Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Data Extraction
2.2. Inclusion and Exclusion Criteria
2.3. Measure of Effect
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Efficacy
3.2.1. rPFS
3.2.2. OS
3.2.3. Disease Progression and Relief
3.3. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chang, A.J.; Autio, K.A.; Roach, M., 3rd; Scher, H.I. High-risk prostate cancer-classification and therapy. Nat. Rev. Clin. Oncol. 2014, 11, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Dehm, S.M.; Sharifi, N. Targeting the Androgen Signaling Axis in Prostate Cancer. J. Clin. Oncol. 2023, 41, 4267. [Google Scholar] [CrossRef] [PubMed]
- Pernigoni, N.; Guo, C.; Gallagher, L.; Yuan, W.; Colucci, M.; Troiani, M.; Liu, L.; Maraccani, L.; Guccini, I.; Migliorini, D.; et al. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat. Rev. Urol. 2023, 20, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Gorchakov, A.A.; Kulemzin, S.V.; Kochneva, G.V.; Taranin, A.V. Challenges and Prospects of Chimeric Antigen Receptor T-cell Therapy for Metastatic Prostate Cancer. Eur. Urol. 2020, 77, 299–308. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.L.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 497–509. [Google Scholar] [CrossRef] [PubMed]
- González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402. [Google Scholar] [CrossRef]
- Niazi, M.; Jahangir, A.; Sahra, S.; Sattar, S.; Asti, D.; Bershadskiy, A. Efficacy of PARP Inhibitors as Maintenance Therapy for Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials. Oncology 2021, 35, 708–715. [Google Scholar]
- Saad, F.; Thiery-Vuillemin, A.; Wiechno, P.; Alekseev, B.; Sala, N.; Jones, R.; Kocak, I.; Chiuri, V.E.; Jassem, J.; Flechon, A.; et al. Patient-reported outcomes with olaparib plus abiraterone versus placebo plus abiraterone for metastatic castration-resistant prostate cancer: A randomised, double-blind, phase 2 trial. Lancet Oncol. 2022, 23, 1297–1307. [Google Scholar] [CrossRef]
- Clarke, N.; Wiechno, P.; Alekseev, B.; Sala, N.; Jones, R.; Kocak, I.; Chiuri, V.E.; Jassem, J.; Fléchon, A.; Redfern, C.; et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018, 19, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Daignault-Newton, S.; Twardowski, P.W.; Albany, C.; Stein, M.N.; Kunju, L.P.; Siddiqui, J.; Wu, Y.-M.; Robinson, D.; Lonigro, R.J.; et al. Targeting Androgen Receptor and DNA Repair in Metastatic Castration-Resistant Prostate Cancer: Results from NCI 9012. J. Clin. Oncol. 2018, 36, 991–999. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 383, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Roubaud, G.; Ozguroglu, M.; Penel, N.; Matsubara, N.; Mehra, N.; Kolinsky, M.P.; Procopio, G.; Feyerabend, S.; Joung, J.Y.; Gravis, G.; et al. Olaparib tolerability and common adverse-event management in patients with metastatic castration-resistant prostate cancer: Further analyses from the PROfound study. Eur. J. Cancer. 2022, 170, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Thiery-Vuillemin, A.; de Bono, J.; Hussain, M.; Roubaud, G.; Procopio, G.; Shore, N.; Fizazi, K.; Dos Anjos, G.; Gravis, G.; Joung, J.Y.; et al. Pain and health-related quality of life with olaparib versus physician’s choice of next-generation hormonal drug in patients with metastatic castration-resistant prostate cancer with homologous recombination repair gene alterations (PROfound): An open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 393–405. [Google Scholar] [PubMed]
