Exploring the Multifaceted Potential of Sildenafil in Medicine
Abstract
:1. Introduction
2. Materials and Method
3. Sildenafil Pharmacokinetic Profile and Associated Adverse Reactions
4. Current Indications
4.1. Erectile Dysfunction (ED)
4.2. Pulmonary Arterial Hypertension (PAH)
5. Prospective Indications
5.1. Pain
5.2. Alzheimer Disease
5.3. Systemic Sclerosis-Associated Raynaud’s Disease and Digital Ulcer
5.4. Wound Healing
5.5. Retinopathy
5.6. Cancer
5.7. Depression
5.8. Renal Diseases
5.9. Gastrointestinal Diseases
5.10. Cardiovascular Diseases
5.11. Lung Diseases
6. Summary
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, G.; Gillies, H.; Osterloh, I. Past, present, and future: A 7-year update of Viagra® (sildenafil citrate). Int. J. Clin. Pract. 2005, 59, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Uthayathas, S.; Karuppagounder, S.; Thrash, B.M.; Parameshwaran, K.; Suppiramaniam, V.; Dhanasekaran, M. Versatile effects of sildenafil: Recent pharmacological applications. Pharmacol. Rep. 2007, 59, 150–163. [Google Scholar]
- Kadhim, T.J.; Khalf, O.A.A. A review search of sildenafil uses in human and in the veterinary medicine. AIP Conf. Proc. 2023, 2475, 100010. [Google Scholar] [CrossRef]
- Simonca, L.; Tulloh, R. Sildenafil in Infants and Children. Children 2017, 4, 60. [Google Scholar] [CrossRef] [PubMed]
- Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov. 2006, 5, 689–702. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Ma, M.; Xie, W.; Yang, X.; Huang, Y.; Sun, T.; Luo, Y.; Huang, J. Direct comparison of tadalafil with sildenafil for the treatment of erectile dysfunction: A systematic review and meta-analysis. Int. Urol. Nephrol. 2017, 49, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Delhaye, S.; Bardoni, B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol. Psychiatry 2021, 26, 4570–4582. [Google Scholar] [CrossRef]
- Saikia, Q.; Hazarika, A.; Mishra, R. A Review on the Pharmacological Importance of PDE5 and Its Inhibition to Manage Biomedical Conditions. J. Pharmacol. Pharmacother. 2022, 13, 246–257. [Google Scholar] [CrossRef]
- Nandi, S.; Kumar, P.; Amin, S.; Jha, T.; Gayen, S. First molecular modelling report on tri-substituted pyrazolines as phosphodiesterase 5 (PDE5) inhibitors through classical and machine learning based multi-QSAR analysis. SAR QSAR Environ. Res. 2021, 32, 917–939. [Google Scholar] [CrossRef]
- Pasmanter, N.; Iheanacho, F.; Hashmi, M.F. Biochemistry, Cyclic GMP. 2023. Available online: https://pubmed.ncbi.nlm.nih.gov/31194391 (accessed on 12 November 2023).
- Corbin, J.D. Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int. J. Impot. Res. 2004, 16, S4–S7. [Google Scholar] [CrossRef]
- Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol. Rev. 2011, 91, 651–690. [Google Scholar] [CrossRef] [PubMed]
- Ückert, S.; Kuczyk, M.A. Cyclic Nucleotide Metabolism Including Nitric Oxide and Phosphodiesterase-Related Targets in the Lower Urinary Tract. In Urinary Tract; Springer: Berlin/Heidelberg, Germany, 2011; pp. 527–542. [Google Scholar] [CrossRef]
- Nelson, M.D.; Rader, F.; Tang, X.; Tavyev, J.; Nelson, S.F.; Miceli, M.C.; Elashoff, R.M.; Sweeney, H.L.; Victor, R.G. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 2014, 82, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 2011, 93, 884S–890S. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, R.M.; Wills, L.P.; Stallons, L.J.; Schnellmann, R.G. cGMP-Selective Phosphodiesterase Inhibitors Stimulate Mitochondrial Biogenesis and Promote Recovery from Acute Kidney Injury. J. Pharmacol. Exp. Ther. 2013, 347, 626–634. [Google Scholar] [CrossRef]
- Olmos, Y.; Sanchez-Gomez, F.J.; Wild, B.; Garcia-Quintans, N.; Cabezudo, S.; Lamas, S.; Monsalve, M. SirT1 Regulation of Antioxidant Genes Is Dependent on the Formation of a FoxO3a/PGC-1α Complex. Antioxid. Redox Signal. 2013, 19, 1507–1521. [Google Scholar] [CrossRef]
- Kwak, Y.-D.; Wang, R.; Li, J.J.; Zhang, Y.-W.; Xu, H.; Liao, F.-F. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol. Neurodegener. 2011, 6, 17. [Google Scholar] [CrossRef]
- Nunes, A.K.S.; Rapôso, C.; Rocha, S.W.S.; Barbosa, K.P.D.S.; Luna, R.L.D.A.; da Cruz-Höfling, M.A.; Peixoto, C.A. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res. 2015, 1627, 119–133. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Dong, Y.; Wang, S.; Liu, C.; Zou, M.-H. Identification of Nitric Oxide as an Endogenous Activator of the AMP-activated Protein Kinase in Vascular Endothelial Cells. J. Biol. Chem. 2008, 283, 27452–27461. [Google Scholar] [CrossRef]
- Wang, L.; Chopp, M.; Zhang, Z.G. PDE5 inhibitors promote recovery of peripheral neuropathy in diabetic mice. Neural Regen. Res. 2017, 12, 218–219. [Google Scholar] [CrossRef]
- Pușcașu, C.; Ungurianu, A.; Șeremet, O.C.; Andrei, C.; Mihai, D.P.; Negreș, S. The Influence of Sildenafil–Metformin Combination on Hyperalgesia and Biochemical Markers in Diabetic Neuropathy in Mice. Medicina 2023, 59, 1375. [Google Scholar] [CrossRef]
- Haider, M.; Elsherbeny, A.; Pittalà, V.; Fallica, A.N.; Alghamdi, M.A.; Greish, K. The Potential Role of Sildenafil in Cancer Management through EPR Augmentation. J. Pers. Med. 2021, 11, 585. [Google Scholar] [CrossRef] [PubMed]
- Urla, C.; Stagno, M.J.; Fuchs, J.; Warmann, S.W.; Schmid, E. Combination therapy of doxorubicin and Sildenafil inhibits the growth of pediatric rhabdomyosarcoma. J. Cancer Res. Clin. Oncol. 2022, 149, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Durrant, D.; Mitchell, C.; Mayton, E.; Hoke, N.N.; Salloum, F.N.; Park, M.A.; Qureshi, I.; Lee, R.; Dent, P.; et al. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proc. Natl. Acad. Sci. USA 2010, 107, 18202–18207. [Google Scholar] [CrossRef] [PubMed]
- FDA. Label: VIAGRA (Sildenafil Citrate) Tablets. Available online: www.fda.gov/medwatch (accessed on 7 September 2023).
- Sildenafil 25 mg Film-Coated Tablets—Summary of Product Characteristics (SmPC)—(emc). Available online: https://www.medicines.org.uk/emc/product/3172/smpc (accessed on 7 September 2023).
- Chaumais, M.-C.; Perrin, S.; Sitbon, O.; Simonneau, G.; Humbert, M.; Montani, D. Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Rezvanfar, M.A.; Rahimi, H.R.; Abdollahi, M. ADMET considerations for phosphodiesterase-5 inhibitors. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1231–1245. [Google Scholar] [CrossRef]
- Wright, P.J. Comparison of phosphodiesterase type 5 (PDE5) inhibitors. Int. J. Clin. Pract. 2006, 60, 967–975. [Google Scholar] [CrossRef]
- Revatio, P. (Sildenafil Citrate) Product Monograph. Available online: https://pdf.hres.ca/dpd_pm/00056673.PDF (accessed on 23 October 2023).
- Hyland, R.; Roe, E.G.H.; Jones, B.C.; Smith, D.A. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br. J. Clin. Pharmacol. 2001, 51, 239–248. [Google Scholar] [CrossRef]
- Corona, G.; Cucinotta, D.; Di Lorenzo, G.; Ferlin, A.; Giagulli, V.A.; Gnessi, L.; Isidori, A.M.; Maiorino, M.I.; Miserendino, P.; Murrone, A.; et al. The Italian Society of Andrology and Sexual Medicine (SIAMS), along with ten other Italian Scientific Societies, guidelines on the diagnosis and management of erectile dysfunction. J. Endocrinol. Investig. 2023, 46, 1241–1274. [Google Scholar] [CrossRef]
- Virag, R.; Zwang, G.; Dermange, H.; Legman, M. Vasculogenic Impotence: A Review of 92 Cases with 54 Surgical Operations. Vasc. Surg. 1981, 15, 9–17. [Google Scholar] [CrossRef]
- Gades, N.M.; Jacobson, D.J.; McGree, M.E.; Sauver, J.L.S.; Lieber, M.M.; Nehra, A.; Girman, C.J.; Jacobsen, S.J. Longitudinal Evaluation of Sexual Function in a Male Cohort: The Olmsted County Study of Urinary Symptoms and Health Status among Men. J. Sex. Med. 2009, 6, 2455–2466. [Google Scholar] [CrossRef]
- McCabe, M.P.; Sharlip, I.D.; Lewis, R.; Atalla, E.; Balon, R.; Fisher, A.D.; Laumann, E.; Lee, S.W.; Segraves, R.T. Incidence and Prevalence of Sexual Dysfunction in Women and Men: A Consensus Statement from the Fourth International Consultation on Sexual Medicine 2015. J. Sex. Med. 2016, 13, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Atlantis, E.; Lange, K.; Taylor, A.W.; O’Loughlin, P.; Wittert, G.A. Predictors of Sexual Dysfunction Incidence and Remission in Men. J. Sex. Med. 2014, 11, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Johannes, C.B.; Araujo, A.B.; Feldman, H.A.; Derby, C.A.; Kleinman, K.P.; McKinlay, J.B. Incidence of erectile dysfunction in men 40 to 69 years old: Longitudinal results from the Massachusetts male aging study. J. Urol. 2000, 163, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Lee, D.M.; Forti, G.; O’connor, D.B.; Maggi, M.; O’neill, T.W.; Pendleton, N.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; et al. Age-Related Changes in General and Sexual Health in Middle-Aged and Older Men: Results from the European Male Ageing Study (EMAS). J. Sex. Med. 2010, 7, 1362–1380. [Google Scholar] [CrossRef] [PubMed]
- Yafi, F.A.; Jenkins, L.; Albersen, M.; Corona, G.; Isidori, A.M.; Goldfarb, S.; Maggi, M.; Nelson, C.J.; Parish, S.; Salonia, A.; et al. Erectile dysfunction. Nat. Rev. Dis. Prim. 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.A.; Ojo, A.B.; Maimako, R.F.; Rotimi, D.; Iyobhebhe, M.; Alejolowo, O.O.; Nwonuma, C.O.; Elebiyo, T.C. Exploring the potentials of some compounds from Garcinia kola seeds towards identification of novel PDE-5 inhibitors in erectile dysfunction therapy. Andrologia 2021, 53, e14092. [Google Scholar] [CrossRef] [PubMed]
- Andersson, K. PDE5 inhibitors—Pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol. 2018, 175, 2554–2565. [Google Scholar] [CrossRef]
- Argiolas, A.; Argiolas, F.M.; Argiolas, G.; Melis, M.R. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci. 2023, 13, 802. [Google Scholar] [CrossRef]
- Boyce, E. Sildenafil citrate: A therapeutic update. Clin. Ther. 2001, 23, 2–23. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2022, 61, 2200879. [Google Scholar] [CrossRef]
- Cullivan, S.; Gaine, S.; Sitbon, O. New trends in pulmonary hypertension. Eur. Respir. Rev. 2023, 32, 220211. [Google Scholar] [CrossRef] [PubMed]
- Sastry, B.; Narasimhan, C.; Reddy, N.; Raju, B. Clinical efficacy of sildenafil in primary pulmonary hypertension: A randomized, placebo-controlled, double-blind, crossover study. J. Am. Coll. Cardiol. 2004, 43, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Rubin, L.J.; Galiè, N.; Barst, R.J.; Fleming, T.R.; Frost, A.; Engel, P.; Kramer, M.R.; Serdarevic-Pehar, M.; Layton, G.R.; et al. Long-term sildenafil added to intravenous epoprostenol in patients with pulmonary arterial hypertension. J. Heart Lung Transplant. 2014, 33, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Ivy, D.D.; Gaitan, G.; Szatmari, A.; Rudzinski, A.; Garcia, A.E.; Sastry, B.; Pulido, T.; Layton, G.R.; Serdarevic-Pehar, M.; et al. A Randomized, Double-Blind, Placebo-Controlled, Dose-Ranging Study of Oral Sildenafil Citrate in Treatment-Naive Children with Pulmonary Arterial Hypertension. Circulation 2012, 125, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Beghetti, M.; Pulido, T.; Layton, G.; Konourina, I.; Zhang, M.; Ivy, D.D. STARTS-2. Circulation 2014, 129, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Mixcoatl-Zecuatl, T.; Aguirre-Bañuelos, P.; Granados-Soto, V. Sildenafil produces antinociception and increases morphine antinociception in the formalin test. Eur. J. Pharmacol. 2000, 400, 81–87. [Google Scholar] [CrossRef]
- Ferreira, S.H.; Nakamura, M. I—Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins 1979, 18, 179–190. [Google Scholar] [CrossRef]
- Huang, L.J.; Yoon, M.H.; Choi, J.I.; Kim, W.M.; Lee, H.G.; Kim, Y.O. Effect of Sildenafil on Neuropathic Pain and Hemodynamics in Rats. Yonsei Med. J. 2010, 51, 82–87. [Google Scholar] [CrossRef]
- Swiecicka, A. The efficacy of PDE5 inhibitors in diabetic patients. Andrology 2022, 11, 245–256. [Google Scholar] [CrossRef]
- Wang, L.; Chopp, M.; Szalad, A.; Jia, L.; Lu, X.; Lu, M.; Zhang, L.; Zhang, Y.; Zhang, R.; Zhang, Z.G. Sildenafil Ameliorates Long Term Peripheral Neuropathy in Type II Diabetic Mice. PLoS ONE 2015, 10, e0118134. [Google Scholar] [CrossRef]
