorder, 2015 [81] |
FLIR Systems, Wilsonsville, OR, USA, SC620 | 640 × 480, <0.04 °C, ±2 °C/±2% | Thyroid nodules, 2021 [82] |
FLIR Systems, Wilsonsville, OR, USA, FLIR i5 | 100 × 100, <0,1 °C, ±2 °C/±2% | Total knee arthroplasty, 2016 [84] |
FLIR Systems, Wilsonsville, OR, USA, T450sc | 320 × 240, <0.03 °C, ±1 °C/±1% | Wound infection caesarean section, 2019 [85] |
Fluke, Everett, WA, USA Fluke® Ti9 | 640 × 480, ≤0.2 °C at 30 °C, ±5 °C/±5% | Acute appendicitis, 2021 [14] |
Fluke, Everett, WA, USA, FlexCam Pro® | 160 × 120, 0.07 °C at 30 °C, ±2 °C/± 2% | Breast cancer, 2018 [24] |
FMG-MED, Teheran, Iran, FMG-MED IR | 640 × 480, 0.08 °C | Breast cancer, 2016 [23] |
ICI, Beaumont, TX, USA 8640 P-series | 640 × 512 0.03 °C at 30 °C ± 0.2 °C | Fever, 2020 [43] |
MEDITHERM, Cheyenne, WY, USA, med2000 | 320 × 240, <0.1 °C, ±1 °C | Breast cancer, 2011 [18] |
MEDITHERM, Cheyenne, WY, USA, IRIS 2000 | 320 × 240, 0.5 °C, ±1 °C/±1% | Breast cancer, 2020 [25] |
Medicore Co., Gyeonggi-do, Korea, IRIS-5000 | 256 × 240, <0.1 °C | Post-zoster neuralgia, 2010 [65], Shoulder impingement syndrome, 2007 [77] |
Nippon Avionics Co., Kanagawa, Japan, NEC Thermo Tracer TH7102WL | 320 × 240, 0.07 °C at 30 °C, ±2 °C/±2 % | Breast cancer, 2013 [19] |
Nippon Avionics Co., Kanagawa, Japan, InfReC R500 | 640 × 480, 0.03 °C at 30 °C, ±1 °C | Breast cancer, 2016 [22] |
Nippon Avionics, Co., Kanagawa, Japan, NEC Thermotracer TH5108ME | Approx. 750 × 350, 0.1 °C, ±0.7 °C | Diabetic foot, 2009 [35] |
Nippon Avionics Co., Kanagawa, Japan, NEC AVIO TVS-2000 | 256 × 400 0.1 °C at 30 °C | Healthy volunteers, 2001 [47] |
Nippon Avionics Co., Kanagawa, Japan, NEC Thermo Tracer TH9420 | 640 × 480, 0.06 °C | Keratoconjunctivitis, 2016 [56] |
Nippon Avionics Co., Kanagawa, Japan, NEC HX0830M1 | 320 × 240 | Keratoconjunctivitis, 2016 [55] |
Nippon Avionics Co., Kanagawa, Japan, NEC AVIO ThermoShot F30S | 160 × 120, 0.1 °C at 30 °C, ±2 °C/±2% | Periprosthetic joint infection, 2013 [64] Total joint arthroplasty, 2011 [83] |
OPGAI, Napels, Italy, Therm-App® (Pro) TH | 384 × 288 <0.07 °C ±2 °C/±2% | Glaucoma, 2022 [45] Ischaemic heart disease, 2021 [54] |
OptoTherm, Sewickley, PA, USA Thermoscreen | 640 × 480, <0.04 °C ±1 °C | Fever, 2010 [37], 2011 [38], 2013 [39] |
Proprietary system | 256 × 256, 0.06 °C at 30 °C, ±2% | Mucositis, 2013 [60] |
SeeK thermal, Santa Barbara, CA, USA Thermal Compact XR | 206 × 156, <0.1 °C, ±2 °C/±2% | Rheumatoid arthritis, 2021 [74] |
TELESIS, Circleville, OH, USA Telesis Spectrum 9000MB | 320 × 240, 0.07 °C | Coccygodynia, 2009 [28] |
United Integrated Services Co., Taipei, Taiwan, IT-85 | 320 × 240, 0.07 °C | Meibomian gland dysfunction, 2017 [59] |
Palmer Wahl Instruments, Asheville, NC, USA Fever Alert Imager HSI2000S | Approx. 380 × 415, ~ 0.5 °C at 30 °C, ±2 °C | Fever, 2010 [37] |
