Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy
Abstract
:1. Introduction
2. Methodology
2.1. Animals and Experimental Design
2.2. Exercise Protocol
2.3. Tissue Removal and Preparation
2.4. RNA Isolation and Quantification
2.5. Statistical Analysis
3. Results
3.1. Animals Characteristics
3.2. Gene Expression Changes
3.2.1. MHC-α mRNA
3.2.2. MHC-β mRNA
3.2.3. TR-α1 mRNA
3.2.4. TR-β mRNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannel, W.B.; McGee, D.L. Diabetes and cardiovascular risk factors: The Framingham study. Circulation 1979, 59, 8–13. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.J.; McNamara, P.M.; Gordon, T.; Kannell, W.B. Morbidity and Mortality in Diabetics In the Framingham Population: Sixteen Year Follow-up Study. Diabetes 1974, 23, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Athithan, L.; Gulsin, G.S.; McCann, G.P.; Levelt, E. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J. Diabetes 2019, 10, 490–510. [Google Scholar] [CrossRef] [PubMed]
- Pope, B.; Hoh, J.; Weeds, A. The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett. 1980, 118, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Herron, T.J.; McDonald, K.S. Small Amounts of α-Myosin Heavy Chain Isoform Expression Significantly Increase Power Output of Rat Cardiac Myocyte Fragments. Circ. Res. 2002, 90, 1150–1152. [Google Scholar] [CrossRef]
- Tardiff, J.C.; Hewett, T.E.; Factor, S.M.; Vikstrom, K.L.; Robbins, J.; Leinwand, L.A. Expression of the β (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H412–H419. [Google Scholar] [CrossRef]
- Haddad, F.; Bodell, P.W.; McCue, S.A.; Baldwin, K.M. Effects of diabetes on rodent cardiac thyroid hormone receptor and isomyosin expression. Am. J. Physiol. Endocrinol. Metab. 1997, 272, E856–E863. [Google Scholar] [CrossRef]
- Pollack, P.S.; Malhotra, A.; Fein, F.S.; Scheuer, J. Effects of diabetes on cardiac contractile proteins in rabbits and reversal with insulin. Am. J. Physiol. Heart Circ. Physiol. 1986, 251, H448–H454. [Google Scholar] [CrossRef]
- Yeih, D.-F.; Yeh, H.-I.; Hsin, H.-T.; Lin, L.-Y.; Chiang, F.-T.; Tseng, C.-D.; Chu, S.-H.; Tseng, Y.-Z. Dimethylthiourea normalizes velocity-dependent, but not force-dependent, index of ventricular performance in diabetic rats: Role of myosin heavy chain isozyme. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1411–H1420. [Google Scholar] [CrossRef]
- Gusso, S.; Pinto, T.; Baldi, J.C.; Derraik, J.G.; Cutfield, W.S.; Hornung, T.; Hofman, P.L. Exercise Training Improves but Does Not Normalize Left Ventricular Systolic and Diastolic Function in Adolescents with Type 1 Diabetes. Diabetes Care 2017, 40, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, R.; Bilgen, M.; Al-Hafez, B.; Zhero, S.V.; Alenezy, M.D.; Smirnova, I.V. Exercise training improves cardiac performance in diabetes: In vivo demonstration with quantitative cine-MRI analyses. J. Appl. Physiol. 2007, 102, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Paulson, D.J.; Gupta, M.; Zak, R.; Zhao, J. Effects of exercise training and diabetes on cardiac myosin heavy chain composition. Mol. Cell. Biochem. 1992, 117, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Paulson, D.J.; Kopp, S.J.; Peace, D.G.; Tow, J.P.; Davidoff, A.J.; Mason, M.M.; Davidson, M.B.; Carmody, M.W.; Hintz, K.K.; Wold, L.E.; et al. Myocardial adaptation to endurance exercise training in diabetic rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1987, 252, R1073–R1081. [Google Scholar] [CrossRef] [PubMed]