- Pușcașu, C. Investigation of antihyperalgesic effects of different doses of sildenafil and metformin in alloxan-induced diabetic neuropathy in mice. Farmacia 2023, 71, 598–611. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Velázquez-Zamora, D.A.; Urquiza-Marín, H.; Granados-Soto, V. Analysis of the mechanism underlying the peripheral antinociceptive action of sildenafil in the formalin test. Eur. J. Pharmacol. 2005, 512, 121–127. [Google Scholar] [CrossRef]
- Jain, N.K.; Patil, C.; Singh, A.; Kulkarni, S.K. Sildenafil-induced peripheral analgesia and activation of the nitric oxide–cyclic GMP pathway. Brain Res. 2001, 909, 170–178. [Google Scholar] [CrossRef]
- Patil, C.S.; Singh, V.P.; Singh, S.; Kulkarni, S.K. Modulatory Effect of the PDE-5 Inhibitor Sildenafil in Diabetic Neuropathy. Pharmacology 2004, 72, 190–195. [Google Scholar] [CrossRef]
- Schäfer, A.; Fraccarollo, D.; Pförtsch, S.; Flierl, U.; Vogt, C.; Pfrang, J.; Kobsar, A.; Renné, T.; Eigenthaler, M.; Ertl, G.; et al. Improvement of vascular function by acute and chronic treatment with the PDE-5 inhibitor sildenafil in experimental diabetes mellitus. Br. J. Pharmacol. 2008, 153, 886–893. [Google Scholar] [CrossRef]
- Domek-Łopacińska, K.U.; Strosznajder, J.B. Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer’s Disease. Mol. Neurobiol. 2010, 41, 129–137. [Google Scholar] [CrossRef]
- Caretti, A.; Bianciardi, P.; Ronchi, R.; Fantacci, M.; Guazzi, M.; Samaja, M. Phosphodiesterase-5 Inhibition Abolishes Neuron Apoptosis Induced by Chronic Hypoxia Independently of Hypoxia-Inducible Factor-1α Signaling. Exp. Biol. Med. 2008, 233, 1222–1230. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.G.; Zhang, R.L.; Chopp, M. Activation of the PI3-K/Akt Pathway Mediates cGMP Enhanced-Neurogenesis in the Adult Progenitor Cells Derived from the Subventricular Zone. J. Cereb. Blood Flow Metab. 2005, 25, 1150–1158. [Google Scholar] [CrossRef]
- Ferreira, E.D.F.; Romanini, C.V.; Cypriano, P.E.; de Oliveira, R.M.W.; Milani, H. Sildenafil provides sustained neuroprotection in the absence of learning recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats. Brain Res. Bull. 2013, 90, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Zhang, L.; Zhang, Z.; Tsang, W.; Lu, M.; Zhang, L.; Chopp, M. Sildenafil (Viagra) Induces Neurogenesis and Promotes Functional Recovery After Stroke in Rats. Stroke 2002, 33, 2675–2680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.L.; Chopp, M.; Roberts, C.; Wei, M.; Wang, X.; Liu, X.; Lu, M.; Zhang, Z.G. Sildenafil Enhances Neurogenesis and Oligodendrogenesis in Ischemic Brain of Middle-Aged Mouse. PLoS ONE 2012, 7, e48141. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Kolterman, O.; Rinella, M.; Vuppalanchi, R.; Flores, O.; Barritt, A.S.; Siddiqui, M.; Chalasani, N. Randomized Controlled Trial of a Leucine-Metformin-Sildenafil Combination (NS-0200) on Weight and Metabolic Parameters. Obesity 2018, 27, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Aversa, A.; Vitale, C.; Volterrani, M.; Fabbri, A.; Spera, G.; Fini, M.; Rosano, G.M.C. Chronic administration of Sildenafil improves markers of endothelial function in men with Type 2 diabetes. Diabet. Med. 2008, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Sanders, O. Sildenafil for the Treatment of Alzheimer’s Disease: A Systematic Review. J. Alzheimer’s Dis. Rep. 2020, 4, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Ala, M.; Jafari, R.M.; Dehpour, A.R. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: Thinking about new indications. Fundam. Clin. Pharmacol. 2020, 35, 235–259. [Google Scholar] [CrossRef]
- Son, Y.; Kim, K.; Cho, H.-R. Sildenafil protects neuronal cells from mitochondrial toxicity induced by β-amyloid peptide via ATP-sensitive K+ channels. Biochem. Biophys. Res. Commun. 2018, 500, 504–510. [Google Scholar] [CrossRef]
- Sung, S.K.; Woo, J.S.; Kim, Y.H.; Son, D.W.; Lee, S.W.; Song, G.S. Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells. J. Korean Neurosurg. Soc. 2016, 59, 259–268. [Google Scholar] [CrossRef]
- Puzzo, D.; Staniszewski, A.; Deng, S.X.; Privitera, L.; Leznik, E.; Liu, S.; Zhang, H.; Feng, Y.; Palmeri, A.; Landry, D.W.; et al. Phosphodiesterase 5 Inhibition Improves Synaptic Function, Memory, and Amyloid- Load in an Alzheimer’s Disease Mouse Model. J. Neurosci. 2009, 29, 8075–8086. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, J.; Zhao, X.; Chen, Z.; Wang, G.; Liu, A.; Wang, Q.; Zhou, W.; Xu, Y.; Wang, C. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav. Brain Res. 2013, 250, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, J.-Y.; Xue, X.; Dong, Y.-X.; Liu, Y.; Miao, F.-R.; Wang, Y.-F.; Xue, H.; Wu, C.-F. A novel phosphodiesterase-5 Inhibitor: Yonkenafil modulates neurogenesis, gliosis to improve cognitive function and ameliorates amyloid burden in an APP/PS1 transgenic mice model. Mech. Ageing Dev. 2015, 150, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Gong, Q.-H.; Xu, Y.-S.; Wang, L.-N.; Jin, H.; Li, F.; Li, L.-S.; Ma, Y.-M.; Shi, J.-S. Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling. Int. J. Neuropsychopharmacol. 2014, 17, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Devan, B.D.; Sierramercadojr, D.; Jimenez, M.; Bowker, J.L.; Duffy, K.B.; Spangler, E.L.; Ingram, D.K. Phosphodiesterase inhibition by sildenafil citrate attenuates the learning impairment induced by blockade of cholinergic muscarinic receptors in rats. Pharmacol. Biochem. Behav. 2004, 79, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado-Tejedor, M.; Hervias, I.; Ricobaraza, A.; Puerta, E.; Pérez-Roldán, J.; García-Barroso, C.; Franco, R.; Aguirre, N.; García-Osta, A. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer’s disease. Br. J. Pharmacol. 2011, 164, 2029–2041. [Google Scholar] [CrossRef]
- García-Barroso, C.; Ricobaraza, A.; Pascual-Lucas, M.; Unceta, N.; Rico, A.J.; Goicolea, M.A.; Sallés, J.; Lanciego, J.L.; Oyarzabal, J.; Franco, R.; et al. Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology 2013, 64, 114–123. [Google Scholar] [CrossRef]
- Puzzo, D.; Loreto, C.; Giunta, S.; Musumeci, G.; Frasca, G.; Podda, M.V.; Arancio, O.; Palmeri, A. Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol. Aging 2014, 35, 520–531. [Google Scholar] [CrossRef]
- Devan, B.D.; Pistell, P.J.; Duffy, K.B.; Kelley-Bell, B.; Spangler, E.L.; Ingram, D.K. Phosphodiesterase inhibition facilitates cognitive restoration in rodent models of age-related memory decline. NeuroRehabilitation 2014, 34, 101–111. [Google Scholar] [CrossRef]
- Orejana, L.; Barros-Miñones, L.; Jordan, J.; Cedazo-Minguez, A.; Tordera, R.M.; Aguirre, N.; Puerta, E. Sildenafil Decreases BACE1 and Cathepsin B Levels and Reduces APP Amyloidogenic Processing in the SAMP8 Mouse. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 70, 675–685. [Google Scholar] [CrossRef]
- Orejana, L.; Barros-Miñones, L.; Aguirre, N.; Puerta, E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp. Gerontol. 2013, 48, 565–571. [Google Scholar] [CrossRef]
- Ibrahim, M.; Haleem, M.; AbdelWahab, S.; Abdel-Aziz, A. Sildenafil ameliorates Alzheimer disease via the modulation of vascular endothelial growth factor and vascular cell adhesion molecule-1 in rats. Hum. Exp. Toxicol. 2020, 40, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Samudra, N.; Motes, M.; Lu, H.; Sheng, M.; Diaz-Arrastia, R.; Devous, M.; Hart, J.; Womack, K.B. A Pilot Study of Changes in Medial Temporal Lobe Fractional Amplitude of Low Frequency Fluctuations after Sildenafil Administration in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 70, 163–170. [Google Scholar] [CrossRef]
- Sheng, M.; Lu, H.; Liu, P.; Li, Y.; Ravi, H.; Peng, S.-L.; Diaz-Arrastia, R.; Devous, M.D.; Womack, K.B. Sildenafil Improves Vascular and Metabolic Function in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 60, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Tucker, A.; Pearson, R.; Cooke, E.; Benjamin, N. Effect of nitric-oxide-generating system on microcirculatory blood flow in skin of patients with severe Raynaud’s syndrome: A randomised trial. Lancet 1999, 354, 1670–1675. [Google Scholar] [CrossRef]
- Anderson, M.E.; Moore, T.L.; Hollis, S.; Jayson, M.I.V.; King, T.A.; Herrick, A.L.; Anderson, M.E.; Moore, T.L.; Hollis, S.; Jayson, M.I.V.; et al. Digital vascular response to topical glyceryl trinitrate, as measured by laser Doppler imaging, in primary Raynaud’s phenomenon and systemic sclerosis. Rheumatology 2002, 41, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Placzek, M.; Degitz, K.; Schmidt, H.; Plewig, G. Acne fulminans in late-onset congenital adrenal hyperplasia. Lancet 1999, 354, 739–740. [Google Scholar] [CrossRef] [PubMed]
- Farsaie, S.; Khalili, H.; Karimzadeh, I.; Dashti-Khavidaki, S. An Old Drug for a New Application: Potential Benefits of Sildenafil in Wound Healing. J. Pharm. Pharm. Sci. 2012, 15, 483–498. [Google Scholar] [CrossRef]
- Fries, R.; Shariat, K.; von Wilmowsky, H.; Böhm, M. Sildenafil in the Treatment of Raynaud’s Phenomenon Resistant to Vasodilatory Therapy. Circulation 2005, 112, 2980–2985. [Google Scholar] [CrossRef]
- Herrick, A.L.; Hoogen, F.V.D.; Gabrielli, A.; Tamimi, N.; Reid, C.; O’Connell, D.; Vázquez-Abad, M.-D.; Denton, C.P. Modified-release sildenafil reduces Raynaud’s phenomenon attack frequency in limited cutaneous systemic sclerosis. Arthritis Rheum. 2011, 63, 775–782. [Google Scholar] [CrossRef]
- Brueckner, C.S.; Becker, M.O.; Kroencke, T.; Huscher, D.; Scherer, H.U.; Worm, M.; Burmester, G.; Riemekasten, G. Effect of sildenafil on digital ulcers in systemic sclerosis: Analysis from a single centre pilot study. Ann. Rheum. Dis. 2009, 69, 1475–1478. [Google Scholar] [CrossRef]
- Rademacher, J.-G.; Wincup, C.; Tampe, B.; Korsten, P. Combination therapy with bosentan and sildenafil for refractory digital ulcers and Raynaud’s phenomenon in a 30-year-old woman with systemic sclerosis: Case report and literature review. J. Scleroderma Relat. Disord. 2019, 5, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.; Silver, R. Oral sildenafil for the treatment of Raynaud’s phenomenon and digital ulcers secondary to systemic sclerosis. Ann. Rheum. Dis. 2005, 64, 1387. [Google Scholar] [CrossRef] [PubMed]
- Hachulla, E.; Hatron, P.-Y.; Carpentier, P.; Agard, C.; Chatelus, E.; Jego, P.; Mouthon, L.; Queyrel, V.; Fauchais, A.-L.; Michon-Pasturel, U.; et al. Efficacy of sildenafil on ischaemic digital ulcer healing in systemic sclerosis: The placebo-controlled SEDUCE study. Ann. Rheum. Dis. 2015, 75, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Bellando-Randone, S.; Lepri, G.; Bruni, C.; Blagojevic, J.; Radicati, A.; Cometi, L.; De Paulis, A.; Matucci-Cerinic, M.; Guiducci, S. Combination therapy with Bosentan and Sildenafil improves Raynaud’s phenomenon and fosters the recovery of microvascular involvement in systemic sclerosis. Clin. Rheumatol. 2015, 35, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Kamata, Y.; Kamimura, T.; Iwamoto, M.; Minota, S. Comparable effects of sildenafil citrate and alprostadil on severe Raynaud’s phenomenon in a patient with systemic sclerosis. Clin. Exp. Dermatol. 2005, 30, 451. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, S.; Diet, F.; Karasch, T.; Weihrauch, J.; Wassermann, K.; Erdmann, E. Sildenafil improved pulmonary hypertension and peripheral blood flow in a patient with scleroderma-associated lung fibrosis and the raynaud phenomenon. Ann. Intern. Med. 2003, 139, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Roustit, M.; Hellmann, M.; Cracowski, C.; Blaise, S.; Cracowski, J.L. Sildenafil increases digital skin blood flow during all phases of local cooling in primary Raynaud’s phenomenon. Clin. Pharmacol. Ther. 2012, 91, 813–819. [Google Scholar] [CrossRef]
- Rosenkranz, S.; Caglayan, E.; Diet, F.; Karasch, T.; Weihrauch, J.; Wassermann, K.; Erdmann, E. Langzeiteffekte von Sildenafil bei Sklerodermie-assoziierter pulmonaler Hypertonie und Raynaud-Syndrom. Dtsch. Med. Wochenschr. 2004, 129, 1736–1740. [Google Scholar] [CrossRef]
- Cordova, L.Z.; Schrale, R.; Castley, A. Sildenafil Therapy in Patients with Digital Burns and Raynaud’s Syndrome. J. Burn. Care Res. 2018, 40, 136–139. [Google Scholar] [CrossRef]
- Wortsman, X.; Del Barrio-Díaz, P.; Meza-Romero, R.; Poehls-Risco, C.; Vera-Kellet, C. Nifedipine cream versus sildenafil cream for patients with secondary Raynaud phenomenon: A randomized, double-blind, controlled pilot study. J. Am. Acad. Dermatol. 2018, 78, 189–190. [Google Scholar] [CrossRef]