Standard Protocol | Patient Management | Imaging Modalities | Environmental Control |
---|---|---|---|
Standard procedures of the International Academy of Clinical Thermology [87,88] n = 3 | Instructions for behaviour before imaging (e.g., avoidance of skin lotions, no physical activity) n = 25 | Trained personnel n = 8 | Specifications of the examination room (e.g., room without windows, illuminated with neon lights, no sources of thermal energy) n = 19 |
Standard procedures of infrared imaging [86,89] n = 3 Others (e.g., [2]) n = 7 | Instructions for preparation (e.g., take off clothes, remove jewellery) n = 36 | Instructions of position/posture n = 46 | Constant/controlled ambient temperature n = 48 relative humidity n = 22 |
Standards for temperature assessment, screening guidelines ISO/TR 13154 ISO/TR 80-600 ISO TC121/SC3-IEC SC62D n = 3 | Pre-specified/fixed camera distance n = 47 | Ambient temperature/humidity not controlled but recorded n = 15 | |
Proprietary protocol/standardized procedure of thermal imaging n = 10 | Region of Interest (ROI) defined n = 47 | Acclimatization period n = 47 | |
Not reported n = 48 | Not reported n = 23 | Not reported n = 5 | Not reported n = 8 |
Use Case, Year of Publication | Study Target | Sensitivity (%), Specificity (%), PPV (%), NPV (%) AUC, Accuracy (%) | Evaluation Method Thermogram, Comparator |
---|---|---|---|
Acute appendicitis, 2021 [14] | Diagnosis | 77.7 (68.8–85) *, 96.4 (91.1–99) *, 95.6 (89.2–97.3) *, 81.2 (73.3–94.2) * AUC 91.5 (87.1–94.8) * | FLUKE, SmartViewTM Desktop Software program v4.3, US, CT, Alvarado score |
Autism, 2021 [17] | Diagnosis | Sens. 100, Spec. 93, Acc. 96, | Customised CNN, standard diagnostic procedures |
Breast cancer, 2011 [18] | Screening | Sens. 25, Spec. 85, PPV 24, NPV 86 | TIFF images classified by 2 physicians, biopsy/surgery |
Breast cancer, 2013 [19] | Screening | Sens. 100, Spec. 79 | ThermoWeb, ThermoMED version, FNA/surgery |
Breast cancer, 2014 [20] | Screening | Sens. 84.4, Spec. 94.0, Acc. 91.7 | Automatic software analysis, needle biopsy/surgery |
Breast cancer, 2014 [21] | Screening | Sens. 97.6, Spec. 99.2, PPV 83.7, NPV 99.9 | Software-aided classification, only those identified in thermographic screening were further clinically examinated |
Breast cancer, 2016 [22] | Screening | Sens. 85, NPV 61.5, Acc. 91.9 | Detection of thermal asymmetry, biopsy |
Breast cancer, 2016 [23] | Screening | Sens. 81.6, Spec. 57.8, PPV 78.9, NPV 61.9, Acc. 69.7 | Software-aided classification, histologic results of biopsy/surgery |
Breast cancer, 2018 [24] | Screening | Sens. 100, Spec. 68.7, PPV 11.4, NPV 100 | Software-aided classification, biopsy |