- Agarwal, N.; Azad, A.; Carles, J.; Fay, A.P.; Matsubara, N.; Heinrich, D.; Szczylik, C.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): A randomised, placebo-controlled, phase 3 trial. Lancet 2023, 402, 291–303. [Google Scholar] [CrossRef]
- Chi, K.N.; Rathkopf, D.; Smith, M.R.; Efstathiou, E.; Attard, G.; Olmos, D.; Lee, J.Y.; Small, E.J.; Gomes, A.J.P.d.S.; Roubaud, G.; et al. Niraparib and Abiraterone Acetate for Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2023, 41, 3339–3351. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Park, S.H.; Goh, J.C.; Shin, S.J.; Lee, J.L.; Mehra, N.; McDermott, R.; Sala-Gonzalez, N.; Fong, P.C.; Greil, R.; et al. Pembrolizumab Plus Olaparib for Patients with Previously Treated and Biomarker-Unselected Metastatic Castration-Resistant Prostate Cancer: The Randomized, Open-Label, Phase III KEYLYNK-010 Trial. J. Clin. Oncol. 2023, 41, 3839–3850. [Google Scholar] [CrossRef]
- Fizazi, K.; Piulats, J.M.; Reaume, M.N.; Ostler, P.; McDermott, R.; Gingerich, J.R.; Pintus, E.; Sridhar, S.S.; Bambury, R.M.; Emmenegger, U.; et al. Rucaparib or Physician’s Choice in Metastatic Prostate Cancer. N. Engl. J. Med. 2023, 388, 719–732. [Google Scholar] [CrossRef]
- Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.D.; Procopio, G.; Guedes, J.D.C.; Arslan, C.; Mehra, N.; Parnis, F.; et al. Final overall survival (OS) in PROpel: Abiraterone (abi) and olaparib (ola) versus abiraterone and placebo (pbo) as first-line (1L) therapy for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41, LBA16. [Google Scholar] [CrossRef]
- Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.; Loredo, E.; Procopio, G.; de Menezes, J.; Girotto, G.; Arslan, C.; et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evid. 2022, 1, EVIDoa2200043. [Google Scholar] [CrossRef]
- Zhang, Z.; Diao, L.; Zhang, C.; Wang, F.; Guan, X.; Yao, X. Use of PARP inhibitors in prostate cancer: From specific to broader application. Front. Endocrinol. 2023, 14, 1164067. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Messina, C.; Giunta, E.F.; Signori, A.; Rebuzzi, S.E.; Banna, G.L.; Maniam, A.; Buti, S.; Cattrini, C.; Fornarini, G.; Bauckneht, M.; et al. Combining PARP Inhibitors and Androgen Receptor Signalling Inhibitors in Metastatic Prostate Cancer: A Quantitative Synthesis and Meta-analysis. Eur. Urol. Oncol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Giesen, A.; Baekelandt, L.; Devlies, W.; Devos, G.; Dumez, H.; Everaerts, W.; Claessens, F.; Joniau, S. Double trouble for prostate cancer: Synergistic action of AR blockade and PARPi in non-HRR mutated patients. Front. Oncol. 2023, 13, 1265812. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.J.; Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 2013, 19, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Andronikou, C.; Rottenberg, S. Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance. Trends Mol. Med. 2021, 27, 630–642. [Google Scholar] [CrossRef]
- Concannon, K.; Morris, B.B.; Gay, C.M.; Byers, L.A. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol. Cell 2023, 83, 660–680. [Google Scholar] [CrossRef]
- Chou, J.; Quigley, D.A.; Robinson, T.M.; Feng, F.Y.; Ashworth, A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov. 2020, 10, 351–370. [Google Scholar] [CrossRef]