- Andrigueti, F.V.; Ebbing, P.C.C.; Arismendi, M.I.; Kayser, C. Evaluation of the effect of sildenafil on the microvascular blood flow in patients with systemic sclerosis: A randomised, double-blind, placebo-controlled study. Clin. Exp. Rheumatol. 2017, 35 (Suppl. S1), 151–158. Available online: http://www.ncbi.nlm.nih.gov/pubmed/28281457 (accessed on 23 October 2023). [PubMed]
- McDermott-Scales, L.; Cowman, S.; Gethin, G. Prevalence of wounds in a community care setting in Ireland. J. Wound Care 2009, 18, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Bours, G.J.; Halfens, R.J.; Abu-Saad, H.H.; Grol, R.T. Prevalence, prevention, and treatment of pressure ulcers: Descriptive study in 89 institutions in The Netherlands. Res. Nurs. Health 2002, 25, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Taş, A.; Atasoy, N.; Özbek, H.; Aslan, L.; Yüksel, H.; Ceylan, E.; Dagoglu, G. Effects of Sildenafil Citrate (Viagra) in the Early Phase of Healing Process in Open Wounds Induced Experimentally in Dogs. Acta Vet. Brno 2003, 72, 273–277. [Google Scholar] [CrossRef]
- Weller, R. Nitric oxide donors and the skin: Useful therapeutic agents? Clin. Sci. 2003, 105, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Edington, H.D.; McClosky, C.; Tzeng, E.; Lizonova, A.; Kovesdi, I.; Steed, D.L.; Billiar, T.R. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J. Clin. Investig. 1998, 101, 967–971. [Google Scholar] [CrossRef]
- Lee, P.C.; Salyapongse, A.N.; Bragdon, G.A.; Shears, L.L.; Watkins, S.C.; Edington, H.D.J.; Billiar, T.R. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol. Circ. Physiol. 1999, 277, H1600–H1608. [Google Scholar] [CrossRef]
- Kaya, B.; Çerkez, C.; Işılgan, S.E.; Göktürk, H.; Yığman, Z.; Serel, S.; Can, B.; Ergün, H. Comparison of the effects of systemic sildenafil, tadalafil, and vardenafil treatments on skin flap survival in rats. J. Plast. Surg. Hand Surg. 2015, 49, 358–362. [Google Scholar] [CrossRef]
- Hart, K.; Baur, D.; Hodam, J.; Lesoon-Wood, L.; Parham, M.; Keith, K.; Vazquez, R.; Ager, E.; Pizarro, J. Short- and Long-Term Effects of Sildenafil on Skin Flap Survival in Rats. Laryngoscope 2006, 116, 522–528. [Google Scholar] [CrossRef]
- Souza, R.A.C.; Martinelli-Kläy, C.P.; D’acampora, A.J.; Bernardes, G.J.S.; Sgrott, S.M.; Souza, L.A.C.; Lombardi, T.; Sudbrack, T.R. Effects of sildenafil and tadalafil on skin flap viability. Arch. Dermatol. Res. 2021, 314, 151–157. [Google Scholar] [CrossRef]
- Abu Dayyih, W.; Abu Rayyan, W.; Al-Matubsi, H.Y. Impact of sildenafil-containing ointment on wound healing in healthy and experimental diabetic rats. Acta Diabetol. 2020, 57, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Derici, H.; Kamer, E.; Ünalp, H.R.; Diniz, G.; Bozdag, A.D.; Tansug, T.; Ortac, R.; Erbil, Y. Effect of sildenafil on wound healing: An experimental study. Langenbeck’s Arch. Surg. 2009, 395, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, K.; Oruç, M.; Kankaya, Y.; Ulusoy, M.G.; Koçer, U.; Kankaya, D.; Gürsoy, R.N.; Çevik, Ö.; Öğüş, E.; Fidanci, V. Effect of topically applied sildenafil citrate on wound healing: Experimental study. Biomol. Biomed. 2014, 14, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.B.; Hafez, M.H.; El-Sayed, Y.S. Platelet-rich plasma and/or sildenafil topical applications accelerate and better repair wound healing in rats through regulation of proinflammatory cytokines and collagen/TGF-β1 pathway. Environ. Sci. Pollut. Res. 2020, 27, 40757–40768. [Google Scholar] [CrossRef]
- Cakmak, E.; Yesilada, A.K.; Sevim, K.Z.; Sumer, O.; Tatlidede, H.S.; Sakiz, D. Effect of sildenafil citrate on secondary healing in full thickness skin defects in experiment. Bratisl. Med. J. 2014, 115, 267–271. [Google Scholar] [CrossRef]
- Kulshrestha, S.; Chawla, R.; Alam, T.; Adhikari, J.; Basu, M. Efficacy and dermal toxicity analysis of Sildenafil citrate based topical hydrogel formulation against traumatic wounds. Biomed. Pharmacother. 2019, 112, 108571. [Google Scholar] [CrossRef]
- Tas, A.; Karasu, A.; Comba, B.; Aksu, D.; Duz, E.; Tanritanir, P. Effects of Sildenafil Citrate on the Hematological Parameters in the Early Phase of Wound Healing in Diabetic Rats. Asian J. Anim. Vet. Adv. 2011, 6, 290–296. [Google Scholar] [CrossRef]
- Barakat, W.; Anwar, H.; Fouad, M. Sildenafil and Vinpocetine Promote Wound Healing in Diabetic Rats. J. Adv. Pharm. Res. 2020, 5, 221. [Google Scholar] [CrossRef]
- Sorour, O.A.; Nassar, E.; Sarhan, N.; El-Anwar, N.; ElKholy, R.A.; Tahoon, D.M.; Sweilam, A.; Tadros, D. Chronic sildenafil citrate use decreases retinal vascular endothelial growth factor expression in diabetic rats: A pilot study. Int. J. Retin. Vitr. 2023, 9, 42. [Google Scholar] [CrossRef]
- Arora, S.; Surakiatchanukul, T.; Arora, T.; Cagini, C.; Lupidi, M.; Chhablani, J. Sildenafil in ophthalmology: An update. Surv. Ophthalmol. 2021, 67, 463–487. [Google Scholar] [CrossRef]
- Koksal, M.; Ozdemir, H.; Kargi, S.; Yesilli, C.; Tomaç, S.; Mahmutyazicioglu, K.; Mungan, A. The effects of sildenafil on ocular blood flow. Acta Ophthalmol. Scand. 2005, 83, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Foresta, C.; Caretta, N.; Zuccarello, D.; Poletti, A.; Biagioli, A.; Caretti, L.; Galan, A. Expression of the PDE5 enzyme on human retinal tissue: New aspects of PDE5 inhibitors ocular side effects. Eye 2007, 22, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Filippi, L.; Bagnoli, P.; La Marca, G.; Cristofori, G.; Raffaeli, G.; Padrini, L.; Araimo, G.; Fumagalli, M.; Groppo, M.; et al. The pathophysiology of retinopathy of prematurity: An update of previous and recent knowledge. Acta Ophthalmol. 2014, 92, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz, N.F.S.; Polizelli, M.U.; Cezar, L.M.; Cardoso, E.B.; Penha, F.; Farah, M.E.; Rodrigues, E.B.; Novais, E.A. Effects of phosphodiesterase type 5 inhibitors on choroid and ocular vasculature: A literature review. Int. J. Retin. Vitr. 2020, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, A.A.; Chou, J.C.; Kim, G.A.; Rollins, S.D.; Taylor, J.M.; Farrow, K.N. Sildenafil Attenuates Vaso-Obliteration and Neovascularization in a Mouse Model of Retinopathy of Prematurity. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Peresypkina, A.; Belgorod State National Research University; Gubareva, V.; Levkova, E.; Shabelnikova, A. Correction of Retinal Angiopathy of Hypertensive Type by Minoxidil, Sildenafil in Experiment. Res. Result Pharmacol. Clin. Pharmacol. 2016, 2, 34–44. [Google Scholar] [CrossRef]
- Bélanger, A.; Li, S.; Poon, A.; Jung, S.; Balian, P.; Khoja, Z.; Polosa, A.; Lachapelle, P.; Wintermark, P. AB014. What is the role of sildenafil in repairing retinopathy of prematurity? Ann. Eye Sci. 2018, 3, AB014. [Google Scholar] [CrossRef]
- Ding, P.-R.; Tiwari, A.K.; Ohnuma, S.; Lee, J.W.K.K.; An, X.; Dai, C.-L.; Lu, Q.-S.; Singh, S.; Yang, D.-H.; Talele, T.T.; et al. The Phosphodiesterase-5 Inhibitor Vardenafil Is a Potent Inhibitor of ABCB1/P-Glycoprotein Transporter. PLoS ONE 2011, 6, e19329. [Google Scholar] [CrossRef]
- Piazza, G.A.; Thompson, W.J.; Pamukcu, R.; Alila, H.W.; Whitehead, C.M.; Liu, L.; Fetter, J.R.; E Gresh, W.; Klein-Szanto, A.J.; Farnell, D.R.; et al. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res. 2001, 61, 3961–3968. Available online: http://www.ncbi.nlm.nih.gov/pubmed/11358813 (accessed on 1 November 2023).
- Pusztai, L.; Zhen, J.H.; Arun, B.; Rivera, E.; Whitehead, C.; Thompson, W.J.; Nealy, K.M.; Gibbs, A.; Symmans, W.F.; Esteva, F.J.; et al. Phase I and II Study of Exisulind in Combination with Capecitabine in Patients with Metastatic Breast Cancer. J. Clin. Oncol. 2003, 21, 3454–3461. [Google Scholar] [CrossRef]
- Shi, Z.; Tiwari, A.K.; Patel, A.S.; Fu, L.-W.; Chen, Z.-S. Roles of Sildenafil in Enhancing Drug Sensitivity in Cancer. Cancer Res. 2011, 71, 3735–3738. [Google Scholar] [CrossRef] [PubMed]
- Jedlitschky, G.; Burchell, B.; Keppler, D. The Multidrug Resistance Protein 5 Functions as an ATP-dependent Export Pump for Cyclic Nucleotides. J. Biol. Chem. 2000, 275, 30069–30074. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-S.; Lee, K.; Kruh, G.D. Transport of Cyclic Nucleotides and Estradiol 17-β-d-Glucuronide by Multidrug Resistance Protein 4. J. Biol. Chem. 2001, 276, 33747–33754. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Tiwari, A.K.; Shukla, S.; Robey, R.W.; Singh, S.; Kim, I.-W.; Bates, S.E.; Peng, X.; Abraham, I.; Ambudkar, S.V.; et al. Sildenafil Reverses ABCB1- and ABCG2-Mediated Chemotherapeutic Drug Resistance. Cancer Res. 2011, 71, 3029–3041. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, H.; Ghorbani, M.; Kahroba, H.; Mahmoodzadeh, F.; Emameh, R.Z.; Taheri, R.A. Arginyl-glycyl-aspartic acid (RGD) containing nanostructured lipid carrier co-loaded with doxorubicin and sildenafil citrate enhanced anti-cancer effects and overcomes drug resistance. Process. Biochem. 2019, 84, 172–179. [Google Scholar] [CrossRef]
- Greish, K.; Fateel, M.; Abdelghany, S.; Rachel, N.; Alimoradi, H.; Bakhiet, M.; Alsaie, A. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer. J. Drug Target. 2017, 26, 610–615. [Google Scholar] [CrossRef]
- El-Naa, M.M.; Othman, M.; Younes, S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des. Dev. Ther. 2016, 10, 3661–3672. [Google Scholar] [CrossRef]
- Jan, S.; Reddy, G.L.; Wani, R.; Syed, M.; Dar, M.J.; Sawant, S.D.; Vishwakarma, R.A.; Syed, S.H. Differentiation of human neuroblastoma cell line IMR-32 by sildenafil and its newly discovered analogue IS00384. Cell. Signal. 2019, 65, 109425. [Google Scholar] [CrossRef]
- Marques, J.G.; Gaspar, V.M.; Markl, D.; Costa, E.C.; Gallardo, E.; Correia, I.J. Co-delivery of Sildenafil (Viagra®) and Crizotinib for Synergistic and Improved Anti-tumoral Therapy. Pharm. Res. 2014, 31, 2516–2528. [Google Scholar] [CrossRef]
- Mei, X.-L.; Yang, Y.; Zhang, Y.-J.; Li, Y.; Zhao, J.-M.; Qiu, J.-G.; Zhang, W.-J.; Jiang, Q.-W.; Xue, Y.-Q.; Zheng, D.-W.; et al. Sildenafil inhibits the growth of human colorectal cancer in vitro and in vivo. Am. J. Cancer Res. 2015, 5, 3311–3324. [Google Scholar]
- Hsu, J.-L.; Leu, W.-J.; Hsu, L.-C.; Ho, C.-H.; Liu, S.-P.; Guh, J.-H. Phosphodiesterase Type 5 Inhibitors Synergize Vincristine in Killing Castration-Resistant Prostate Cancer Through Amplifying Mitotic Arrest Signaling. Front. Oncol. 2020, 10, 1274. [Google Scholar] [CrossRef] [PubMed]
- Morsi, D.S.; Barnawi, I.O.; Ibrahim, H.M.; El-Morsy, A.M.; El Hassab, M.A.; El Latif, H.M.A. Immunomodulatory, apoptotic and anti-proliferative potentials of sildenafil in Ehrlich ascites carcinoma murine model: In vivo and in silico insights. Int. Immunopharmacol. 2023, 119, 110135. [Google Scholar] [CrossRef] [PubMed]
- Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; et al. Sildenafil Suppresses Inflammation-Driven Colorectal Cancer in Mice. Cancer Prev. Res. 2017, 10, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Sevko, A.; Ramacher, M.; Bazhin, A.V.; Falk, C.S.; Osen, W.; Borrello, I.; Kato, M.; Schadendorf, D.; Baniyash, M.; et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl. Acad. Sci. USA 2011, 108, 17111–17116. [Google Scholar] [CrossRef] [PubMed]
- Chavez, A.H.; Coffield, K.S.; Rajab, M.H.; Jo, C. Incidence rate of prostate cancer in men treated for erectile dysfunction with phosphodiesterase type 5 inhibitors: Retrospective analysis. Asian J. Androl. 2013, 15, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Danial, C.; Tichy, A.L.; Tariq, U.; Swetman, G.L.; Khuu, P.; Leung, T.H.; Benjamin, L.; Teng, J.; Vasanawala, S.S.; Lane, A.T. An open-label study to evaluate sildenafil for the treatment of lymphatic malformations. J. Am. Acad. Dermatol. 2014, 70, 1050–1057. [Google Scholar] [CrossRef]
- Poklepovic, A.; Qu, Y.; Dickinson, M.; Kontos, M.C.; Kmieciak, M.; Schultz, E.; Bandopadhyay, D.; Deng, X.; Kukreja, R.C. Randomized study of doxorubicin-based chemotherapy regimens, with and without sildenafil, with analysis of intermediate cardiac markers. Cardio-Oncology 2018, 4, 7. [Google Scholar] [CrossRef]
- Study Details|Sorafenib, Valproic Acid, and Sildenafil in Treating Patients wth Recurrent High-Grade Glioma|ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT01817751?cond=Glioblastoma&intr=sildenafil&rank=1 (accessed on 2 November 2023).
