Thrombolysis in Myocardial Infarction Frame Count for Coronary Blood Flow Evaluation during Interventional Diagnostic Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Acetylcholine Provocation Test
2.3. Coronary Physiological Assessment
2.4. Thrombolysis in Myocardial Infarction Frame Count
2.5. Endpoints and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef]
- Reeh, J.; Therming, C.B.; Heitmann, M.; Højberg, S.; Sørum, C.; Bech, J.; Husum, D.; Dominguez, H.; Sehestedt, T.; Hermann, T.; et al. Prediction of obstructive coronary artery disease and prognosis in patients with suspected stable angina. Eur. Heart J. 2019, 40, 1426–1435. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Hokimoto, S.; Kaikita, K.; Yasuda, S.; Tsujita, K.; Ishihara, M.; Matoba, T.; Matsuzawa, Y.; Mitsutake, Y.; Mitani, Y.; Murohara, T.; et al. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ. J. 2023, 87, 879–936. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef]
- Shimokawa, H.; Suda, A.; Takahashi, J.; Berry, C.; Camici, P.G.; Crea, F.; Escaned, J.; Ford, T.; Yii, E.; Kaski, J.C.; et al. Clinical characteristics and prognosis of patients with microvascular angina: An international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur. Heart J. 2021, 42, 4592–4600. [Google Scholar] [CrossRef] [PubMed]
- Schumann, C.L.; Mathew, R.C.; Dean, J.L.; Yang, Y.; Balfour, P.C., Jr.; Shaw, P.W.; Robinson, A.A.; Salerno, M.; Kramer, C.M.; Bourque, J.M. Functional and Economic Impact of INOCA and Influence of Coronary Microvascular Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Khan, N.; George, M.; Berry, C.; Chieffo, A.; Camici, P.G.; Crea, F.; Kaski, J.C.; Marzilli, M.; Merz, C.N.B. Ischemia with no obstructive coronary artery disease (INOCA): A patient self-report quality of life survey from INOCA international. Int. J. Cardiol. 2023, 371, 28–39. [Google Scholar] [CrossRef]
- Saito, Y.; Nishi, T.; Kato, K.; Kitahara, H.; Kobayashi, Y. Resistive reserve ratio and microvascular resistance reserve in patients with coronary vasospastic angina. Heart Vessel. 2022, 37, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Saito, Y.; Yamashita, D.; Kitahara, H.; Kobayashi, Y. Impact of preceding acetylcholine provocation testing on following coronary physiological assessment during an interventional diagnostic procedure. J. Cardiol. 2023, 82, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Yamaji, K.; Kohsaka, S.; Ishii, H.; Wada, H.; Yamada, S.; Sawano, M.; Inohara, T.; Numasawa, Y.; Ikari, Y.; et al. Japanese Nationwide PCI (J-PCI) Registry Annual Report 2019: Patient demographics and in-hospital outcomes. Cardiovasc. Interv. Ther. 2022, 37, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kaikita, K.; Yamamoto, E.; Jinnouchi, H.; Tsujita, K. Role of acetylcholine spasm provocation test as a pathophysiological assessment in nonobstructive coronary artery disease. Cardiovasc. Interv. Ther. 2021, 36, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Saito, Y.; Kato, K.; Kobayashi, Y. Gender differences in factors associated with vasospastic angina. Int. J. Cardiol. 2022, 349, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Kawase, Y.; Matsuo, H.; Kuramitsu, S.; Shiono, Y.; Akasaka, T.; Tanaka, N.; Amano, T.; Kozuma, K.; Nakamura, M.; Yokoi, H.; et al. Clinical use of physiological lesion assessment using pressure guidewires: An expert consensus document of the Japanese association of cardiovascular intervention and therapeutics-update 2022. Cardiovasc. Interv. Ther. 2022, 37, 425–439. [Google Scholar] [CrossRef]