- Cheng, H.H.; Sokolova, A.O.; Schaeffer, E.M.; Small, E.J.; Higano, C.S. Germline and Somatic Mutations in Prostate Cancer for the Clinician. J. Natl. Compr. Canc. Netw. 2019, 17, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bienkowski, M.; Tomasik, B.; Braun, M.; Jassem, J. PARP inhibitors for metastatic castration-resistant prostate cancer: Biological rationale and current evidence. Cancer Treat Rev. 2022, 104, 102359. [Google Scholar] [CrossRef] [PubMed]
- Sciarra, A.; Frisenda, M.; Bevilacqua, G.; Gentilucci, A.; Cattarino, S.; Mariotti, G.; Del Giudice, F.; Di Pierro, G.B.; Viscuso, P.; Casale, P.; et al. How the Analysis of the Pathogenetic Variants of DDR Genes Will Change the Management of Prostate Cancer Patients. Int. J. Mol. Sci. 2022, 24, 674. [Google Scholar] [CrossRef] [PubMed]
- Schiewer, M.J.; Goodwin, J.F.; Han, S.; Brenner, J.C.; Augello, M.A.; Dean, J.L.; Liu, F.; Planck, J.L.; Ravindranathan, P.; Chinnaiyan, A.M.; et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012, 2, 1134–1149. [Google Scholar] [CrossRef]
- Cai, M.; Song, X.L.; Li, X.A.; Chen, M.; Guo, J.; Yang, D.H.; Chen, Z.; Zhao, S.-C. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist. Updat. 2023, 68, 100962. [Google Scholar] [CrossRef] [PubMed]
- Gui, B.; Gui, F.; Takai, T.; Feng, C.; Bai, X.; Fazli, L.; Dong, X.; Liu, S.; Zhang, X.; Zhang, W.; et al. Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proc. Natl. Acad. Sci. USA 2019, 116, 14573–14582. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, W.; Yang, G.; Ren, C.; Park, S.; Karantanos, T.; Karanika, S.; Wang, J.; Yin, J.; Shah, P.K.; et al. Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci. Signal 2014, 7, ra47. [Google Scholar] [CrossRef] [PubMed]
- Hankey, W.; Chen, Z.; Wang, Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res. 2020, 80, 2427–2436. [Google Scholar] [CrossRef]
- Li, L.; Karanika, S.; Yang, G.; Wang, J.; Park, S.; Broom, B.M.; Manyam, G.C.; Wu, W.; Luo, Y.; Basourakos, S.; et al. Androgen receptor inhibitor-induced “BRCAness” and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci. Signal 2017, 10, 7479. [Google Scholar] [CrossRef]
- Asim, M.; Tarish, F.; Zecchini, H.I.; Sanjiv, K.; Gelali, E.; Massie, C.E.; Baridi, A.; Warren, A.Y.; Zhao, W.; Ogris, C.; et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat. Commun. 2017, 8, 374. [Google Scholar] [CrossRef]
- Tsujino, T.; Takai, T.; Hinohara, K.; Gui, F.; Tsutsumi, T.; Bai, X.; Miao, C.; Feng, C.; Gui, B.; Sztupinszki, Z.; et al. CRISPR screens reveal genetic determinants of PARP inhibitor sensitivity and resistance in prostate cancer. Nat. Commun. 2023, 14, 252. [Google Scholar] [CrossRef]
- Liu, S.-Y.M.; Tu, H.-Y.; Wei, X.-W.; Yan, H.-H.; Dong, X.-R.; Cui, J.-W.; Zhou, Z.; Xu, C.-R.; Zheng, M.-Y.; Li, Y.-S.; et al. First-line pyrotinib in advanced HER2-mutant non-small-cell lung cancer: A patient-centric phase 2 trial. Nat. Med. 2023, 29, 2079–2086. [Google Scholar] [CrossRef]
Study (Year) | Clinical Trials Number | RCT Phase | PARP Inhibitors | Treatment Arm | Control Arm | Enrollment Time | Inclusion Criteria | Exclusion Criteria | HRR Gene Alteration Status Criteria | Median Treatment Duration Months (Range) | Primary Endpoints |
---|---|---|---|---|---|---|---|---|---|---|---|