- Socała, K.; Nieoczym, D.; Pieróg, M.; Szuster-Ciesielska, A.; Wyska, E.; Wlaź, P. Antidepressant-like activity of sildenafil following acute and subchronic treatment in the forced swim test in mice: Effects of restraint stress and monoamine depletion. Metab. Brain Dis. 2016, 31, 1095–1104. [Google Scholar] [CrossRef]
- Solak, Y.; Atalay, H.; Kan, S.; Kaynar, M.; Bodur, S.; Yeksan, M.; Turk, S. Effects of sildenafil and vardenafil treatments on sleep quality and depression in hemodialysis patients with erectile dysfunction. Int. J. Impot. Res. 2011, 23, 27–31. [Google Scholar] [CrossRef]
- Kennedy, S.H.; Dugré, H.; Defoy, I. A multicenter, double-blind, placebo-controlled study of sildenafil citrate in Canadian men with erectile dysfunction and untreated symptoms of depression, in the absence of major depressive disorder. Int. Clin. Psychopharmacol. 2011, 26, 151–158. [Google Scholar] [CrossRef]
- Bonierbale, M.; Tignol, J. The ELIXIR study: Evaluation of sexual dysfunction in 4557 depressed patients in France. Curr. Med. Res. Opin. 2003, 19, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Angst, J. Sexual problems in healthy and depressed persons. Int. Clin. Psychopharmacol. 1998, 13, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.J.; Kennedy, S.H.; Ravindran, L.N.; Giacobbe, P.; Eisfeld, B.S.; Mancini, D.; McIntyre, R.S. The Relationship between Testosterone and Sexual Function in Depressed and Healthy Men. J. Sex. Med. 2010, 7, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Raffaele, R. Efficacy and Safety of Fixed-Dose Oral Sildenafil in the Treatment of Sexual Dysfunction in Depressed Patients with Idiopathic Parkinson’s Disease. Eur. Urol. 2002, 41, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Dadomo, H.; Ponzi, D.; Nicolini, Y.; Vignali, A.; Ablondi, F.; Ceresini, G.; Maggio, M.; Palanza, P.; Govoni, P.; Volpi, R.; et al. Behavioral and hormonal effects of prolonged Sildenafil treatment in a mouse model of chronic social stress. Behav. Brain Res. 2020, 392, 112707. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, H.; Matsuzaki, M.; Han, X.-J.; Nishiki, T.-I.; Ohmori, I.; Michiue, H.; Matsui, H.; Tomizawa, K. Antidepressant-like effect of sildenafil through oxytocin-dependent cyclic AMP response element-binding protein phosphorylation. Neuroscience 2012, 200, 13–18. [Google Scholar] [CrossRef]
- Tomaz, V.; Cordeiro, R.; Costa, A.; de Lucena, D.; Júnior, H.N.; de Sousa, F.; Vasconcelos, S.; Vale, M.; Quevedo, J.; Macêdo, D. Antidepressant-like effect of nitric oxide synthase inhibitors and sildenafil against lipopolysaccharide-induced depressive-like behavior in mice. Neuroscience 2014, 268, 236–246. [Google Scholar] [CrossRef]
- Brink, C.B.; Clapton, J.D.; Eagar, B.E.; Harvey, B.H. Appearance of antidepressant-like effect by sildenafil in rats after central muscarinic receptor blockade: Evidence from behavioural and neuro-receptor studies. J. Neural Transm. 2007, 115, 117–125. [Google Scholar] [CrossRef]
- Seidman, S.N.; Roose, S.P.; Menza, M.A.; Shabsigh, R.; Rosen, R.C. Treatment of Erectile Dysfunction in Men with Depressive Symptoms: Results of a Placebo-Controlled Trial with Sildenafil Citrate. Am. J. Psychiatry 2001, 158, 1623–1630. [Google Scholar] [CrossRef]
- Müller, M.J.; Benkert, O. Lower self-reported depression in patients with erectile dysfunction after treatment with sildenafil. J. Affect. Disord. 2001, 66, 255–261. [Google Scholar] [CrossRef]
- Afsar, B.; Ortiz, A.; Covic, A.; Gaipov, A.; Esen, T.; Goldsmith, D.; Kanbay, M. Phosphodiesterase type 5 inhibitors and kidney disease. Int. Urol. Nephrol. 2015, 47, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, G.; Zisis, I.-E.; Docea, A.O.; Tsarouhas, K.; Fragkiadoulaki, I.; Mavridis, C.; Karavitakis, M.; Stratakis, S.; Stylianou, K.; Tsitsimpikou, C.; et al. Current Concepts on the Reno-Protective Effects of Phosphodiesterase 5 Inhibitors in Acute Kidney Injury: Systematic Search and Review. J. Clin. Med. 2020, 9, 1284. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Zhang, S.; Su, X.; Qiu, G.; Wu, Z. Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am. J. Transl. Res. 2015, 7, 2105–2114. Available online: http://www.ncbi.nlm.nih.gov/pubmed/26692955 (accessed on 15 November 2023). [PubMed]
- Choi, D.E.; Jeong, J.Y.; Lim, B.J.; Chung, S.; Chang, Y.K.; Lee, S.J.; Na, K.R.; Kim, S.Y.; Shin, Y.T.; Lee, K.W.; et al. Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats. Am. J. Physiol. Physiol. 2009, 297, F362–F370. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-Y.; Liu, M.; Liu, Y.-Z.; Li, W.; Zhai, W.; Che, J.-P.; Yan, Y.; Wang, G.-C.; Zheng, J.-H. Preventive effect of phosphodiesterase 5 inhibitor Tadalafil on experimental post-pyelonephritic renal injury in rats. J. Surg. Res. 2013, 186, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Hosgood, S.A.; Randle, L.V.; Patel, M.; Watson, C.J.; Bradley, J.A.; Nicholson, M.L. Sildenafil Citrate in a Donation After Circulatory Death Experimental Model of Renal Ischemia-Reperfusion Injury. Transplantation 2014, 98, 612–617. [Google Scholar] [CrossRef]
- Yamanaka, R.; Shindo, Y.; Hotta, K.; Suzuki, K.; Oka, K. NO/cGMP/PKG signaling pathway induces magnesium release mediated by mitoKATP channel opening in rat hippocampal neurons. FEBS Lett. 2013, 587, 2643–2648. [Google Scholar] [CrossRef]
- El-Azab, M.F.; Al-Karmalawy, A.A.; Antar, S.A.; Hanna, P.A.; Tawfik, K.M.; Hazem, R.M. A novel role of Nano selenium and sildenafil on streptozotocin-induced diabetic nephropathy in rats by modulation of inflammatory, oxidative, and apoptotic pathways. Life Sci. 2022, 303, 120691. [Google Scholar] [CrossRef]
- Mehanna, O.M.; El Askary, A.; Al-Shehri, S.; El-Esawy, B. Effect of phosphodiesterase inhibitors on renal functions and oxidant/antioxidant parameters in streptozocin-induced diabetic rats. Arch. Physiol. Biochem. 2017, 124, 424–429. [Google Scholar] [CrossRef]
- Webb, D.J.; Vachiery, J.-L.; Hwang, L.-J.; Maurey, J.O. Sildenafil improves renal function in patients with pulmonary arterial hypertension. Br. J. Clin. Pharmacol. 2015, 80, 235–241. [Google Scholar] [CrossRef]
- Grover-Páez, F.; Rivera, G.V.; Ortíz, R.G. Sildenafil citrate diminishes microalbuminuria and the percentage of A1c in male patients with type 2 diabetes. Diabetes Res. Clin. Pract. 2007, 78, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Lauver, D.A.; Carey, E.G.; Bergin, I.L.; Lucchesi, B.R.; Gurm, H.S. Sildenafil Citrate for Prophylaxis of Nephropathy in an Animal Model of Contrast-Induced Acute Kidney Injury. PLoS ONE 2014, 9, e113598. [Google Scholar] [CrossRef] [PubMed]
- Iordache, A.M.; Buga, A.M.; Albulescu, D.; Vasile, R.C.; Mitrut, R.; Georgiadis, G.; Zisis, I.-E.; Mamoulakis, C.; Tsatsakis, A.; Docea, A.O.; et al. Phosphodiesterase-5 inhibitors ameliorate structural kidney damage in a rat model of contrast-induced nephropathy. Food Chem. Toxicol. 2020, 143, 111535. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.-H.; Lee, T.-W.; Ihm, C.-G.; Lee, S.-H.; Moon, J.-Y.; Lim, S.-J. Effects of Sildenafil on Oxidative and Inflammatory Injuries of the Kidney in Streptozotocin-Induced Diabetic Rats. Am. J. Nephrol. 2008, 29, 274–282. [Google Scholar] [CrossRef] [PubMed]
- El-Mahdy, N.A.; El-Sayad, M.E.-S.; El-Kadem, A.H. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed. Pharmacother. 2016, 81, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Kuno, Y.; Iyoda, M.; Shibata, T.; Hirai, Y.; Akizawa, T. Sildenafil, a phosphodiesterase type 5 inhibitor, attenuates diabetic nephropathy in non-insulin-dependent Otsuka Long-Evans Tokushima Fatty rats. Br. J. Pharmacol. 2011, 162, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, L.S.; Barboza, J.R.; Freitas, F.P.S.; Porto, M.L.; Vasquez, E.C.; Meyrelles, S.S.; Gava, A.L.; Pereira, T.M.C. Sildenafil prevents renal dysfunction in contrast media-induced nephropathy in Wistar rats. Hum. Exp. Toxicol. 2016, 35, 1194–1202. [Google Scholar] [CrossRef]
- Altintop, I.; Tatli, M.; Karakukcu, C.; Sarica, Z.S.; Yay, A.H.; Balcioglu, E.; Ozturk, A. Serum and Tissue HIF-2 Alpha Expression in CIN, N-Acetyl Cysteine, and Sildenafil-Treated Rat Models: An Experimental Study. Medicina 2018, 54, 54. [Google Scholar] [CrossRef]
- Tripathi, A.S.; Mazumder, P.M.; Chandewar, A.V. Sildenafil, a phosphodiesterase type 5 inhibitor, attenuates diabetic nephropathy in STZ-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2015, 27, 57–62. [Google Scholar] [CrossRef]
- Ali, B.H.; Al Za’Abi, M.; Adham, S.A.; Al Suleimani, Y.; Karaca, T.; Manoj, P.; Al Kalbani, J.; Yasin, J.; Nemmar, A. The effect of sildenafil on rats with adenine—Induced chronic kidney disease. Biomed. Pharmacother. 2018, 108, 391–402. [Google Scholar] [CrossRef]
- Ali, B.H.; Abdelrahman, A.M.; Al-Salam, S.; Sudhadevi, M.; AlMahruqi, A.S.; Al-Husseni, I.S.; Beegam, S.; Dhanasekaran, S.; Nemmar, A.; Al-Moundhri, M. The Effect of Sildenafil on Cisplatin Nephrotoxicity in Rats. Basic Clin. Pharmacol. Toxicol. 2011, 109, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Helmy, M.W.; Allah, D.M.A.; Zaid, A.M.A.; El-Din, M.M.M. Role of nitrergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. J. Physiol. Pharmacol. 2014, 65, 393–399. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24930511 (accessed on 14 November 2023). [PubMed]
- Abdel-Latif, R.G.; Morsy, M.A.; El-Moselhy, M.A.; Khalifa, M.A. Sildenafil protects against nitric oxide deficiency-related nephrotoxicity in cyclosporine A treated rats. Eur. J. Pharmacol. 2013, 705, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Khames, A.; Khalaf, M.M.; Gad, A.M.; El-Raouf, O.M.A. Ameliorative effects of sildenafil and/or febuxostat on doxorubicin-induced nephrotoxicity in rats. Eur. J. Pharmacol. 2017, 805, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Mohey, V.; Singh, M.; Puri, N.; Kaur, T.; Pathak, D.; Singh, A.P. Sildenafil obviates ischemia-reperfusion injury–induced acute kidney injury through peroxisome proliferator–activated receptor γ agonism in rats. J. Surg. Res. 2015, 201, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Tapia, E.; Sanchez-Lozada, L.G.; Soto, V.; Manrique, A.M.; Ortiz-Vega, K.M.; Santamaría, J.; Medina-Campos, O.N.; Cristóbal, M.; Avila-Casado, C.; Pedraza-Chaverri, J.; et al. Sildenafil Treatment Prevents Glomerular Hypertension and Hyperfiltration in Rats with Renal Ablation. Kidney Blood Press. Res. 2012, 35, 273–280. [Google Scholar] [CrossRef]
- Rodragguez-Iturbe, B.; Ferrebuz, A.; Vanegas, V.; Quiroz, Y.; Espinoza, F.; Pons, H.; Vaziri, N.D. Early treatment with cGMP phosphodiesterase inhibitor ameliorates progression of renal damage. Kidney Int. 2005, 68, 2131–2142. [Google Scholar] [CrossRef]
- Yousry, M.M.; Farag, E.A.; Omar, A.I. Histological Study on the Potential Effect of Sildenafil on the Kidney and Testosterone Level in Experimentally Induced Diabetes in Male Rats. J. Cytol. Histol. 2016, 7, 4. [Google Scholar] [CrossRef]
- Bae, E.H.; Kim, I.J.; Joo, S.Y.; Kim, E.Y.; Kim, C.S.; Choi, J.S.; Ma, S.K.; Kim, S.H.; Lee, J.U.; Kim, S.W. Renoprotective Effects of Sildenafil in DOCA-Salt Hypertensive Rats. Kidney Blood Press. Res. 2012, 36, 248–257. [Google Scholar] [CrossRef]
- Akgül, T.; Huri, E.; Yagmurdur, H.; Ayyıldız, A.; Üstün, H.; Germiyanoğlu, C. Phosphodiesterase 5 inhibitors attenuate renal tubular apoptosis after partial unilateral ureteral obstruction: An experimental study. Kaohsiung J. Med. Sci. 2011, 27, 15–19. [Google Scholar] [CrossRef]
- Küçük, A.; Yucel, M.; Erkasap, N.; Tosun, M.; Koken, T.; Ozkurt, M.; Erkasap, S. The effects of PDE5 inhibitory drugs on renal ischemia/reperfusion injury in rats. Mol. Biol. Rep. 2012, 39, 9775–9782. [Google Scholar] [CrossRef] [PubMed]
- Stegbauer, J.; Friedrich, S.; Potthoff, S.A.; Broekmans, K.; Cortese-Krott, M.M.; Quack, I.; Rump, L.C.; Koesling, D.; Mergia, E. Phosphodiesterase 5 Attenuates the Vasodilatory Response in Renovascular Hypertension. PLoS ONE 2013, 8, e80674. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.T.; Rodrigues, B.P.; Porto, M.L.; Gava, A.L.; Balarini, C.M.; Freitas, F.P.S.; Palomino, Z.; Casarini, D.E.; Campagnaro, B.P.; Pereira, T.M.C.; et al. Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension. J. Transl. Med. 2014, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, R.; Hoenderop, J.G.; Isidori, A.M.; Henique, C.; Dijkman, H.B.; Berden, J.H.; Tharaux, P.-L.; van der Vlag, J.; Nijenhuis, T. Sildenafil Prevents Podocyte Injury via PPAR-γ–Mediated TRPC6 Inhibition. J. Am. Soc. Nephrol. 2016, 28, 1491–1505. [Google Scholar] [CrossRef] [PubMed]
- Lledo-Garcia, E.; Subira-Rios, D.; Ogaya-Pinies, G.; Tejedor-Jorge, A.; Del Cañizo-Lopez, J.F.; Hernandez-Fernandez, C. Intravenous Sildenafil as a Preconditioning Drug Against Hemodynamic Consequences of Warm Ischemia-Reperfusion on the Kidney. J. Urol. 2011, 186, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.N.; Lin, H.; Toth, T.; Jones, C.; Ray, P.; Welsh, G.I.; Satchell, S.C.; Sleeman, P.; Angelini, G.D.; Murphy, G.J. Phosphodiesterase-5 Inhibition Prevents Postcardiopulmonary Bypass Acute Kidney Injury in Swine. Ann. Thorac. Surg. 2011, 92, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Lledo-Garcia, E.; Rodriguez-Martinez, D.; Cabello-Benavente, R.; Moncada-Iribarren, I.; Tejedor-Jorge, A.; Dulin, E.; Hernandez-Fernandez, C.; Del Canizo-Lopez, J. Sildenafil Improves Immediate Posttransplant Parameters in Warm-Ischemic Kidney Transplants: Experimental Study. Transplant. Proc. 2007, 39, 1354–1356. [Google Scholar] [CrossRef]
- Lledó-García, E.; Subirá-Ríos, D.; Rodríguez–Martínez, D.; Dulín, E.; Alvarez-Fernández, E.; Hernández-Fernández, C.; del Cañizo-López, J.F. Sildenafil as a Protecting Drug for Warm Ischemic Kidney Transplants: Experimental Results. J. Urol. 2009, 182, 1222–1225. [Google Scholar] [CrossRef]
- Zahran, M.H.; Barakat, N.; Khater, S.; Awadalla, A.; Mosbah, A.; Nabeeh, A.; Hussein, A.M.; Shokeir, A.A. Renoprotective effect of local sildenafil administration in renal ischaemia–reperfusion injury: A randomised controlled canine study. Arab. J. Urol. 2019, 17, 150–159. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Chan, F.K.; EL McColl, K. Peptic ulcer disease. Lancet 2009, 374, 1449–1461. [Google Scholar] [CrossRef]
- Tarnawski, A.S.; Ahluwalia, A.; Jones, M.K. Angiogenesis in gastric mucosa: An important component of gastric erosion and ulcer healing and its impairment in aging. J. Gastroenterol. Hepatol. 2014, 29, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Kalayci, M.; Kocdor, M.A.; Kuloglu, T.; Sahin, I.; Sarac, M.; Aksoy, A.; Yardim, M.; Dalkilic, S.; Gursu, O.; Aydin, S.; et al. Comparison of the therapeutic effects of sildenafil citrate, heparin and neuropeptides in a rat model of acetic acid-induced gastric ulcer. Life Sci. 2017, 186, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Lanas, A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res. Ther. 2008, 10 (Suppl. S2), S4. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, Y.M.; Khoder, D.M.; El-Awady, E.E.; Zaitone, S.A. Sildenafil citrate protects against gastric mucosal damage induced by indomethacin in rats. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 179–188. Available online: http://www.ncbi.nlm.nih.gov/pubmed/23377805 (accessed on 14 November 2023). [PubMed]
- Karakoyun, B.; Uslu, U.; Ercan, F.; Aydin, M.S.; Yuksel, M.; Ogunc, A.V.; Alican, I. The effect of phosphodiesterase-5 inhibition by sildenafil citrate on inflammation and apoptosis in rat experimental colitis. Life Sci. 2011, 89, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Elson, C.O.; Sartor, R.; Tennyson, G.S.; Riddell, R.H. Experimental models of inflammatory bowel disease. Gastroenterology 1995, 109, 1344–1367. [Google Scholar] [CrossRef]