- Yamazaki, T.; Nishi, T.; Saito, Y.; Tateishi, K.; Kato, K.; Kitahara, H.; Kobayashi, Y. Discrepancy between plaque vulnerability and functional severity of angiographically intermediate coronary artery lesions. Cardiovasc. Interv. Ther. 2022, 37, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, J.M.; Park, J.; Choi, K.H.; Hwang, D.; Doh, J.H.; Nam, C.W.; Shin, E.S.; Hoshino, M.; Murai, T.; et al. Prognostic Implications of Resistive Reserve Ratio in Patients With Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e015846. [Google Scholar] [CrossRef] [PubMed]
- Toya, T.; Ahmad, A.; Corban, M.T.; Özcan, I.; Sara, J.D.; Sebaali, F.; Escaned, J.; Lerman, L.O.; Lerman, A. Risk Stratification of Patients With NonObstructive Coronary Artery Disease Using Resistive Reserve Ratio. J. Am. Heart Assoc. 2021, 10, e020464. [Google Scholar] [CrossRef]
- De, B.B.; Pijls, N.H.J.; Gallinoro, E.; Candreva, A.; Fournier, S.; Keulards, D.C.J.; Sonck, J.; Van’t, V.M.; Barbato, E.; Bartunek, J.; et al. Microvascular Resistance Reserve for Assessment of Coronary Microvascular Function: JACC Technology Corner. J. Am. Coll. Cardiol. 2021, 78, 1541–1549. [Google Scholar]
- Boerhout, C.K.M.; Lee, J.M.; de Waard, G.A.; Mejia-Renteria, H.; Lee, S.H.; Jung, J.H.; Hoshino, M.; Echavarria-Pinto, M.; Meuwissen, M.; Matsuo, H.; et al. Microvascular resistance reserve: Diagnostic and prognostic performance in the ILIAS registry. Eur. Heart J. 2023, 44, 2862–2869. [Google Scholar] [CrossRef]
- Yamazaki, T.; Saito, Y.; Yamashita, D.; Kitahara, H.; Kobayashi, Y. Factors Associated with Impaired Resistive Reserve Ratio and Microvascular Resistance Reserve. Diagnostics 2023, 13, 950. [Google Scholar] [CrossRef]
- Demir, O.M.; Boerhout, C.K.M.; de Waard, G.A.; van de Hoef, T.P.; Patel, N.; Beijk, M.A.M.; Williams, R.; Rahman, H.; Everaars, H.; Kharbanda, R.K.; et al. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. JACC Cardiovasc. Interv. 2022, 15, 1060–1070. [Google Scholar] [CrossRef]
- Gibson, C.M.; Cannon, C.P.; Daley, W.L.; Dodge, J.T., Jr.; Alexander, B., Jr.; Marble, S.J.; McCabe, C.H.; Raymond, L.; Fortin, T.; Poole, W.K.; et al. TIMI frame count: A quantitative method of assessing coronary artery flow. Circulation 1996, 93, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Dutta, U.; Sinha, A.; Demir, O.M.; Ellis, H.; Rahman, H.; Perera, D. Coronary Slow Flow Is Not Diagnostic of Microvascular Dysfunction in Patients with Angina and Unobstructed Coronary Arteries. J. Am. Heart Assoc. 2023, 12, e027664. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K.; et al. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef] [PubMed]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Ford, T.J.; Berry, C. How to Diagnose and Manage Angina Without Obstructive Coronary Artery Disease: Lessons from the British Heart Foundation CorMicA Trial. Interv. Cardiol. 2019, 14, 76–82. [Google Scholar] [CrossRef]