Breast cancer, 2020 [25] | Screening | 91.0 (81.8–96) *, 82.4 (78.2–86) *, PPV 50.7, NPV 97.9, AUC 90 | AI-based software-aided interpretation, FNA cytology/biopsy |
Breast cancer, 2021 [26] | Screening | 82.5 (73.2–91.9) *, 80.5 (75.0–86.1) *, 57.8 (47.6–68.0) *, 93.5 (89.7–97.2) *, AUC 84.5, Acc. 81.0 (76.2–85.8) * | AI-based software-aided interpretation, biopsy |
Burns, 2020 [27] | Monitoring | Healing potential <14 d vs. ≥14 d Sens. 68, Spec. 95, AUC 89 (83–96) * Healing potential ≤21 d vs. >21 d Sens. 30, Spec. 95, AUC 82 (73–90) * | Software application, Laser Doppler imaging |
COVID 19, 2021 [30] | Screening | Sens. 92, Spec 62, PPV 79, NPV 83, AUC 85 | Image processing algorithms, COVID-19 PCR test |
Diabetes type II, 2012 [32] | Diagnosis | Sens. 90, Spec. 56, PPV 65, NPV 85, AUC 71.1 (58.1–84.2) * Acc. 73 | Quick Report software 1.2 by FLIR, HbA1c ≥ 6.5% |
Diabetes type II, [33] | Diagnosis | Sens. 88.8, Spec. 91.1, PPV 89.9, NPV 88.9, AUC 94.3, Acc. 89.4 | GRAYESS IRT Analyser 6.0, CAD SVM, ADA diagnostic criteria |
Diabetes type II, 2020 [34] | Diagnosis | Sens. 92.9, Spec. 95.7, PPV 95.6, NPV 93.1, AUC 80, Acc. 94.3 | FLIR software tool, CAD CNN, HbA1c ≥ 6.5% |
Fever, 2010 [37] | Screening | OptoTherm 91.0 (85.0–97.0) *, 86.0 (81.0–90.0) *, 17.9 (13.6–22.2) *, 99.6 (99.3–99.8) *, AUC 96.0 FLIR 90.0 (84.0–97.0) *, 80.0 (76.0–84.0) *, 18.4 (13.7–23.0) *, 99.5 (99.1–99.7) *, AUC 92.0 Wahl 80.0 (76.0–85.0) *, 65.0 (61.0–69.0) *, 5.7 (4.1–7.3) *, 99.1 (98.6–99.5) *, AUC 78.2 | Skin temperature, oral temperature |
Fever, 2011 [38] | Screening | 70 (54–83) *, 92 (90–94) *, 42 (31–55) *, 97 (96–99) *, AUC 86.2 | ITDS technology, routine protocols |
Fever, 2013 [39] | Screening | OptoTherm 83.0 (78–87) *, 86.3 (83–89) *, AUC 92.2 FLIR 83.7 (79–88) *, 85.7 (82–88) *, AUC 92.3 Thermofocus 76.8 (71–82) *, 79.4 (75–83) *, AUC 85.2 | ITDS technology, standard protocol, combination of rectal, oral, axillary temperature |
Fever, 2013 [40] | Screening | Sens. 57, Spec. 92, PPV 37, NPV 97, AUC 81.2 (76.1–86.3) * at a cut-off of 36.5 °C | ThermaCAM Researcher software, oral or aural temperature |
Fever, 2014 [42] | Screening | Sens. 80.5, Spec. 93.3, | Image processing, axillary temperature |
Fever, 2020 [43] | Screening | FLIR Sens. 100, Spec. 95 AUC 95 ICI Sens. 100, Spec. 97 AUC 97 | Temperatures from thermal images (with BB compensation), oral temperature |
Flap monitoring, 2021 [44] | Monitoring | Sens. 98.7, Spec. 75.0, PPV 97.4, NPV 85.7, Acc. 96.3 | Temperature gradient colour coding of thermal image, clinical assessment |
Glaucoma, 2022 [45] | Monitoring | AUC 69.3 | IRT Cronista® 4.0 software, healthy eyes |
Influenza, 2010 [53] | Screening | Sens. 88, Spec 89 PPV 93, NPV 82 | Software-based screening system, healthy participants |