- Podolsky, D.K. Pride and prejudice: Inflammatory bowel disease models and drug development. Curr. Opin. Gastroenterol. 2000, 16, 295–296. [Google Scholar] [CrossRef]
- Strober, W. Interactions between Epithelial Cells and Immune Cells in the Intestine. Ann. New York Acad. Sci. 1998, 859, 37–45. [Google Scholar] [CrossRef]
- Yildirim, A.; Ersoy, Y.; Ercan, F.; Atukeren, P.; Gumustas, K.; Uslu, U.; Alican, I. Phosphodiesterase-5 inhibition by sildenafil citrate in a rat model of bleomycin-induced lung fibrosis. Pulm. Pharmacol. Ther. 2010, 23, 215–221. [Google Scholar] [CrossRef]
- Iseri, S.O.; Ersoy, Y.; Ercan, F.; Yuksel, M.; Atukeren, P.; Gumustas, K.; Alican, I. The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the rat. J. Gastroenterol. Hepatol. 2009, 24, 1142–1148. [Google Scholar] [CrossRef]
- Medeiros, J.V.R.; Gadelha, G.G.; Lima, S.J.; Garcia, J.A.; Soares, P.M.G.; Santos, A.A.; Brito, G.A.C.; Ribeiro, R.A.; Souza, M.H.L.P. Role of the NO/cGMP/KATP pathway in the protective effects of sildenafil against ethanol-induced gastric damage in rats. Br. J. Pharmacol. 2008, 153, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Aydinli, B.; Yildirgan, M.I.; Oztürk, G.; Atamanalap, S.S.; Polat, K.Y.; Başoğlu, M.; Gündoğdu, C.; Süleyman, H.; Kiziltunç, A.; Gürsan, N.; et al. The role of sildenafil citrate in the protection of gastric mucosa from nonsteroidal anti-inflammatory drug-induced damage. Ulus. Travma Acil Cerrahi Derg. 2007, 13, 268–273. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17978907 (accessed on 14 November 2023). [PubMed]
- Elberry, A.A. Protective effect of sildenafil against cysteamine induced duodenal ulcer in Wistar rats. Afr. J. Pharm. Pharmacol. 2013, 7, 2352–2357. [Google Scholar] [CrossRef]
- Alves, G.M.; Aires, R.; Santos, V.D.S.; Côco, L.Z.; Peters, B.; Assis, A.D.L.E.M.; Athaydes, B.R.; Amorim, F.G.; Nogueira, B.V.; Gonçalves, R.C.d.R.; et al. Sildenafil attenuates nonsteroidal anti-inflammatory-induced gastric ulceration in mice via antioxidant and antigenotoxic mechanisms. Clin. Exp. Pharmacol. Physiol. 2020, 48, 401–411. [Google Scholar] [CrossRef] [PubMed]
- El Mahdy, R.N.; Risha, S.; Sisi, A.; Sobhy, W. Potential Protective Effects of Sildenafil and Moringa on Experimentally-induced Gastric Ulcer in Rats. Int. J. Cancer Biomed. Res. 2020, 4, 43–55. [Google Scholar] [CrossRef]
- El-Sisi, A.E.; Sokar, S.S.; Abu-Risha, S.E.; Khira, D.Y. The potential beneficial effects of sildenafil and diosmin in experimentally-induced gastric ulcer in rats. Heliyon 2020, 6, e04761. [Google Scholar] [CrossRef]
- Margonis, G.A.; Christoloukas, N.; Antoniou, E.; Arkadopoulos, N.; Theodoropoulos, G.; Agrogiannis, G.; Pikoulis, E.; Patsouris, E.S.; Zografos, G.C.; Papalois, A.E. Effectiveness of sildenafil and U-74389G in a rat model of colitis. J. Surg. Res. 2015, 193, 667–674. [Google Scholar] [CrossRef]
- Fakhfouri, G.; Rahimian, R.; Hashemi, S.; Rasouli, M.R.; Bahremand, A.; Mehr, S.E.; Khorramizadeh, M.R.; Dehpour, A.R. Sildenafil attenuates TNBS-induced colitis in rats: Possible involvement of cGMP and KATP channels. Fundam. Clin. Pharmacol. 2012, 26, 190–193. [Google Scholar] [CrossRef]
- Kato, N.; Mashita, Y.; Kato, S.; Mitsufuji, S.; Yoshikawa, T.; Takeuchi, K. Sildenafil, an Inhibitor of Phosphodiesterase Subtype 5, Prevents Indomethacin-Induced Small-Intestinal Ulceration in Rats via a NO/cGMP-Dependent Mechanism. Dig. Dis. Sci. 2009, 54, 2346–2356. [Google Scholar] [CrossRef]
- Kim, G.E.; Kass, D.A. Cardiac Phosphodiesterases and Their Modulation for Treating Heart Disease. In Heart Failure; Springer: Berlin/Heidelberg, Germany, 2016; pp. 249–269. [Google Scholar] [CrossRef]
- Roy, S.; Kloner, R.A.; Salloum, F.N.; Jovin, I.S. Cardiac Effects of Phosphodiesterase-5 Inhibitors: Efficacy and Safety. Cardiovasc. Drugs Ther. 2023, 37, 793–806. [Google Scholar] [CrossRef]
- Zhang, M.; Kass, D.A. Phosphodiesterases and cardiac cGMP: Evolving roles and controversies. Trends Pharmacol. Sci. 2011, 32, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, B.G.; Jadzinsky, M.N.; Murphy, L.J.; Montorsi, F.; Kadioglu, A.; Fraige, F.; Manzano, P.; Deerochanawong, C. Sildenafil Citrate for Treatment of Erectile Dysfunction in Men with Type 1 Diabetes. Diabetes Care 2003, 26, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Bocchi, E.A.; Guimarães, G.; Mocelin, A.; Bacal, F.; Bellotti, G.; Ramires, J.F. Sildenafil Effects on Exercise, Neurohormonal Activation, and Erectile Dysfunction in Congestive Heart Failure. Circulation 2002, 106, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz-Icöz, S.; Radovits, T.; Szabó, G. Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. Br. J. Pharmacol. 2017, 175, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Westermann, D.; Becher, P.M.; Lindner, D.; Savvatis, K.; Xia, Y.; Fröhlich, M.; Hoffmann, S.; Schultheiss, H.-P.; Tschöpe, C. Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res. Cardiol. 2012, 107, 308. [Google Scholar] [CrossRef]
- Nagy, O.; Hajnal, Á.; Parratt, J.R.; Végh, Á. Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br. J. Pharmacol. 2004, 141, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Samaja, M.; Arena, R.; Vicenzi, M.; Guazzi, M.D. Long-Term Use of Sildenafil in the Therapeutic Management of Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 2136–2144. [Google Scholar] [CrossRef]
- Elhakeem, W.A.; Khairy, H. Effect of sildenafil on stable chronic heart failure: A prospective randomized-controlled clinical trial. J. Med. Sci. Res. 2019, 2, 118. [Google Scholar] [CrossRef]
- Salloum, F.N.; Das, A.; Thomas, C.S.; Yin, C.; Kukreja, R.C. Adenosine A1 receptor mediates delayed cardioprotective effect of sildenafil in mouse. J. Mol. Cell. Cardiol. 2007, 43, 545–551. [Google Scholar] [CrossRef]
- Madhani, M.; Hall, A.R.; Cuello, F.; Charles, R.L.; Burgoyne, J.R.; Fuller, W.; Hobbs, A.J.; Shattock, M.J.; Eaton, P. Phospholemman Ser69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. Am. J. Physiol. Circ. Physiol. 2010, 299, H827–H836. [Google Scholar] [CrossRef]
- Behmenburg, F.; Dorsch, M.; Huhn, R.; Mally, D.; Heinen, A.; Hollmann, M.W.; Berger, M.M. Impact of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels in Sildenafil-Induced Cardioprotection in Rats. PLoS ONE 2015, 10, e0144737. [Google Scholar] [CrossRef] [PubMed]
- Banjac, N.; Vasović, V.; Stilinović, N.; Tomas, A.; Vasović, L.; Martić, N.; Prodanović, D.; Jakovljević, V. The Effects of Different Doses of Sildenafil on Coronary Blood Flow and Oxidative Stress in Isolated Rat Hearts. Pharmaceuticals 2023, 16, 118. [Google Scholar] [CrossRef] [PubMed]
- Skeffington, K.L.; Ahmed, E.M.; Rapetto, F.; Chanoit, G.; Bond, A.R.; Vardeu, A.; Ghorbel, M.T.; Suleiman, M.-S.; Caputo, M. The effect of cardioplegic supplementation with sildenafil on cardiac energetics in a piglet model of cardiopulmonary bypass and cardioplegic arrest with warm or cold cardioplegia. Front. Cardiovasc. Med. 2023, 10, 1194645. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Kariya, T.; Iwakiri, M.; Yamada, Y.; Takimoto, E. Sildenafil ameliorates right ventricular early molecular derangement during left ventricular pressure overload. PLoS ONE 2018, 13, e0195528. [Google Scholar] [CrossRef] [PubMed]
- Blanton, R.M.; Takimoto, E.; Lane, A.M.; Aronovitz, M.; Piotrowski, R.; Karas, R.H.; Kass, D.A.; Mendelsohn, M.E. Protein Kinase G Iα Inhibits Pressure Overload–Induced Cardiac Remodeling and Is Required for the Cardioprotective Effect of Sildenafil In Vivo. J. Am. Heart Assoc. 2012, 1, e003731. [Google Scholar] [CrossRef]
- Wang, X.; Fisher, P.W.; Xi, L.; Kukreja, R.C. Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J. Mol. Cell. Cardiol. 2008, 44, 105–113. [Google Scholar] [CrossRef]
- Salloum, F.; Yin, C.; Xi, L.; Kukreja, R.C. Sildenafil Induces Delayed Preconditioning Through Inducible Nitric Oxide Synthase–Dependent Pathway in Mouse Heart. Circ. Res. 2003, 92, 595–597. [Google Scholar] [CrossRef]
- Shalwala, M. A Novel Role of SIRT1 in Sildenafil Induced Cardioprotection in Mice. Master’s Thesis, Virginia Commonwealth University, Richmond, VA, USA, May 2010. [Google Scholar] [CrossRef]
- Chau, V.Q.; Salloum, F.N.; Hoke, N.N.; Abbate, A.; Kukreja, R.C. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am. J. Physiol. Circ. Physiol. 2011, 300, H2272–H2279. [Google Scholar] [CrossRef]
- Salloum, F.N.; Abbate, A.; Das, A.; Houser, J.-E.; Mudrick, C.A.; Qureshi, I.Z.; Hoke, N.N.; Roy, S.K.; Brown, W.R.; Prabhakar, S.; et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am. J. Physiol. Circ. Physiol. 2008, 294, H1398–H1406. [Google Scholar] [CrossRef]
- Adamo, C.M.; Dai, D.-F.; Percival, J.M.; Minami, E.; Willis, M.S.; Patrucco, E.; Froehner, S.C.; Beavo, J.A. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 2010, 107, 19079–19083. [Google Scholar] [CrossRef]
- Elrod, J.W.; Greer, J.J.M.; Lefer, D.J. Sildenafil-mediated acute cardioprotection is independent of the NO/cGMP pathway. Am. J. Physiol. Circ. Physiol. 2007, 292, H342–H347. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Ueda, K.; Hashimoto, M.; Zhang, M.; Sasaki, M.; Kariya, T.; Sasaki, H.; Kaludercic, N.; Lee, D.; Bedja, D.; et al. The mitochondrial regulator PGC1α is induced by cGMP–PKG signaling and mediates the protective effects of phosphodiesterase 5 inhibition in heart failure. FEBS Lett. 2021, 596, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kwon, S.J.; Woo, J.-S.; Lee, G.-J.; Lee, S.-R.; Jang, H.-H.; Kim, H.S.; Kim, J.W.; Park, H.K.; Cho, K.S.; et al. Effects of sildenafil on nanostructural and nanomechanical changes in mitochondria in an ischaemia-reperfusion rat model. Clin. Exp. Pharmacol. Physiol. 2014, 41, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Botha, P.; MacGowan, G.A.; Dark, J.H. Sildenafil Citrate Augments Myocardial Protection in Heart Transplantation. Transplantation 2010, 89, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, A.; Aşır, F.; Dursun, R. Protective Effect of Sildenafil on the Heart in Hepatic Ischemia/Reperfusion Injury. Anal. Quant. Cytopathol. Histopathol. 2021, 43, 116–120. Available online: https://www.researchgate.net/publication/354144820 (accessed on 11 October 2023).
- Koneru, S.; Penumathsa, S.V.; Thirunavukkarasu, M.; Vidavalur, R.; Zhan, L.; Singal, P.K.; Engelman, R.M.; Das, D.K.; Maulik, N. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: Role of VEGF/angiopoietin-1. J. Cell. Mol. Med. 2008, 12, 2651–2664. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, W.; Wang, G.; Wu, J.; Wang, M.; Li, C. The protective effects of a phosphodiesterase 5 inhibitor, sildenafil, on postresuscitation cardiac dysfunction of cardiac arrest: Metabolic evidence from microdialysis. Crit. Care 2014, 18, 641. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Yuan, W.; Wu, J.; Li, C. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System. Int. J. Mol. Sci. 2015, 16, 27015–27031. [Google Scholar] [CrossRef]
- He, Y.; Wang, G.; Li, C.; Wang, Y.; Zhang, Q. The protective effects of phosphodiesterase-5 inhibitor, sildenafil on post-resuscitation cardiac dysfunction of cardiac arrest: By regulating the miR-155-5p and miR-145-5p. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 2. [Google Scholar] [CrossRef]
- Santiago-Vacas, E.; García-Lunar, I.; Solanes, N.; Dantas, A.P.; Ascaso, M.; Jimenez-Trinidad, F.R.; Ramirez, J.; Fernández-Friera, L.; Galán, C.; Sánchez, J.; et al. Effect of sildenafil on right ventricular performance in an experimental large-animal model of postcapillary pulmonary hypertension. Transl. Res. 2020, 228, 64–75. [Google Scholar] [CrossRef]
- Ockaili, R.; Salloum, F.; Hawkins, J.; Kukreja, R.C. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATPchannels in rabbits. Am. J. Physiol. Circ. Physiol. 2002, 283, H1263–H1269. [Google Scholar] [CrossRef] [PubMed]
- Salloum, F.N.; Takenoshita, Y.; Ockaili, R.A.; Daoud, V.P.; Chou, E.; Yoshida, K.-I.; Kukreja, R.C. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. J. Mol. Cell. Cardiol. 2007, 42, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Halcox, J.P.; Nour, K.R.; Zalos, G.; Mincemoyer, R.; Waclawiw, M.A.; Rivera, C.E.; Willie, G.; Ellahham, S.; Quyyumi, A.A. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J. Am. Coll. Cardiol. 2002, 40, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Shah, R.; Shahzad, K.; Camuso, J.M.; Pappagianopoulos, P.P.; Hung, J.; Tawakol, A.; Gerszten, R.E.; Systrom, D.M.; Bloch, K.D.; et al. Sildenafil Improves Exercise Capacity and Quality of Life in Patients with Systolic Heart Failure and Secondary Pulmonary Hypertension. Circulation 2007, 116, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Giannetta, E.; Isidori, A.M.; Galea, N.; Carbone, I.; Mandosi, E.; Vizza, C.D.; Naro, F.; Morano, S.; Fedele, F.; Lenzi, A. Chronic Inhibition of cGMP Phosphodiesterase 5A Improves Diabetic Cardiomyopathy. Circulation 2012, 125, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Redfield, M.M.; Chen, H.H.; Borlaug, B.A.; Semigran, M.J.; Lee, K.L.; Lewis, G.; LeWinter, M.M.; Rouleau, J.L.; Bull, D.A.; Mann, D.L.; et al. Effect of Phosphodiesterase-5 Inhibition on Exercise Capacity and Clinical Status in Heart Failure with Preserved Ejection Fraction. JAMA 2013, 309, 1268–1277. [Google Scholar] [CrossRef]
- Fox, K.M.; Thadani, U.; Ma, P.T.; Nash, S.D.; Keating, Z.; Czorniak, M.A.; Gillies, H.; Keltai, M. Sildenafil citrate does not reduce exercise tolerance in men with erectile dysfunction and chronic stable angina. Eur. Heart J. 2003, 24, 2206–2212. [Google Scholar] [CrossRef]
- Denardo, S.J.; Wen, X.; Handberg, E.M.; Merz, C.N.B.; Sopko, G.S.; Cooper-DeHoff, R.M.; Pepine, C.J. Effect of Phosphodiesterase Type 5 Inhibition on Microvascular Coronary Dysfunction in Women: A Women’s Ischemia Syndrome Evaluation (WISE) Ancillary Study. Clin. Cardiol. 2011, 34, 483–487. [Google Scholar] [CrossRef]
- Kiss, T.; Kovacs, K.; Komocsi, A.; Tornyos, A.; Zalan, P.; Sumegi, B.; Jr, F.G. Novel Mechanisms of Sildenafil in Pulmonary Hypertension Involving Cytokines/Chemokines, MAP Kinases and Akt. PLoS ONE 2014, 9, e104890. [Google Scholar] [CrossRef]
- Al Qadi-Nassar, B.; Bichon-Laurent, F.; Portet, K.; Tramini, P.; Arnoux, B.; Michel, A. Effects of l-arginine and phosphodiesterase-5 inhibitor, sildenafil, on inflammation and airway responsiveness of sensitized BP2 mice. Fundam. Clin. Pharmacol. 2007, 21, 611–620. [Google Scholar] [CrossRef]
- de Visser, Y.P.; Walther, F.J.; Laghmani, E.H.; Boersma, H.; van der Laarse, A.; Wagenaar, G.T. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir. Res. 2009, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-S.; Park, J.-W.; Kim, H.-J.; Choi, C.W.; Lee, H.-J.; Kim, B.I.; Chun, Y.-S. Sildenafil Alleviates Bronchopulmonary Dysplasia in Neonatal Rats by Activating the Hypoxia-Inducible Factor Signaling Pathway. Am. J. Respir. Cell Mol. Biol. 2013, 48, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, Y.; Chen, L.; Wang, X.; Hu, X.-R.; Feng, Y.-L.; Liu, D.-S.; Xu, D.; Duan, Y.-P.; Lin, J.; et al. Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. Eur. Respir. J. 2009, 33, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, Y.-Y.; Song, P.; Li, L.-P.; Fan, Y.-F.; Wang, Y.-L. Original Article Sildenafil ameliorated meconium-induced acute lung injury in a neonatal rat model. Int. J. Clin. Exp. Med. 2016, 9, 10238–10246. Available online: https://e-century.us/files/ijcem/9/6/ijcem0022567.pdf (accessed on 10 October 2023).