Agarwal et al., 2023 [17] | NCT03395197 | Ⅲ | Talazoparib | Talazoparib 0.5 mg QD + enzalutamide 160 mg QD | Placebo + enzalutamide 160 mg QD | 7 January 2019 to 17 September 2020 | Patients with mCRPC who were receiving ongoing androgen deprivation therapy; serum testosterone ≤ 50 ng/dL; ECOG performance status ≤ 1; Life expectancy ≥ 12 months | Any prior systemic cancer treatment initiated in the non-metastatic CRPC or mCRPC disease state; Prior treatment with second-generation androgen receptor inhibitors, a PARP inhibitor, cyclophosphamide, or mitoxantrone for prostate cancer. | BRCA1, BRCA2, PALB2, ATM, ATR, CHEK2, FANCA, RAD51C, NBN, MLH1, MRE11A, CDK12 | PARPi group: 19.8 months (IQR, 8.8–26.9) for talazoparib and 22.2 months (IQR, 9.9–28.1) for enzalutamide. Control group: 16.1 months (IQR, 6.5–25.0) for placebo and 16.6 months (IQR, 6.7–25.1) for enzalutamide. | rPFS |
Chi et al., 2023 [18] | NCT03748641 | Ⅲ | Niraparib | Niraparib 200 mg QD + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | Placebo + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | May 2019 to March 2021 | Patients with mCRPC and an ECOG performance status of 0 to 1; Score of ≤3 on the Brief Pain Inventory-Short Form (BPI-SF) Question | Patients have received prior PARP inhibitors or systemic therapy; Patients have the evidence of progression by PSA who received 2 to 4 months of AAP; Presence of uncontrolled hypertension(persistent systolic blood pressure [BP] ≥ 160 mmHg or diastolic BP ≥ 100 mmHg). | ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2 | HRR + group: 13.8 months (range, 0–29.0) in the PARPi group and 12.1 months (range, 0–29.0) in the control group. HRR − group: not mentioned. | rPFS |
Clarke et al., 2023 [21] | NCT03732820 | Ⅲ | Olaparib | Olaparib 300 mg BID + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | Placebo + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | 31 October 2018 to 12 October 2022 | Patients with mCRPC and an ECOG performance status of 0 to 1; no prior exposure to abiraterone; serum testosterone < 50 ng/dL | Patients have received prior cytotoxic chemotherapy or new hormonal agents (NHAs) at metastatic castration-resistant prostate cancer (mCRPC) stage. | ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L | PARPi group: 17.5 months for olaparib and 18.2 months for abiraterone. Control group: 15.7 months for placebo and 15.7 months for abiraterone. | rPFS |
Clarke et al., 2018 [11]/Fred Saad et al., 2022 [10] | NCT01972217 | Ⅱ | Olaparib | Olaparib 300 mg BID + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | Placebo + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | 25 November 2014 to 14 July 2015 | Patients had mCRPC and an ECOG performance status of 0–2 with no deterioration observed in the 2 weeks before the study; Patients had to be candidates for abiraterone therapy and a life expectancy of 12 weeks or longer. | Patients received more than two previous lines of chemotherapy or had previous exposure to second-generation antihormonal drugs or any previous treatment with olaparib; Patients diagnosed with other malignancies up to 5 years before trial entry, and those with any evidence of severe or uncontrolled systemic diseases. | ATM, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L | PARPi group: 309 days (IQR, 145–457) for olaparib and 338 days (IQR, 169–588) for abiraterone. Control group: 253 days (IQR, 113–421) for placebo and 253 days (IQR, 130–429) for abiraterone. | rPFS |
Antonarakis et al., 2023 [19] | NCT03834519 | Ⅲ | Olaparib | Olaparib 300 mg BID + pembrolizumab 200 mg Q21D for up to 35 cycles | Abiraterone acetate 1000 mg QD + prednisone 10 mg BID or enzalutamide 160 mg QD | 30 May 2019 to 16 July 2021 | Patients with mCRPC and an ECOG performance status of 0 to 1; serum testosterone <50 ng/dL; | Patients have a known additional malignancy that is progressing or has required active treatment in the last 3 years; Patients have uncontrolled hypertension as indicated by systolic BP > 170 mm Hg or diastolic BP > 105 mm Hg. | BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L | 5.0 months (range, 0.2–28.9) in the PARPi group and 4.1 months (range, 0.4–28.8) in the control group. | rPFS, OS |