- Al-Horani, R.A.; Mohammad, M.A.; Haifawi, S.; Ihsan, M. Changes in myocardial myosin heavy chain isoform composition with exercise and post-exercise cold-water immersion. J. Muscle Res. Cell Motil. 2021, 42, 183–191. [Google Scholar] [CrossRef] [PubMed]
- van Rooij, E.; Sutherland, L.B.; Qi, X.; Richardson, J.A.; Hill, J.; Olson, E.N. Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA. Science 2007, 316, 575–579. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Sun, X. The functions of microRNA-208 in the heart. Diabetes Res. Clin. Pract. 2020, 160, 108004. [Google Scholar] [CrossRef]
- Danzi, S.; Klein, I. Thyroid hormone and the cardiovascular system. Minerva Endocrinol. 2004, 29, 139–150. Available online: http://www.ncbi.nlm.nih.gov/pubmed/15282446 (accessed on 3 November 2023). [CrossRef]
- Mansén, A.; Yu, F.; Forrest, D.; Larsson, L.; Vennström, B. TRs have common and isoform-specific functions in regulation of the cardiac myosin heavy chain genes. Mol. Endocrinol. 2001, 15, 2106–2114. [Google Scholar] [CrossRef]
- Klein, I. Thyroid hormone and the cardiovascular system. Am. J. Med. 1990, 88, 631–637. [Google Scholar] [CrossRef]
- Lee, J.-J.; Yi, H.-Y.; Yang, J.-W.; Shin, J.-S.; Kwon, J.-H.; Kim, C.-W. Characterization of Streptozotocin-induced Diabetic Rats and Pharmacodynamics of Insulin Formulations. Biosci. Biotechnol. Biochem. 2003, 67, 2396–2401. [Google Scholar] [CrossRef]
- Schratzberger, P.; Walter, D.H.; Rittig, K.; Bahlmann, F.H.; Pola, R.; Curry, C.; Silver, M.; Krainin, J.G.; Weinberg, D.H.; Ropper, A.H.; et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J. Clin. Investig. 2001, 107, 1083–1092. [Google Scholar] [CrossRef]
- Kajstura, J.; Fiordaliso, F.; Andreoli, A.M.; Li, B.; Chimenti, S.; Medow, M.S.; Limana, F.; Nadal-Ginard, B.; Leri, A.; Anversa, P. IGF-1 Overexpression Inhibits the Development of Diabetic Cardiomyopathy and Angiotensin II–Mediated Oxidative Stress. Diabetes 2001, 50, 1414–1424. [Google Scholar] [CrossRef]
- Tate, M.; Deo, M.; Cao, A.H.; Hood, S.G.; Huynh, K.; Kiriazis, H.; Du, X.J.; Julius, T.L.; Figtree, G.A.; Dusting, G.J.; et al. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diabetes Vasc. Dis. Res. 2017, 14, 423–433. [Google Scholar] [CrossRef]
- Soetikno, V.; Sari, F.R.; Sukumaran, V.; Lakshmanan, A.P.; Mito, S.; Harima, M.; Thandavarayan, R.A.; Suzuki, K.; Nagata, M.; Takagi, R.; et al. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PKC–MAPK signaling pathway. Eur. J. Pharm. Sci. 2012, 47, 604–614. [Google Scholar] [CrossRef]
- Al-Horani, R.A.; Al-Trad, B.; Haifawi, S. Modulation of cardiac vascular endothelial growth factor and PGC-1α with regular postexercise cold-water immersion of rats. J. Appl. Physiol. 2019, 126, 1110–1116. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Machida, S.; Kariya, F.; Kobayashi, K.; Narusawa, M. Lack of Effect of Running Training at Two Intensities on Cardiac Myosin Isozyme Composition in Rats. Jpn. J. Physiol. 2000, 50, 577–583. [Google Scholar] [CrossRef]