- Kosutova, P.; Mikolka, P.; Balentova, S.; Kolomaznik, M.; Adamkov, M.; Mokry, J.; Calkovska, A.; Mokra, D. Effects of phosphodiesterase 5 inhibitor sildenafil on the respiratory parameters, inflammation and apoptosis in a saline lavage-induced model of acute lung injury. JPP 2018, 5, 15. [Google Scholar]
- Rodriguez-Miguelez, P.; Ishii, H.; Seigler, N.; Crandall, R.; Thomas, J.; Forseen, C.; McKie, K.T.; Harris, R.A. Sildenafil improves exercise capacity in patients with cystic fibrosis: A proof-of-concept clinical trial. Ther. Adv. Chronic Dis. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Cousar, J.; Wiley, C.; Felton, L.; Clair, C.S.; Jones, M.; Curran-Everett, D.; Poch, K.; Nichols, D.; Solomon, G.; Saavedra, M.; et al. Pharmacokinetics and tolerability of oral sildenafil in adults with cystic fibrosis lung disease. J. Cyst. Fibros. 2014, 14, 228–236. [Google Scholar] [CrossRef]
- Jackson, R.M.; Glassberg, M.K.; Ramos, C.F.; Bejarano, P.A.; Butrous, G.; Gómez-Marín, O. Sildenafil Therapy and Exercise Tolerance in Idiopathic Pulmonary Fibrosis. Lung 2009, 188, 115–123. [Google Scholar] [CrossRef]
- Moon, R.E.; Martina, S.D.; Peacher, D.F.; Potter, J.F.; Wester, T.E.; Cherry, A.D.; Natoli, M.J.; Otteni, C.E.; Kernagis, D.N.; White, W.D.; et al. Swimming-Induced Pulmonary Edema. Circulation 2016, 133, 988–996. [Google Scholar] [CrossRef]
- Andersen, A.; Waziri, F.; Schultz, J.G.; Holmboe, S.; Becker, S.W.; Jensen, T.; Søndergaard, H.M.; Dodt, K.K.; May, O.; Mortensen, U.M.; et al. Pulmonary vasodilation by sildenafil in acute intermediate-high risk pulmonary embolism: A randomized explorative trial. BMC Pulm. Med. 2021, 21, 72. [Google Scholar] [CrossRef]
- Reisi, M.; Modaresi, M.R.; Aghaii, Z.; Mirlohi, S.H.; Rafiemanesh, H.; Azizi, G.; Sayedi, S.J. Efficacy and safety of oral sildenafil in cystic fibrosis children with mild to moderate lung disease. Pediatr. Pulmonol. 2019, 55, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Collard, H.R.; Anstrom, K.J.; Schwarz, M.I.; Zisman, D.A. Sildenafil Improves Walk Distance in Idiopathic Pulmonary Fibrosis. Chest 2007, 131, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Behr, J.; Nathan, S.D.; Wuyts, W.A.; Bishop, N.M.; Bouros, D.E.; Antoniou, K.; Guiot, J.; Kramer, M.R.; Kirchgaessler, K.-U.; Bengus, M.; et al. Efficacy and safety of sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2020, 9, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Raghu, G.; Wells, A.U.; Behr, J.; Richeldi, L.; Schinzel, B.; Quaresma, M.; Stowasser, S.; Martinez, F.J. Nintedanib plus Sildenafil in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 379, 1722–1731. [Google Scholar] [CrossRef]
Pain | |||
---|---|---|---|
Animals | Animal Model | Dosage | Results |
db/db mice | Diabetic mice (type 2 diabetes) | 10 mg/kg bw, orally | Sildenafil increased blood vessel functionality, regional blood flow in the sciatic nerve, and motor and sensory conduction velocities in the sciatic nerve, as well as ameliorated the sensitivity to peripheral heat stimuli in the tail flick test. [57] |
NMRI male mice | Alloxan-induced diabetic neuropathy | 1.5, 2.5, 3 mg/kg bw, orally | Sildenafil increased the pain reaction latency in both hot-plate tests and tail-withdrawal tests from cold water [58]. |
NMRI male mice | Alloxan-induced diabetic neuropathy | Sildenafil 1.5, 2.5, 3 mg/kg bw + Metformin 150, 250, 500 mg/kg bw, orally | The combination reversed thermal hyperalgesia in hot-plate and tail-withdrawal tests. It reduced the activity of iNOS in the brain and liver and IL-6 brain concentration. [22] |
Wistar female rats | Formalin-induced pain | 50, 100, and 200 µg into the ipsilateral paw 20 min before formalin | Locally administered sildenafil resulted in dose-dependent antinociception through the activation of the cyclic GMP-PKG-K+ channel pathway [59]. |
Wistar female rats | Formalin-induced pain | 50, 100, and 200 µg, i.pl. | Sildenafil exhibited a dose-dependent antinociceptive effect and enhanced morphine-induced analgesia [53]. |
Wistar rats Albino mice | Carrageenan-induced hyperalgesia Acetic acid-induced pain | 1, 2, 5, and 10 mg/kg, i.p. 50–200 µg, i.pl. | Administered i.p., sildenafil reduced acetic acid-induced writhing in mice in a dose-dependent manner. Local administration of sildenafil reduced the intensity of hyperalgesia induced by carrageenan [60]. |
Wistar rats Albino mice | Streptozotocin-induced diabetic neuropathy | 1–10 mg/kg, i.p 50–400 µg/paw, i.pl. | Sildenafil increased the pain reaction latency in writhing tests (mice) and paw hyperalgesia tests (rats). [61]. |
Wistar male rats | Streptozotocin-induced diabetic neuropathy | 5 mg/kg bw, orally | Sildenafil effectively and consistently enhanced vascular function both in terms of immediate and long-term effects [62]. |
Sprague–Dawley male rats | Ligation of L5/6 spinal nerves induced neuropathic pain | 1, 3, 10, and 30 mg/kg bw i.p. | Sildenafil increased the withdrawal threshold in von Frey tests in a dose-dependent manner [55]. |
Alzheimer’s Disease | ||
---|---|---|
In Vitro Studies | ||
Population | Dosage | Results |
HT-22 mouse hippocampal neuronal cells treated with Aβ peptide | 10–100 μM | Protects the mitochondria of neuronal cells from Aβ-induced injury. This effect is dependent on mitochondrial KATP channels. [73] |
HT-22 mouse hippocampal neuronal cells exposed to advanced glycation end products | 20 μM | Reduced the opening of mitochondrial permeability transition pores and HO1 induced apoptosis. [74] |
Preclinical studies | ||
PS1/APP mice | 3 mg/kg bw, i.p. | Enhanced immediate and prolonged synaptic function, phosphorylation of CREB, and memory; decreased Aß concentrations [75]. |
PS1/APP mice | 10 mg/kg bw, i.p | Effectively mitigated memory impairments, restored the proper functioning of the cGMP/PKG/pCREB signalling pathway, and decreased Aβ1-40, Aβ1-42, IL-1β, IL-6, and TNF-α [76]. |
PS1/APP mice | 6 mg/kg bw, i.p. | Enhanced memory, reduced amyloid plaque accumulation, mitigated inflammatory processes, and promoted neurogenesis [77]. |
PS1/APP mice | 2 mg/kg bw, orally | Ameliorated memory deficits, reduced amyloid pathology, and increased the NOS, NO, and cGMP [78]. |
Sprague–Dawley rats with scopolamine-induced cholinergic dysfunction | 1.5, 3.0, 4.5 mg/kg bw, i.p. | Demonstrated beneficial effect on memory Retrieval. [79]. |
Tg2576 transgenic mice | 15 mg/kg bw, i.p. | Enhanced memory, reduced tau protein levels, inhibited the activity of GSK3β, lowered the CDK5 p25/35 ratio, and upregulated the expression of BDNF and Arc proteins [80]. |
J20 mice | 15 mg/kg bw, in drinking water | Enhanced memory function, reduced tau hyperphosphorylation, and increased GSK3β-mediated phosphorylation of Akt [81]. |
C57Bl/6J WT mice | 3 mg/kg bw, i.p. | Reduced double-stranded DNA breaks, downregulated pro-apoptotic factors caspase-3 and Bax, and upregulated anti-apoptotic factors Bcl2 and BDNF [82]. |
Aged male Fisher 344 rats | 1.5, 3.0, 4.5, 10.0 mg/kg bw, i.p. | Enhanced spatial memory [83]. |
SAMP8 mice | 7.5 mg/kg bw, i.p. | Enhanced amyloid and tau pathology, memory function, and gliosis [84]. |
SAMP8 mice | 7.5 mg/kg bw, i.p. | Reduced hippocampal JNK phosphorylation and tau phosphorylation, as well as ameliorated memory impairments [85]. |
Sprague–Dawley male rats with aluminium-induced Alzheimer’s | 15 mg/kg bw, orally | Reduced the expression of VCAM-1, TNF-α, oxidative stress markers, and α-synuclein immunostaining, while increasing the levels of VEGF-A and nestin [86]. |
Clinical studies | ||
Alzheimer’s disease (n = 10) | 50 mg, orally | Reduced the intrinsic neuronal activity in the right hippocampus [87]. |
Alzheimer’s disease (n = 14) | 50 mg, orally | Enhanced the cerebral metabolic rate of oxygen and cerebral blood flow (n = 12). Reduced cerebral vascular reactivity (n = 8) [88]. |
Digital Ulcer | ||
---|---|---|
Clinical Studies | ||
Population | Sildenafil Dosage (Oral Administration) | Results/Reference |
Patients with systemic sclerosis and digital ulcers (n = 19) | 114 mg | Reduces the quantity of digital ulcers (initial: 49, final: 17) [95]. |
Females with systemic sclerosis and digital ulcers (n = 1) | Sildenafil 20 mg + Bosentan 125 mg | Successfully heals pre-existing digital ulcers [96]. |
Patients with scleroderma (n = 10) | 12.5 to 100 mg | Determines the complete resolution of digital ulcerations for eight individuals [97]. |
Patients with systemic sclerosis and digital ulcers (n = 6) | 50 mg | Full healing (n = 2) or gradual improvement over time (n = 4) [93]. |
Patients with systemic sclerosis (n = 83) and digital ulcers (n = 192) Phase 3 study | 20 mg | Significant reduction in the incidence of digital ulcers vs. placebo [98]. |
Raynaud’s disease | ||
Clinical studies | ||
Population | Dosage | Results |
Symptomatic secondary Raynaud’s phenomenon (n = 16) | 50 mg, orally | Decreases the average number and cumulative duration of Raynaud’s attacks. Decreases in the mean Raynaud’s Condition Score were observed. Significantly increased capillary blood flow [93]. |
Raynaud’s phenomenon secondary to systemic sclerosis (n = 57) | 100 mg, orally | Reduced the frequency of attacks among patients, while exhibiting a high level of tolerability [94]. |
Raynaud’s phenomenon secondary to systemic sclerosis (n = 10) | 50 mg, orally | Rapidly decreased the frequency and intensity of Raynaud’s phenomenon symptoms (n = 8) [97]. |
Raynaud’s phenomenon secondary to systemic sclerosis (n = 123) | Sildenafil 20 mg + Bosentan 125 mg, orally | Significantly enhanced Raynaud’s Condition Score and improved nailfold videocapillaroscopy [99]. |
Raynaud’s disease and joint pain (n = 1) | 50 mg, orally | Induces vasodilation by upregulating cGMP and increasing NO synthesis [100]. |
Severe Raynaud’s phenomenon and systemic scleroderma | 50 mg, orally | Significantly increased peripheral blood circulation and reduced the intensity and occurrence of Raynaud’s syndrome [101]. |
Primary Raynaud’ss disease (n = 15) | 100 mg, orally | Increased the cutaneous vascular conductance and skin temperature [102]. |
Scleroderma-associated Raynaud’s phenomenon (n = 1) | 50 mg, orally | Raised the peripheral blood perfusion and ameliorated the manifestation of Raynaud’s syndrome symptoms [103]. |
Severe Raynaud’s phenomenon and systemic sclerosis (n = 30) | Sildenafil 20 mg + Bosentan 125 mg, orally | Reduced the intensity, frequency, and duration of Raynaud’s phenomenon [96]. |
Severe Raynaud’s phenomenon associated with scleroderma (n = 1) | 20 mg, orally | Enhanced the blood supply of microvasculature to the extremities and effectively mitigated the vascular alterations observed in Raynaud’s syndrome [104]. |
Secondary Raynaud’s phenomenon associated with connective tissue disease (n = 10) Phase 1 study | 5 g of 5% cream | Significantly enhanced the digital artery blood flow [105]. |
Raynaud’s phenomenon secondary to systemic sclerosis (n = 41) Phase 3 study | 100 mg, orally | Enhanced peripheral blood circulation and alleviation of symptoms associated with Raynaud’s phenomenon [106]. |
Wound Healing | ||
---|---|---|
Preclinical Studies | ||
Population | Dosage | Results |
Wistar rats with incisions of the dorsal backs | 10 mg/kg bw, orally | The extent of skin flap necrosis was smaller in the sildenafil-treated groups than in the control group, albeit without statistical significance [113]. |
Sprague–Dawley rats with incisions of the dorsal backs | 9 mg/kg, i.p. | A notable reduction in dead tissue and blood flow stagnation within the flap was observed in rats treated with sildenafil [114]. |
Wistar rats with incisions of the dorsal backs | 10 mg/kg bw, orally | Increased the vascularisation of the skin flap [115]. |
Streptozotocin-induced diabetic Wistar rats with incisions of the dorsal backs | 5% sildenafil-containing ointments | Significantly decreased wound area in both non-diabetic and diabetic rats, especially during the first stages of wound healing [116]. |
Wistar female rats with incisions of the abdominal wall | 10 mg/kg, orally | Enhanced both the breaking strength of the abdominal fascia and the process of neovascularisation [117]. |
Sprague–Dawley female rats with incisions of the dorsal backs | 0.4 g (1% gel) and 2 g (5% gel) | Enhanced vascularity, reduced inflammation, granulation tissue development, and maturation in a dose-dependent manner [118]. |
Sprague–Dawley male rats with incisions of the dorsal backs | 10% hydrogel | Enhanced wound healing, reducing proinflammatory cytokine (IL-6, TNF-α, and IL-1β) levels as well as CRP levels. Increased the levels of tissue hydroxyproline, collagen, nitrite, and total protein content [119]. |
Wistar rats with incisions of the dorsal backs | 10 mg/kg bw, orally | Decreased the size of full thickness defects [120]. |
Sprague–Dawley female rats with non-splinted excisions dorsal wounds | 3, 5 and 10% hydrogel | Facilitated the process of reepithelisation, collagen synthesis, deposition, and regeneration of skin appendages [121]. |
Streptozotocin-induced diabetic Sprague–Dawley rats with incisions of the dorsal backs | 0.7 mg/kg bw, i.p. | Regulated cellular activity during the initial stages of wound healing reducing lymphocyte numbers and increasing monocytes [122]. |
Streptozotocin-induced diabetic Wistar rats with incisions of the dorsal backs | 10 mg/kg bw, orally | Inhibited the diabetic ulcerative process, reduced pain perception, and promoted wound healing [123]. |
Cross-breed street dogs with incisions in all skin layers on the anterior brachial region | 25 mg | Increased the development of granulosa tissue and capillary network; enhanced fibroblast proliferation [109]. |
Retinopathy | |||
---|---|---|---|
Preclinical Studies | |||
Animals | Animal Model | Dosage | Results |
C57/B16N mouse pups | Oxygen-induced retinopathy | 3 mg/kg bw, s.c. | Reduced retinal vascular obliteration and neovascularisation due to the stabilisation of HIF-1α expression during exposure to hyperoxia [130]. |
Sprague–Dawley rats | Streptozotocin-induced diabetic retinopathy | 1 and 2.5 mg/kg bw, orally | Reduced ocular VEGF levels in diabetic rats [124]. |
Wistar rats | N-nitro-L-arginine methyl ester-induced hypertensive retinopathy | 0.5 mg/kg bw, i.p. | Inhibited the progression of ischaemic injury and alterations in retinal vascular morphology [131]. |
Sprague–Dawley rats | Oxygen-induced retinopathy | 50 mg/kg bw, orally | Significantly reduced the thickness of the outer plexiform layer [132]. |
Cancer | ||
---|---|---|
In Vitro and Animal Studies | ||
Cancer Model | Dosage | Results |
Prostate cancer PC-3 and DU145 prostate cancer cells | Sildenafil 10 μM + Doxorubicin 1.5 μM (PC-3) or 0.5 μM (DU145) | Enhanced doxorubicin-induced apoptosis by increasing ROS production, caspase-3, and caspase-9 activity and decreased Bcl-x expression and Bad phosphorylation [25]. |