Fizazi et al., 2023 [20] | NCT02975934 | Ⅲ | Rucaparib | Rucaparib 600 mg BID | Docetaxel or abiraterone acetate or enzalutamide | 8 February 2017 to 2 February 2022 | Patients with mCRPC; Patients had a history of disease progression after treatment with one previous second-generation androgen receptor pathway inhibitor. | Patients have received prior treatment with any PARPi or chemotherapy. | BRCA1, BRCA2, ATM | 8.3 months (range, 0.2–46.0) in the PARPi group and 5.1 months (range, 0.3–30.4) in the control group. | rPFS |
Hussain et al., 2018 [12] | NCT01576172 | Ⅱ | Veliparib | Veliparib 300 mg BID + abiraterone acetate 1000 mg QD + prednisone 5 mg BID | Abiraterone acetate 1000 mg QD + prednisone 5 mg BID | May 2012 to December 2015 | Patients had mCRPC with ECOG performance status of 0 to 2; testosterone < 50 ng/dL; normal organ function; no prior exposure to abiraterone acetate plus prednisone, and up to two prior chemotherapy regimens. | Patients have received chemotherapy, radiotherapy, or oral antifungal agents within 3 weeks prior to entering the study; brain metastases. | NA | NA | PSA RR |
Thiery-Vuillemin et al., 2022 [16]/De Bono et al., 2020 [13]/Hussain et al., 2020 [14]/Roubaud et al., 2022 [15] | NCT02987543 | Ⅲ | Olaparib | Olaparib 300 mg BID | Enzalutamide 160 mg QD or abiraterone 1000 mg QD + prednisone 5 mg BID | 6 February 2017 to 4 June 2019 | Patients with confirmed mCRPC whose disease had progressed after receiving a previous next-generation hormonal drug. | Any previous treatment with PARPi; previous treatment with DNAdamaging cytotoxic chemotherapy; other malignancies within the past 5 years. | BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, RAD54L | 7.6 months (range, 0.03–28.9) in the PARPi group and 3.9 months (range, 0.6–29.1) in the control group. | rPFS |
Study (Year) | Number of Patient Groups | Median Age, Years (Range) | Baseline Serum PSA, µg/L | Gleason Score | Disease Site | ECOG Performance Status | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<8 | ≥8 | Unknown | Bone | Lymph Node | Visceral | Other Soft Tissue | 0 | 1 | 2 | Unknown | ||||||||||||||||||
PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | PARPi Group | Control Group | |
Agarwal et al., 2023 [17] | 402 | 403 | 71 (IQR 66–76) | 71 (IQR 65–76) | 18.2 (IQR 6.9–59.4) | 16.2 (IQR 6.4–53.4) | 117 (29.1%) | 113 (28.0%) | 281 (69.9%) | 283 (70.2%) | 4 (1.0%) | 7 (1.8%) | 349 (86.8%) | 342 (84.9%) | 147 (36.6%) | 167 (41.4%) | 57 (14.2%) | 77 (19.1%) | 37 (9.2%) | 33 (8.2%) | 259 (64.4%) | 271 (67.2%) | 143 (35.6%) | 132 (32.8%) | NA | NA | NA | NA |
Chi et al., 2023 [18] | HRR + Patients: 212 HRR − Patients: 123 | HRR + Patients: 211 HRR − Patients: 124 | HRR + Patients: 69 (range 45–100) HRR − Patients: 72 (range 53–87) | HRR + Patients: 69 (range 43–88) HRR − Patients: 71 (range 52–85) | 21.4 (range 0–4826.5) | 17.4 (range 0.1–4400.0) | 57 (27.0%) | 62 (29.5%) | 144 (68.2%) | 142 (67.6%) | 10 (4.7%) | 6 (2.9%) | 183 (86.3%) | 170 (80.6%) | 113 (53.3%) | 95 (45.0%) | 51 (24.1%) | 39 (18.5%) | 6 (2.8%) | 15 (7.1%) | 130 (61.3%) | 146 (69.2%) | 82 (38.7%) | 65 (30.8%) | NA | NA | NA | NA |