- Beck, S.; Pereyra, V.M.; Seitz, A.; McChord, J.; Hubert, A.; Bekeredjian, R.; Sechtem, U.; Ong, P. Invasive Diagnosis of Coronary Functional Disorders Causing Angina Pectoris. Eur. Cardiol. 2021, 16, e27. [Google Scholar] [CrossRef]
- Manginas, A.; Gatzov, P.; Chasikidis, C.; Voudris, V.; Pavlides, G.; Cokkinos, D.V. Estimation of coronary flow reserve using the Thrombolysis In Myocardial Infarction (TIMI) frame count method. Am. J. Cardiol. 1999, 83, 1562–1565, A7. [Google Scholar] [CrossRef]
- Tanedo, J.S.; Kelly, R.F.; Marquez, M.; Burns, D.E.; Klein, L.W.; Costanzo, M.R.; Parrillo, J.E.; Hollenberg, S.M. Assessing coronary blood flow dynamics with the TIMI frame count method: Comparison with simultaneous intracoronary Doppler and ultrasound. Catheter. Cardiovasc. Interv. 2001, 53, 459–463. [Google Scholar] [CrossRef]
- Abaci, A.; Oguzhan, A.; Eryol, N.K.; Ergin, A. Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility. Circulation 1999, 100, 2219–2223. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Zhang, Y.; Li, Q.; Guo, L.; Mao, Y.; He, L. Evaluate the Correlation between the TIMI Frame Count, IMR, and CFR in Coronary Microvascular Disease. J. Interv. Cardiol. 2022, 2022, 6361398. [Google Scholar] [CrossRef] [PubMed]
- Yamanaga, K.; Tsujita, K.; Komura, N.; Kaikita, K.; Sakamoto, K.; Miyazaki, T.; Saito, M.; Ishii, M.; Tabata, N.; Akasaka, T.; et al. Single-wire pressure and flow velocity measurement for quantifying microvascular dysfunction in patients with coronary vasospastic angina. Am. J. Physiol. Heart. Circ. Physiol. 2015, 308, H478–H484. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Arai, K.; Hosaka, M.; Komatsu, Y.; Gunnji, K.; Tanimoto, K.; Ishizuka, N.; Tsurumi, Y.; Hagiwara, N. Noninvasive prediction of angiographic spasm provocation using trans-thoracic Doppler echocardiography in patients with coronary spastic angina. Circ. J. 2008, 72, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Seitz, A.; Feenstra, R.; Konst, R.E.; Martínez Pereyra, V.; Beck, S.; Beijk, M.; van de Hoef, T.; van Royen, N.; Bekeredjian, R.; Sechtem, U.; et al. Acetylcholine Rechallenge: A First Step Toward Tailored Treatment in Patients with Coronary Artery Spasm. JACC Cardiovasc. Interv. 2022, 15, 65–75. [Google Scholar] [CrossRef]
Variable | All (n = 104) | Positive ACh (n = 58) | Negative ACh (n = 46) | p Value |
---|---|---|---|---|
Age (years) | 64.3 ± 12.1 | 63.8 ± 11.0 | 64.9 ± 13.4 | 0.63 |
Men | 54 (51.9%) | 33 (56.9%) | 21 (45.7%) | 0.32 |
Body mass index (kg/m2) | 24.2 ± 3.8 | 24.4 ± 3.8 | 23.9 ± 3.9 | 0.49 |
Hypertension | 57 (54.8%) | 31 (53.5%) | 26 (56.5%) | 0.84 |
Diabetes | 15 (14.4%) | 8 (13.8%) | 7 (15.2%) | 1.00 |
Dyslipidemia | 78 (75.0%) | 48 (82.8%) | 30 (65.2%) | 0.07 |
Current smoking | 21 (20.2%) | 16 (27.6%) | 5 (10.9%) | 0.049 |