Breast cancer 4T1 mammary carcinoma cells | Sildenafil 10, 30, 100 μM + Doxorubicin 1μM | The combination of sildenafil and doxorubicin had a synergistic effect inhibiting tumour cell growth [141]. |
Breast cancer MCF-7 breast cancer cells | 5, 12.5, 25, 50 μg/mL | Determined the formation of necrotic tissue formation within the tumour and had cytotoxic effects [142]. |
Breast cancer MCF-7 breast cancer cells | Sildenafil 5, 12.5, 25, 50 μg/mL + cisplatin 5, 12.5, 25, 50 μg/mL | Enhanced the anticancer activity of cisplatin [142]. |
Neuroblastoma Human neuroblastoma cell line IMR-32 | 50 μM | Enhanced the development of neurite outgrowths that exhibited the expression of neuronal markers, including NeuN, NF-H, and βIII tubulin [143]. |
Breast cancer MCF-7 breast cancer cells | Sildenafil 40.33 μM + crizotinib 55.25 μM | The combination elicited significant apoptosis in breast cancer cells [144]. |
Colorectal cancer SW620, HT-29, HCT116, SW480, and SW1116 colorectal cancer cells | 10 mM concentration | Suppressed cellular proliferation and the cell cycle and induced tumour cell apoptosis [145]. |
Lung cancer A549 human lung carcinoma cells | Sildenafil 15 μM + Doxorubicin 1.26 μM | The combination treatment resulted in tumour cell apoptosis through the reversal of ABC-transporter-mediated multidrug resistance and the downregulation of Nrf2 and ABCC1 [140]. |
Cervical cancer HeLa, HT-3, C33A, SiHa, U14 cervical cancer cells, and human cervical epithelial cells (HCerEpiC) | 0.5, 1.0, 1.5 and 2.0 μM | Decreased cell viability and the expression of EMT marker proteins and p-Smad2/3 in HeLa cells was suppressed [23]. |
Prostate cancer Nude mice injected with PC-3 prostate cancer cells | Sildenafil 10 mg/kg bw, i.p. + Vincristine 0.5 mg/kg bw, i.p. | Enhanced vincristine-induced mitotic arrest and increased the susceptibility of apoptosis due to mitochondrial damage [146]. |
Prostate cancer BALB/cAnNCr-nu/nu male mice injected with PC-3 cells | Sildenafil 5 mg/kg bw, i.p. + Doxorubicin 1.5 mg/kg bw, i.p. or Sildenafil 10 mg/kg bw, orally + Doxorubicin 3 mg/kg bw, i.p. | Significantly inhibited tumour cell proliferation [25]. |
Breast cancer Balb/c female mice injected with 4T1 mammary carcinoma cells | Sildenafil 1 mg/kg bw i.p. + Doxorubicin 5 mg/kg bw, i.v. | The association treatment decreased tumour growth compared to the use of doxorubicin alone [141]. |
Breast cancer Albino female mice injected with Ehrlich ascites carcinoma cells | 5 mg/kg, orally | Reduced tumour volume; decreased the levels of angiogenin, TNF-α, and the expression of vascular endothelial growth factor; and increased caspase-3 levels [142]. |
Breast cancer Albino female mice that received Ehrlich ascites carcinoma cells | Sildenafil 5 mg/kg bw, orally + Cisplatin 7.5 mg/kg bw, i.p. | Enhanced the anticancer activity of cisplatin [142]. |
Colorectal cancer Balb/c mice injected with SW480 or HCT116 colorectal cancer cells | 50, 100 mg/kg bw, orally | Suppressed tumour growth [145]. |
Ascites tumour Swiss CD1 female mice injected with Ehrlich ascites carcinoma cells | 1, 5 mg/kg bw, i.p. | Decreased the number of tumour cells; reduced their viability, growth rate, and ability to proliferate; and increased apoptosis [147]. |
Colorectal cancer Dextran-sulfate sodium (DSS)-induced colitis C57BI/6J male mice | 5.7 mg/kg bw, in drinking water | The administration of sildenafil resulted in a 50% reduction in the number of colon polyps [148]. |
Malignant melanoma Mice expressing the human ret transgene in melanocytes | 20 mg/kg bw, in drinking water | Decreased the levels of IL-1β, IL-6, VEGF, S100A9, and myeloid-derived suppressor cells. Reduced the immunosuppressive capabilities of myeloid-derived suppressor cells [149]. |
Clinical studies | ||
Type of cancer/Population | Dosage | Results |
Prostate cancer Patients with ED | N/A | Reduced likelihood of receiving a diagnosis of prostate cancer [150]. |
Lymphangioma Phase 1, 2 study | 10–20 mg, orally | Reduced both the volume and symptoms of lymphatic malformation in certain paediatric patients [151]. |
Breast cancer Phase 1 study | Sildenafil 100 mg, orally + Doxorubicin 75–360 mg/m2, i.v. | Did not provide cardioprotection after doxorubicin treatment [152]. |
Glioblastoma Brain cancer Phase 2 study | Sildenafil 50 mg + Sorafenib 400 mg + Valproic acid N/A orally | Enhanced the intracranial accumulation of anticancer agents and inhibited the proliferation of tumour cells by blocking the ABCG2 drug efflux pump within the BBB [153]. |
Depression | ||
---|---|---|
Preclinical Studies | ||
Population | Dosage | Results |
Intruder-resident paradigm conducted on CD1 mice | 10 mg/kg bw, i.p. | Enhances the levels of key neurotransmitters in the brain, specifically serotonin and noradrenaline, mitigating the exacerbation of depressive symptoms [161]. |
Swiss male mice with lipopolysaccharide-induced depression | 5 mg/kg bw, i.p. | Reduced the duration of immobility observed during the forced swimming test. Increased the sucrose preference and levels of prepulse inhibition. Increased GSH levels and decreased lipid peroxidation and IL-1β levels [163]. |
Oxytocin receptor knockout mice | 20 mg/kg bw, i.p. | Activation of oxytocin signalling pathways [162]. |
Male albino Swiss mice with restraint stress-induced depressive like behaviour | 60 mg/kg bw, i.p. | Effectively restored the immobility generated by stress in the forced swim test [154]. |
Sprague–Dawley male rats with central muscarinic receptor blockade | Sildenafil 10 mg/kg bw, i.p. + Atropine 1 mg/kg bw, i.p. | The combination has notable antidepressant-like effects in the forced swim test. It decreases the density of cerebral β-adrenergic receptors [164]. |
Clinical studies | ||
ED associated with mild-to-moderate depressive disorder (n = 152) | 25–100 mg, orally | Sildenafil significantly improved depressive symptoms and quality of life, lowering Hamilton depression scale scores [165]. |
ED associated with depression (n = 54) | N/A | Improved symptoms associated with depression, according to the Centre of Epidemiologic Studies—Depression Scale [166]. |
ED associated with depression in patients undergoing haemodialysis (n = 16) | N/A | Improved BDI scores compared to baseline [155]. |
ED associated with mild-to-moderate untreated depressive symptoms (n = 202) | 25–100 mg, orally | Improved BDI II scores compared to the baseline measurements [156]. |
ED associated with depression and idiopathic Parkinson’s disease (n = 33) | 50 mg, orally | Significantly reduced depression symptoms in 75% of the patients [160]. |
Renal Disease | ||
---|---|---|
Preclinical Studies | ||
Population | Dosage | Results |
Streptozotocin-induced diabetic albino rats | 3 mg/kg bw, orally | Enhanced kidney function by lowering oxidative stress; inhibiting pro-inflammatory HMGB1, TNF-α, MCP1, NF-kB, and IL1; and reducing caspase-3 levels [174]. |
Ioxilan-induced acute kidney injury in New Zealand white rabbits | 6 mg/kg bw, orally | Reduced histological injury, acute kidney injury indicators (creatinine), and electrolyte disturbances (restores K+, Na+ levels) [178]. |
Iopromide-induced nephropathy in Wistar male rats | 10 mg/kg bw, orally | Improved structural kidney damage, exhibiting a protective potential greater than that of N-acetyl cysteine [179]. |
Streptozotocin-induced diabetes in Sprague–Dawley male rats | 3 mg/kg bw, in drinking water | Rats given sildenafil had a lower kidney-to-body weight ratio. Reduced urinary albumin excretion, renal cortical 8-OHdG levels, renal nitrotyrosine protein expression, and positive iNOS and ED-1 staining in glomeruli and tubule interstitium [180]. |
Streptozotocin-induced diabetic albino rats | Sildenafil 3 mg/kg bw, orally + Telmisartan 10 mg/kg bw, orally | Significantly reduced BUN, S.Cr, LDL, TGF-1, IL-1, proteinuria, and AGEPs while increasing SOD and NO [181]. |
Otsuka Long-Evans Tokushima fatty male rats | 2.5 mg/kg bw, in drinking water | Significantly reduced albuminuria, glomerular hyperfiltration, glomerulosclerosis score, and the amount of nuclear antigen-positive glomerular and tubulointerstitial proliferating cells. Decreased collagen types I and III mRNA levels in the renal cortex [182]. |
Iohexol-induced nephropathy Wistar male rats | 50 mg/kg bw, orally | Significantly reduced GFR and RBF, plasma creatinine, uraemia, and proteinuria [183]. |
Iohexol-induced nephropathy Wistar female rats | 50 mg/kg bw, orally | Reduced serum and renal tissue levels of HIF-2α and sCr [184]. |
Streptozotocin-induced diabetic nephropathy in Sprague–Dawley rats | 2.5 mg/kg bw, orally | Enhanced renal function by lowering triglyceride levels and increasing the number of podocytes [185]. |
Adenine-induced chronic kidney disease in Sprague–Dawley rats | 0.1, 0.5, or 2.5 mg/kg bw, orally | Reduced the plasma concentration of the antioxidant indices in a dose-dependent manner. Reduced the levels of indoxyl sulfate, cytokine sclerostin, and neutrophil gelatinase- associated lipocalin [186]. |
Cisplatin-induced nephrotoxicity in Wistar male rats | 0.4 mg/kg bw, i.p. | Decreased sCr, Bax/Bcl-2 ratio, caspase 3 expression, the number of TUNEL positive cells, and N-acetyl-b-D-glucosaminidase levels. Increased eNOS and iNOS activity and elevated renal blood flow [187]. |
Cisplatin-induced nephrotoxicity in Sprague–Dawley rats | 2 mg/kg, i.p. | Decreased BUN, sCr, MDA, and TNF-α levels. Increased SOD levels and nitrite/nitrate concentrations [188]. |
Cyclosporine A-induced nephrotoxicity in Wistar male rats | 5 mg/kg bw, orally | Reduced BUN, sCr, and MDA levels. Decreased urine albumin/Cr ratio, iNOS, TNF-α, and caspase 3 activity. Enhanced eNOS and GSH/NO/catalase activities [189]. |
Doxorubicin-induced nephrotoxicity in Sprague–Dawley rats | 5 mg/kg bw, orally | Sildenafil reduced urea, sCr, uric acid, MDA, TNF-α, and caspase-3 levels, and raised GSH levels [190]. |
Ischaemia reperfusion-induced acute kidney injury in Wistar male rats | 0.5, 1.0 mg/kg bw, i.p. | Increased creatinine clearance; decreased blood urea nitrogen and uric acid levels. Inhibited the elevation in thiobarbituric acid reactive substances and superoxide anion generation, while attenuating the decrease in GSH levels through the activation of PPAR-γ receptors [191]. |
5/6 nephrectomy in Wistar rats | 5 mg/kg, orally | Effectively mitigated single nephron hyperfiltration and hypertension, inhibited the remodelling of renal arterioles, reduced systemic hypertension and proteinuria, enhanced the excretion of cGMP and nitrite/nitrate in urine, reduced oxidative stress, and ameliorated histological damage in the remaining kidney [192]. |
5/6 nephrectomy in Wistar rats | 2.5 mg/kg bw, orally | Reduced sCr, systolic blood pressure, and proteinuria, while increasing urinary levels of nitric NO and cGMP [193]. |
Ischaemia-reperfusion renal injury In Sprague–Dawley rats | 0.5 mg/kg bw, i.p. | Enhanced the recovery of renal injury by activating ERK, inducing the synthesis of iNOS and eNOS, and reducing the ratio of Bax to Bcl-2 [170]. |
Alloxan-induced diabetic nephropathy in Wistar male rats | 3 mg/kg bw, orally | Reduced blood levels of urea and creatinine and decreased urinary albumin excretion. Increased levels of cGMP, antioxidant enzymes, and testosterone [194]. |
Deoxycorticosterone acetate-salt induced hypertension in Sprague–Dawley rats | 50 mg/kg bw, orally | Reduced creatinine clearance and increased albumin-to-creatinine ratio. Reduced glomerulosclerosis and tubulointerstitial fibrosis. Inhibited the upregulation of ED-1, TGF-β1, and Bax, and the downregulation of Bcl-2 in the renal tissue [195]. |
Streptozotocin-induced diabetes in Sprague–Dawley rats | 3 mg/kg bw, in drinking water | Decreased plasma concentrations of urea, creatinine, MDA, and NO. Increased GSH, Gpx, SOD, and CAT levels, as well as total antioxidant capacity [175]. |
Partial unilateral ureteral obstruction in Wistar rats | 1 mg/kg bw, orally | Sildenafil exhibited a protective effect against tubular apoptosis [196]. |
Ischaemia-reperfusion renal injury Sprague–Dawley rats | 1 mg/kg bw, orally | Reduced the levels of MDA, apoptotic cells, eNOS, and p53 positive cells [197]. |
Renovascular hypertension induced by the two-kidney-one-clip-operation in NO-GC1 KO mice | 100 mg/kg bw, orally | Elevated cGMP levels, enhanced sensitivity to NO, and reduced systolic blood pressure [198]. |
Left renal artery clamping in C57BL/6 mice | 40 mg/kg, orally | Reduced left and right kidney hypertrophy, as well as systolic blood pressure, heart rate, and intrarenal angiotensin I/II, while increasing plasma angiotensin 1–7 and NO levels [199]. |
Podocyte-specific deletion mice with streptozotocin-induced diabetes | 5 mg/kg bw, orally | Reduced TRPC6 expression, glomerular desmin, urinary albumin, and increased nephrin [200]. |
Ischaemia-reperfusion renal injury in minipigs | 0.7, 1.4 mg/kg bw, i.v. | Reduced systemic mean arterial pressure (1.4 mg/kg) and increased right ventricular function (0.7 mg/kg) [201]. |
Cardiopulmonary bypass in White Landrace crossbred female pigs | 10 mg/kg bw, i.v. | Increased renal blood flow and NO production, while reducing proteinuria, IL-18 levels, cortical expression of endothelin-1, iNOS, and inflammatory cell infiltration. Prevented phenotypic alterations in proximal tubular cells [202]. |
Right–left nephrectomy White pigs | 100 mg/kg bw, orally | Increased right ventricular function, NO levels, and decreased right ventricular resistance [203]. |
Right–left nephrectomy minipigs | 100 mg/kg bw, orally | Increased right ventricular function, NO levels, and lowered renal vascular resistance. Reduced tubular oedema; improved endothelial cell integrity and mitochondrial ultrastructure [204]. |
Warm ischaemia in porcine kidneys | 1.4 mg/kg bw, i.v. | Enhanced RBF and urine cGMP levels and lowered intrarenal resistance and sCr [172]. |
Folic acid induced acute renal injury in New Zealand white rabbits | 0.3 mg/kg bw, i.p. | Upregulated the expression of COX1 and Tfam at mRNA level. Increased mtDNA copy number and downregulated KIM-1 levels [16]. |
Ischaemia-reperfusion renal injury in Mongrel dogs | 1 mg/kg bw prior to operation, orally OR 0.5 mg/kg bw during the operation i.v. | Reduced sCr and BUN levels. Decreased the activity of caspase 3, TNF-α, IL-1β, and ICAM-1. Increased the expression of eNOS, GFR, and Nrf2 [205]. |
Clinical studies | ||
Population | Dosage | Results |
PAH associated with impaired renal function (n = 277) | 20, 40, 80 mg, orally | Decreased serum creatinine and increased glomerular filtration rate [176]. |
Patients with type 2 diabetes-associated microalbuminuria (n = 40) | 50 mg, orally | Significantly reduced albuminuria and HbA1c levels [177]. |