Keratocon-junctivitis sicca, 2016 [55] | Screening | Sens. 83, Spec. 80, AUC 86 | Software-aided, Japanese Dry Eye diagnostic criteria |
Keratocon-junctivitis sicca, 2016 [56] | Screening | 87.1 (76.2–94.3) *, 50.8 (37.9–63.6) *, AUC 72 (63–81) * | OST Analysis V2 software, Schirmer I test |
Keratoconjun-ctivitis sicca, 2021 [57] | Screening | Sens. 96, Spec. 91, AUC 79 (73–85) * | FLIR software tool, Japanese Dry Eye diagnostic criteria |
Meibomian gland dysfunction, 2017 [59] | Screening | Sens. 90, Spec. 88, AUC 92 | Customized computer program, FTBUT, Meibomian gland functional test, Schirmer’s test |
Periprosthetic joint infection, 2013 [64] | Diagnosis | 89 (74–96) *, 91 (76–98) *, PPV 91 (78–97) *, NPV 88 (74–95) *, Acc. 90 | IRTCronista software, standard diagnostic procedures |
Pressure injury, 2021 [68] | Screening | Sens. 85.4, Spec. 89.9, PPV 72.2, NPV 95.2, AUC 90 (86–94) *, Acc. 88.8 | FLIR One software, Braden scale |
Rheumatoid arthritis, 2021 [74] | Screening | Sens. 95.0, Spec. 94.4, AUC 97.1, Acc. 94.7 | Computer aided ML, 2010 ACR-EULAR criteria |
Scleroderma, 2007 [75] | Monitoring | Sens. 52, Spec. 58, AUC 59 (52–67) * | Thermal difference, clinical diagnosis |
Temporoman-dibular dis-order, 2013 [80] | Diagnosis | Sens. 55.8, Spec. 55.8, Acc. 50.2 (38.9–61.5) * | Thermal difference by QuickReport 1.1, RDC/TMD |
Temporoman-dibular dis-order, 2013 [81] | Diagnosis | Sens. 46.4, Spec. 95.5, AUC 79.2, Acc. 56.3 | Temperature difference, 3-point anamnestic index of TMD |
Thyroid nodules, 2021 [82] | Diagnosis | Sens. 96.3, Spec. 99.2, PPV 96.3, NPV 99.2 AUC 96.7 (91.6–100.0) * | Temperature difference curve, FNA biopsy |
Wound infection caesaren section, 2019 [85] | Monitoring | Cut-off 33.9 °C: Sens. 92.9, Spec. 36.4, Cut-off 32.65 °C: Sens. 64.3, Spec. 81.8, AUC 75.2 (59.9–90.5) * | Temperature of central abdominal region (umbilicus), wound swabs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesztyüs, D.; Brucher, S.; Wilson, C.; Kesztyüs, T. Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review. Medicina 2023, 59, 2139. https://doi.org/10.3390/medicina59122139
Kesztyüs D, Brucher S, Wilson C, Kesztyüs T. Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review. Medicina. 2023; 59(12):2139. https://doi.org/10.3390/medicina59122139
Chicago/Turabian StyleKesztyüs, Dorothea, Sabrina Brucher, Carolyn Wilson, and Tibor Kesztyüs. 2023. "Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review" Medicina 59, no. 12: 2139. https://doi.org/10.3390/medicina59122139
APA StyleKesztyüs, D., Brucher, S., Wilson, C., & Kesztyüs, T. (2023). Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review. Medicina, 59(12), 2139. https://doi.org/10.3390/medicina59122139