Chronic kidney disease | 22 (21.2%) | 12 (20.7%) | 10 (21.7%) | 1.00 |
Previous MI | 6 (5.8%) | 5 (8.6%) | 1 (2.2%) | 0.22 |
Hemoglobin (g/dL) | 13.6 ± 1.6 | 13.8 ± 1.6 | 13.4 ± 1.6 | 0.31 |
LDL cholesterol (mg/dL) | 113 ± 34 | 112 ± 37 | 116 ± 30 | 0.55 |
HDL cholesterol (mg/dL) | 63 ± 18 | 61 ± 15 | 67 ± 22 | 0.11 |
Medical treatment | ||||
Antiplatelet | 34 (32.7%) | 21 (36.2%) | 13 (28.3%) | 0.41 |
Statin | 49 (47.1%) | 31 (53.5%) | 18 (39.1%) | 0.17 |
β-blocker | 18 (17.3%) | 10 (17.2%) | 8 (17.4%) | 1.00 |
ACE-i or ARB | 29 (27.9%) | 18 (31.0%) | 11 (23.9%) | 0.51 |
Calcium channel blocker | 52 (50.0%) | 32 (55.2%) | 20 (43.5%) | 0.32 |
Nitrate | 20 (19.2%) | 14 (24.1%) | 6 (13.0%) | 0.21 |
All (n = 104) | Positive ACh (n = 58) | Negative ACh (n = 46) | p Value | |
---|---|---|---|---|
ACh provocation test | ||||
Chest symptom | 73 (70.2%) | 54 (93.1%) | 19 (41.3%) | <0.001 |
ECG change | 59 (56.7%) | 49 (84.5%) | 10 (21.7%) | <0.001 |
Hyperemic agent | 0.85 | |||
Intracoronary papaverine | 47 (45.2%) | 25 (43.1%) | 22 (47.8%) | |
Intracoronary nicorandil | 37 (35.6%) | 22 (37.9%) | 15 (32.6%) | |
Intravenous ATP | 20 (19.2%) | 11 (19.0%) | 9 (19.6%) | |
Physiological findings | ||||
Resting Pd/Pa | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.27 |
FFR | 0.91 ± 0.04 | 0.91 ± 0.04 | 0.92 ± 0.04 | 0.20 |
Resting Tmn (s) | 0.99 ± 0.49 | 1.12 ± 0.51 | 0.81 ± 0.40 | <0.001 |
Hyperemic Tmn (s) | 0.23 ± 0.12 | 0.25 ± 0.13 | 0.21 ± 0.11 | 0.10 |
BRI | 90.4 ± 44.7 | 101.7 ± 43.9 | 76.2 ± 42.0 | 0.003 |
IMR | 18.1 ± 10.3 | 19.4 ± 10.8 | 16.4 ± 9.4 | 0.14 |
CFR | 4.9 ± 2.7 | 5.2 ± 2.8 | 4.5 ± 2.5 | 0.16 |
RRR | 5.7 ± 3.1 | 6.1 ± 3.3 | 5.1 ± 2.8 | 0.11 |
MRR | 6.1 ± 3.3 | 6.6 ± 3.5 | 5.4 ± 2.9 | 0.08 |
CMD (CFR < 2.5 and/or IMR ≥ 25) | 30 (28.9%) | 14 (24.1%) | 16 (34.8%) | 0.28 |
TFC value | ||||
Pre-ACh | 22.5 ± 8.8 | 21.9 ± 8.6 | 23.2 ± 9.1 | 0.44 |
Post-ISDN | 20.8 ± 10.3 | 21.3 ± 12.2 | 20.2 ± 7.3 | 0.57 |
Post-hyperemia | 17.1 ± 7.8 | 17.4 ± 8.1 | 16.7 ± 7.4 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamazaki, T.; Saito, Y.; Kitahara, H.; Kobayashi, Y. Thrombolysis in Myocardial Infarction Frame Count for Coronary Blood Flow Evaluation during Interventional Diagnostic Procedures. Medicina 2023, 59, 2185. https://doi.org/10.3390/medicina59122185
Yamazaki T, Saito Y, Kitahara H, Kobayashi Y. Thrombolysis in Myocardial Infarction Frame Count for Coronary Blood Flow Evaluation during Interventional Diagnostic Procedures. Medicina. 2023; 59(12):2185. https://doi.org/10.3390/medicina59122185
Chicago/Turabian StyleYamazaki, Tatsuro, Yuichi Saito, Hideki Kitahara, and Yoshio Kobayashi. 2023. "Thrombolysis in Myocardial Infarction Frame Count for Coronary Blood Flow Evaluation during Interventional Diagnostic Procedures" Medicina 59, no. 12: 2185. https://doi.org/10.3390/medicina59122185
APA StyleYamazaki, T., Saito, Y., Kitahara, H., & Kobayashi, Y. (2023). Thrombolysis in Myocardial Infarction Frame Count for Coronary Blood Flow Evaluation during Interventional Diagnostic Procedures. Medicina, 59(12), 2185. https://doi.org/10.3390/medicina59122185