- Takeda, N.; Nakamura, I.; Ohkubo, T.; Hatanaka, T.; Nagano, M. Effects of physical training on the myocardium of streptozotocin-induced diabetic rats. Basic Res. Cardiol. 1988, 83, 525–530. [Google Scholar] [CrossRef]
- Van Rooij, E.; Marshall, W.S.; Olson, E.N. Toward MicroRNA–Based Therapeutics for Heart Disease: The sense in antisense. Circ. Res. 2008, 103, 919–928. [Google Scholar] [CrossRef]
- Macchia, P.E.; Takeuchi, Y.; Kawai, T.; Cua, K.; Gauthier, K.; Chassande, O.; Seo, H.; Hayashi, Y.; Samarut, J.; Murata, Y.; et al. Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor α. Proc. Natl. Acad. Sci. USA 2000, 98, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Gloss, B.; Trost, S.U.; Bluhm, W.F.; Swanson, E.A.; Clark, R.; Winkfein, R.; Janzen, K.M.; Giles, W.; Chassande, O.; Samarut, J.; et al. Cardiac Ion Channel Expression and Contractile Function in Mice with Deletion of Thyroid Hormone Receptor α or β. Endocrinology 2001, 142, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Schlienger, J.L.; Anceau, A.; Chabrier, G.; North, M.L.; Stephan, F. Effect of diabetic control on the level of circulating thyroid hormones. Diabetologia 1982, 22, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Ciloglu, F.; Peker, I.; Pehlivan, A.; Karacabey, K.; Ilhan, N.; Saygin, O.; Ozmerdivenli, R. Exercise intensity and its effects on thyroid hormones. Neuro. Endocrinol. Lett. 2005, 26, 830–834. [Google Scholar]
- Fortunato, R.S.; Ignácio, D.L.; Padron, S.; Peçanha, R.; Marassi, M.P.; Rosenthal, D.; Werneck-De-Castro, J.P.S.; Carvalho, D.P. The effect of acute exercise session on thyroid hormone economy in rats. J. Endocrinol. 2008, 198, 347–353. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer |
---|---|---|
GAPDH | ATGGTGAAGGTCGGTGTG | GAACTTGCCGTGGGTAGA |
MHC-α | GGGACCGTAGCAAGAAGGACAATC | AACTTCCCAAAGCGGGAGGAGT |
MHC-β | TGGAGCTGATGCACCTGTAGAC | GATGATGCAGCGTACAAAGTGAGG |
TR-α1 | GCCGCTTCCTCCACATGAAAGTC | CCCAGCTTTGTCCCTTCTCTCCA |
TR-β | CCGGAAGGTGGCAAGGTTGATCT | GGTCTTCACAGGGCAGCTCACAAA |
Group | Initial BW (g) | Final BW (g) | HW | HW/BW |
---|---|---|---|---|
CS | 231.8 ± 25.2 | 267.5 ± 22.0 | 0.86 ± 0.1 # | 0.0032 ± 0.0004 $ |
CEX | 227.2 ± 13.9 | 289.4 ± 16.5 *# | 1.03 ± 0.1 ‡#$ | 0.0036 ± 0.0003 $ |
DIS | 203.3 ± 24.8 | 173.3 ± 26.2 ‡ | 0.63 ± 0.15 ‡ | 0.0036 ± 0.0006 $ |
DIEX | 205.0 ± 25.4 | 216.1 ± 89.9 | 0.88 ± 0.15 # | 0.0043 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Horani, R.A.; Janaydeh, S.; Al-Trad, B.; Aljanabi, M.M.; Muhaidat, R. Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy. Medicina 2023, 59, 2193. https://doi.org/10.3390/medicina59122193
Al-Horani RA, Janaydeh S, Al-Trad B, Aljanabi MM, Muhaidat R. Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy. Medicina. 2023; 59(12):2193. https://doi.org/10.3390/medicina59122193
Chicago/Turabian StyleAl-Horani, Ramzi Ahmad, Saja Janaydeh, Bahaa Al-Trad, Mukhallad Mohammed Aljanabi, and Riyadh Muhaidat. 2023. "Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy" Medicina 59, no. 12: 2193. https://doi.org/10.3390/medicina59122193
APA StyleAl-Horani, R. A., Janaydeh, S., Al-Trad, B., Aljanabi, M. M., & Muhaidat, R. (2023). Acute Exercise Promptly Normalizes Myocardial Myosin Heavy-Chain Isoform mRNA Composition in Diabetic Rats: Implications for Diabetic Cardiomyopathy. Medicina, 59(12), 2193. https://doi.org/10.3390/medicina59122193