Gastrointestinal Diseases | ||
---|---|---|
Preclinical Studies | ||
Animal Model | Dosage | Results/Reference |
Ethanol-induced gastric damage in Wistar male rats | 1 mg/kg bw, orally | Protected against stomach damage by activating the NO/cGMP/K(ATP) pathway [217]. |
Indomethacin-induced gastric mucosal damage in Wistar male rats | 5, 10 mg/kg bw, orally | Protected the stomach mucosa against the aggressive impact of indomethacin by increasing NO levels and inhibiting lipid peroxidation [217]. |
Indomethacin-induced gastric ulcer in Sprague–Dawley female rats | 50 mg/kg bw, orally | Protected the stomach mucosa, mitigating indomethacin-induced damage [218]. |
Acetic acid-induced gastric ulcer in Sprague–Dawley rats | 5, 10 mg/kg bw, orally | Reduced inflammation and enhanced the healing response in the stomach mucosa [208]. |
Cysteamine-induced duodenal ulcer in Wistar male rats | 25 mg/kg bw, orally | Reduced oxidative stress and ameliorated the lesions observed in the duodenal mucosa [219]. |
Indomethacin-induced gastric ulcer in Swiss male rats | 5, 25, 50 mg/kg bw, orally | Exhibited a dose-dependent gastroprotective effect, decreasing ROS levels, enhancing NO and antioxidant enzymes levels, improving stomach cellular viability, and restoring variables associated with gastroprotection [220]. |
Indomethacin-induced gastric ulcer in Wistar male rats | 50 mg/kg bw, orally | Significantly decreased gastric acid secretion, ulcer score, tissue MDA, and TNF-α levels, while increasing NO levels [221]. |
Indomethacin-induced gastric ulcer in Wistar male rats | Sildenafil 10 mg/kg bw, orally + ranitidine 50 mg/kg bw, orally | The combination exhibited antiapoptotic action on the stomach mucosa [222]. |
Acetic acid-induced colitis in Sprague–Dawley rats | 5 mg/kg bw, s.c. | Resulted in the preservation of colon microarchitecture and a decrease in lipid peroxidation, MPO activity, TNF-α, and IL-1β levels; increased GSH levels [216]. |
Trinitrobenzenesulphonic acid-induced colitis in Sprague–Dawley rats | 25 mg/kg bw, orally | Reduced the colonic levels of MDA, MPO, CL, and TNF-α, while concurrently increasing the amount of GSH [211]. |
Trinitrobenzene sulphonic acid-induced colitis in Wistar male rats | 25 mg/kg bw, orally | Decreased tissue levels of TNF-α, ameliorating inflammation [223]. |
Trinitrobenzene sulphonic acid-induced colitis in Sprague–Dawley male rats | 1 mg/kg bw, i.p. | Reduced the levels of indicators associated with colonic damage (TNF-α, IL-1β, MPO, and MDA) [224]. |
Indomethacin-induced intestinal ulceration in Sprague–Dawley male rats | 3–20 mg/kg bw, orally | Dose-dependently reduced the severity of the lesions. Inhibited MPO activity, iNOS production, and bacterial invasion [225]. |
Cardiovascular Diseases | ||
---|---|---|
Preclinical Studies | ||
Population | Dosage | Results |
Adult ischaemic cardiomyocytes derived from WT mice | 1 μM | Significantly decreased the number of trypan blue-positive necrotic cells [236]. |
C57/BL6 mice exposed to global ischaemia followed by reperfusion (Langendorff mode) | 0.1 μM | Increased the activity of Na+/K+-ATPase, promoting the reperfusion process [237]. |
Ischaemic hearts of Wistar rats | 3 μM | Elevated cGMP levels and concomitantly reduced the extent of the infarct [238]. |
Ischaemic isolated hearts of Wistar rats (Langendorff mode) | 10, 20, 50, and 200 nM | Enhanced the coronary flow at lower levels of coronary perfusion pressure across all doses [239]. |
Piglet model of cardiopulmonary bypass and arrest | 10 nM | Restored ATP levels, enhanced energy charge, and modified release of hypoxanthine and inosine [240]. |
C57BL6/J mice with heart hypertrophy | 100 mg/kg bw, orally | Improved both systolic and diastolic function, reducing cardiac hypertrophy and cardiomyocyte apoptosis [232]. |
Constriction-induced left ventricular pressure overload in C57BL/6J male mice | 200 mg/kg bw, in soft chow | Inhibited ERK and calcineurin activity in both the right and left ventricles [241]. |
Transaortic constriction–induced left ventricular pressure overload in PKGIa LZM mice | 200 mg/kg bw, in food | Significant inhibition of cardiac hypertrophy and left ventricular systolic dysfunction [242]. |
WT mice exposed to left atrial incision (Langendorff mode) | 0.71 mg/kg bw, i.p. | Decreased the extent of myocardial infarction following an episode of ischaemia [236]. |
ICR mice exposed to global ischaemia followed by reperfusion | 0.71 mg/kg bw, i.p | Decreased the extent of the infarct through the activation of mitoKCa and mitoKATP [243]. |
ICR mice exposed to ischaemia followed by reperfusion | 0.7 mg/kg bw, i.p. | Reduced the extent of the infarct, increasing both iNOS and eNOS levels [244]. |
ICR mice exposed to descending coronary artery occlusion followed by reperfusion | 0.7 mg/kg bw, i.p. | Elevated cardiac SIRT1 activity, leading to a reduction in the extent of the myocardial infarction [245]. |
ICR mice exposed to descending coronary artery occlusion | 21 mg/kg bw, i.p. | Ensured the preservation of fractional shortening. Reduced the left ventricular end-diastolic dilatation, fibrosis, and apoptosis [246]. |
ICR mice subjected to myocardial infarction through the closure of the left anterior descending coronary artery | 0.71 mg/kg bw, i.p. | Reduced ischaemic injury score. Increased the expression of eNOS and iNOS proteins and the ratio of Bcl-2 to Bax. Reduced apoptosis and the left ventricular end-diastolic diameter [247]. |
Dystrophin-deficient mice | 80 mg/kg bw, orally | Mitigated impairments in heart function. Improved both the myocardial performance index and the ratio of early diastolic filling velocity to late diastolic filling velocity [248]. |
iNOS knockout and eNOS knockout C57BL6/J mice exposed to ischaemia followed by reperfusion | 0.06 mg/kg bw injection into the LV lumen | The administration of sildenafil resulted in a notable decrease in the extent of myocardial infarction. This indicates that the acute cardioprotective effects of low-dose sildenafil are not reliant on eNOS, iNOS, or cGMP [249]. |
PGC1α−/−mice subjected to transverse aortic constriction-induced pressure overload | 200 mg/kg bw, orally | Enhanced cardiac function and remodelling. Improved mitochondrial respiration and increased the expression of PGC1α mRNA in the myocardium [250]. |
Sprague–Dawley rats exposed to ischaemia followed by reperfusion | 0.75 mg/kg bw, i.p. | Significantly reduced the size of infarcted regions [251]. |
Wistar rats exposed to heterotopic cardiac transplantation | 0.7 mg/kg bw, i.v. | Enhanced both systolic and diastolic function of the myocardium following a three-hour period of arrest. Determined a notable translocation of CPK delta [252]. |
Wistar rats exposed to ischaemia and reperfusion | 50 mg/kg bw, orally | Suppressed the significant elevation of MDA levels [253]. |
Sprague–Dawley rats exposed to left anterior descending coronary artery occlusion followed by reperfusion | 0.7 mg/kg bw, i.v. | Increased the density of capillaries and arterioles, enhancing blood flow. Increased the expression of VEGF and Ang-1 at mRNA levels during the initial reperfusion period [254]. |
Mongrel dogs exposed to blockage of the anterior descending coronary artery | 2 mg/kg bw, orally | Prolonged the QT interval, particularly in the presence of ischaemic conditions [233]. |
Piglets exposed to untreated ventricular fibrillation, which was afterwards followed by open-chest cardiopulmonary resuscitation | 0.5 mg/kg, i.p. | The administration of sildenafil resulted in a shift towards aerobic metabolism in energy use. Increased the levels of ATP and ADP, while decreasing the levels of lactate in the myocardial tissue [255]. |
Pigs exposed to ventricular fibrillation and cardiopulmonary resuscitation | 0.5 mg/kg bw, i.p. | Partially reduced the elevated levels of plasma Ang II and Ang (1–7). Increased the expression of eNOS, cGMP, and iNOS [256]. |
Cardiac arrest pigs | 0.5 mg/kg bw, i.p. | Reduced the expression levels of miR-155-5p and miR-145-5p [257]. |
Fixed banding of the venous pulmonary confluent-induced postcapillary PH pigs | 25–50 mg/kg bw, orally | Reduced apoptotic cells. Regulated gene expression decreasing oxidative stress and enhancing anti-inflammatory activity within the myocardium. Improved ventricular function [258]. |
New Zealand rabbits with left anterior descending artery occlusion | 0.7 mg/kg bw, i.p. | Elicited both immediate and delayed protective effects against ischaemia-reperfusion injury by the activation of mitochondrial KATP channels [259]. |
New Zealand rabbits exposed to ischaemia through the blockage of coronary arteries. | 0.71 mg/kg bw, i.v. | Reduced the size of the infarct [260]. |
Clinical studies | ||
Patients with chronic heart failure (n = 46) | 50 mg, orally | Decreased pulmonary artery pressure and alleviated dyspnoea, while improving brachial artery flow-mediated dilatation and enhancing breathing during physical exertion [234]. |
Patients with coronary artery disease (n = 24) | 100 mg, orally | Induced dilation of pericardial arteries while interfering with platelet activation [261]. |
Patients with left ventricular failure (n = 100) | 50 mg, orally | Enhanced left ventricular ejection fraction, increased performance on the 6 min walking test, and positively impacted Doppler-derived variables related to left ventricular diastolic function [235]. |
Patients with left ventricular systolic dysfunction (NYHA II-IV) (n = 34) | 25–75 mg, orally | Enhanced exercise capacity, decreasing pulmonary vascular resistance and increasing the cardiac output during exercise [262]. |
Patients with non-ischaemic diabetic cardiomyopathy (n = 59) | 100 mg, orally | The administration of sildenafil was linked to an anti-remodelling impact, which subsequently led to enhanced cardiac kinetics [263]. |
Patients with heart failure and preserved ejection fraction (n = 216) | 20, 60 mg, orally | There was no change in exercise capacity, clinical condition, or quality of life [264]. |
Patients with coronary artery disease (n = 144) | 100 mg, orally | Reduced the time elapsed until the onset of angina and the overall duration of activity [265]. |
Patients with microvascular coronary dysfunction (n = 23) | 100 mg, orally | Enhanced the coronary flow reserve [266]. |
Lung Diseases | ||
---|---|---|
Preclinical Studies | ||
Population | Dosage | Results |
Ovalbumin-sensitised BP2 mice (asthma model) | Sildenafil 20 mg/kg bw, + L-arginine 50 mg/kg bw, i.p. | Exacerbated airway hyper-responsiveness [268]. |
Wistar rat pups with neonatal hyperoxic lung injury | 50 mg/kg bw, orally | Extended survival, elevated levels of pulmonary cGMP, diminished the pulmonary inflammatory response, decreased fibrin deposition and right ventricular hypertrophy, and promoted alveolarisation [269]. |
Neonatal Wistar rats exposed to hypoxia to induce bronchopulmonary dysplasia | 50, 100 mg/kg bw, orally | Facilitated the restoration of lung function by stimulating the activation of HIF-α and promoting the overexpression of VEGF [270]. |
Acrolein-induced airway inflammation in Sprague–Dawley rats | 25 mg/kg bw, orally | Reduced the production of TNF-α, inhibited leukocyte migration, and decreased mucus hypersecretion. Prevented epithelial hyperplasia and metaplasia [271]. |
Bleomycin-induced lung fibrosis Sprague–Dawley rats | 10 mg/kg bw, s.c. | Reduced lung fibrosis by decreasing the expression of TNF-α and IL-1β [215]. |
Meconium-induced acute lung injury in newborn Wistar rats | 25 mg/kg bw, orally | Preserved lung tissue and mitigated the inflammatory burst comparable to dexamethasone [272]. |
Repetitive lung gavage saline induced acute lung injury rabbits | 1 mg/kg bw, i.p. | Decreased the migration of cells, specifically neutrophils. Reduced the release of TNF-α, IL-8, and IL-6, and decreased the levels of nitrite/nitrate, 3-nitrotyrosine, and MDA. Prevented lung oedema development and reduced protein content in BAL and death of epithelial cells [273]. |
Clinical studies | ||
Patients with cystic fibrosis (n = 19) Phase 2 study | 20, 50 mg orally | Enhanced exercise capacity in individuals diagnosed with cystic fibrosis [274]. |
Patients with mild-to-moderate cystic fibrosis (n = 36) Phase 1, 2 study | 20, 40 mg, orally | Decreased sputum elastase activity. Well-tolerated [275]. |
Patients with idiopathic pulmonary fibrosis (n = 29) Phase 2 study | 20 mg, orally | The administration of sildenafil did not yield a statistically significant increase in the distance covered during the 6 min walk test, nor resulted in a significant decrease in the Borg dyspnoea index [276]. |
Patients with swimming-induced pulmonary oedema (n = 10) | 50 mg, orally | Decreased the pulmonary vascular pressures without any negative impact on exercise hemodynamics [277]. |
Patients with pulmonary embolism (n = 20) Early phase 1 study | 50 mg, orally | The administration of one oral dose of sildenafil did not provide any significant enhancement in cardiac index, but reduced systemic blood pressure [278]. |
Children with mild-to-moderate lung disease (n = 20) | 1 mg/kg bw, orally | Enhanced the overall well-being and physical capabilities of children with cystic fibrosis, but also had a notable negative impact on lung function [279]. |
Patients with idiopathic pulmonary fibrosis and PAH (n = 14) Phase 2 study | 20–50 mg, orally | Enhanced the 6 min walk distance [280]. |
Patients with advanced idiopathic pulmonary fibrosis (n = 247) Phase 2 study | Sildenafil 20 mg + Pirfenidone 801 mg, orally | The co-administration of sildenafil with pirfenidone did not yield any therapeutic advantage [281]. |
Patients with idiopathic pulmonary fibrosis (n = 274) Phase 3 study | Sildenafil 20 mg + Nintedanib 150 mg, orally | The combination of nintedanib and sildenafil did not yield a statistically significant advantage when compared to the administration of nintedanib alone [282]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcașu, C.; Zanfirescu, A.; Negreș, S.; Șeremet, O.C. Exploring the Multifaceted Potential of Sildenafil in Medicine. Medicina 2023, 59, 2190. https://doi.org/10.3390/medicina59122190
Pușcașu C, Zanfirescu A, Negreș S, Șeremet OC. Exploring the Multifaceted Potential of Sildenafil in Medicine. Medicina. 2023; 59(12):2190. https://doi.org/10.3390/medicina59122190
Chicago/Turabian StylePușcașu, Ciprian, Anca Zanfirescu, Simona Negreș, and Oana Cristina Șeremet. 2023. "Exploring the Multifaceted Potential of Sildenafil in Medicine" Medicina 59, no. 12: 2190. https://doi.org/10.3390/medicina59122190
APA StylePușcașu, C., Zanfirescu, A., Negreș, S., & Șeremet, O. C. (2023). Exploring the Multifaceted Potential of Sildenafil in Medicine. Medicina, 59(12), 2190. https://doi.org/10.3390/medicina59122190