Clarke et al., 2023 [21] | 399 | 397 | 69 (range 43–91) | 70 (range 46–88) | 17.90 (IQR 6.09–67.00) | 16.81 (IQR 6.26–53.30) | 121 (30.3%) | 134 (33.7%) | 265 (66.4%) | 258 (65.0%) | 13 (3.3%) | 5 (1.3%) | 349 (87.5%) | 339 (85.4%) | 215 (53.9%) | 208 (52.4%) | 55 (13.8%) | 60 (15.1%) | NA | NA | 286 (71.7%) | 272 (68.5%) | 112 (28.1%) | 124 (31.2%) | NA | NA | 1 (0.3%) | 1 (0.3%) |
Clarke et al., 2018 [11] /Fred Saad et al., 2022 [10] | 71 | 71 | 70 (IQR 65–75) | 67 (IQR 62–74) | 86 (IQR 23–194) | 47 (IQR21–199) | NA | NA | NA | NA | NA | NA | 33 (46.5%) * | 33 (46.5%) * | Soft-tissue disease (include visceral organs) only: 8 (11%) verus 11 (15%) Bone and soft-tissue disease: 30 (42%) verus 27 (38%) | 34 (47.9%) | 38 (53.5%) | 36 (50.7%) | 30 (42.3%) | 1 (1.4%) | 1 (1.4%) | 0 | 2 (2.8%) | |||||
Antonarakis et al., 2023 [19] | 529 | 264 | 71 (range 40–89) | 69 (range 49–84) | 52.9 (range 0.1–5000.0) | 42.6 (range 0.1–4007.0) | 147 (27.8%) | 69 (26.1%) | 367 (69.4%) | 184 (69.7%) | 15 (2.8%) | 11 (4.2%) | 221 (41.8%) * | 112 (42.4%) * | Liver: 50 (9.5%) verus 34 (12.9%) Other: 258 (48.8%) verus 118 (44.7%) | 255 (48.2%) | 139 (52.7%) | 272 (51.4%) | 125 (47.3%) | 2 (0.4%) | 0 | NA | NA | |||||
Fizazi et al., 2023 [20] | 270 | 135 | 70 (range 45–90) | 71 (range 47–92) | 26.9 (range 0.1–1247) | 28.8 (range 0–1039) | 97 (35.9%) | 39 (28.9%) | 173 (64.1%) | 96 (71.1%) | NA | NA | 235 (87.0%) | 114 (84.4%) | 118 (43.7%) | 60 (44.4%) | 74 (27.4%) | 46 (34.1%) | NA | NA | 132 (48.9%) | 68 (50.4%) | 138 (51.1%) | 67 (49.6%) | NA | NA | NA | NA |
Hussain et al., 2018 [12] | 79 | 74 | 68 (range 47–85) | 69 (range 50–90) | 36.4 (range 0.04–1074.4) | 32.7 (range 0.8–1557.6) | NA | NA | NA | NA | NA | NA | 68 (86.1%) | 64 (86.5%) | 53 (67.1%) | 45 (60.8%) | 21 (26.6%) | 13 (17.6%) | 16 (20.3%) | 13 (17.6%) | 50 (63.3%) | 46 (62.2%) | 28 (35.4%) | 28 (37.8%) | 1 (1.3%) | 0 | NA | NA |
Thiery-Vuillemin et al., 2022 [16]/De Bono et al., 2020 [13]/Hussain et al., 2020 [14]/Roubaud et al., 2022 [15] | 256 | 131 | 69 (IQR 63–74) | 69 (IQR 64–73) | 68.2 (IQR 24.1–294.4) | 106.5 (IQR 37.2–326.6) | 68 (26.6%) | 32 (24.4%) | 183 (71.5%) | 95 (72.5%) | 5 (1.9%) | 4 (3.1%) | 86 (33.6%) * | 38 (29.0%) * | NA | NA | 68 (26.6%) | 44 (33.6%) | 88 (34.4%) | 41 (31.3%) | 131 (51.2%) | 55 (42.0%) | 112 (43.7%) | 71 (54.2%) | 13 (5.1%) | 4 (3.0%) | 0 | 1 (0.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, Z.; Wang, Z.; Li, L.; Jiang, Y.; Tang, Y.; Wang, Y.; Hao, X.; Zhang, C.; Guo, X.; Yu, W.; et al. Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials. Medicina 2023, 59, 2198. https://doi.org/10.3390/medicina59122198
Chao Z, Wang Z, Li L, Jiang Y, Tang Y, Wang Y, Hao X, Zhang C, Guo X, Yu W, et al. Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials. Medicina. 2023; 59(12):2198. https://doi.org/10.3390/medicina59122198
Chicago/Turabian StyleChao, Zheng, Zefeng Wang, Le Li, Yi Jiang, Yunxing Tang, Yanan Wang, Xiaodong Hao, Chunyu Zhang, Xiangdong Guo, Weimin Yu, and et al. 2023. "Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials" Medicina 59, no. 12: 2198. https://doi.org/10.3390/medicina59122198
APA StyleChao, Z., Wang, Z., Li, L., Jiang, Y., Tang, Y., Wang, Y., Hao, X., Zhang, C., Guo, X., Yu, W., Cheng, F., & Wang, Z. (2023). Poly (ADP-ribose) Polymerase Inhibitors in Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis of Randomized Controlled Trials. Medicina, 59(12), 2198. https://doi.org/10.3390/medicina59122198