Impact of Preoperative Ureteral Stenting in Retrograde Intrarenal Surgery for Urolithiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Surgical Technique for Retrograde Intrarenal Surgery
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes, C.; Scotland, K.B.; Lange, D.; Chew, B.H. Innovations in ureteral stent technology. Urol. Clin. N. Am. 2019, 46, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Mawhorter, M.; Streeper, N.M. Advances in ureteral stent technology. Curr. Opin. Urol. 2022, 32, 415–419. [Google Scholar] [CrossRef]
- Kim, J.; Jung, H.D.; Moon, Y.J.; Han, H.; Cheon, B.; Han, J.; Cho, S.Y.; Lee, J.Y.; Kwon, D.-S. In vivo feasibility test of a new flexible ureteroscopic robotic system, easyuretero, for renal stone retrieval in a porcine model. Yonsei. Med. J. 2022, 63, 1106–1112. [Google Scholar] [CrossRef]
- Jung, H.D.; Moon, Y.J.; Almujalhem, A.J.; Alqahtani, A.A.; Alkhureeb, M.A.; Lee, J.Y. The first 100 cases of endoscopic combined intrarenal surgery in korea: Matched cohort analyses versus shock-wave lithotripsy. Yonsei. Med. J. 2022, 63, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Okada, S.; Hamamoto, S.; Fujisawa, M. Retrograde intrarenal surgery: Past, present, and future. Investig. Clin. Urol. 2021, 62, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Waseda, Y.; Takazawa, R.; Kobayashi, M.; Fuse, H.; Tamiya, T. Different failure rates of insertion of 10/12-fr ureteral access sheaths during retrograde intrarenal surgery in patients with and without stones. Investig. Clin. Urol. 2022, 63, 433–440. [Google Scholar] [CrossRef]
- Ambani, S.N.; Faerber, G.J.; Roberts, W.W.; Hollingsworth, J.M.; Wolf, J.S., Jr. Ureteral stents for impassable ureteroscopy. J. Endourol. 2013, 27, 549–553. [Google Scholar] [CrossRef]
- Natalin, R.A.; Hruby, G.W.; Okhunov, Z.; Singh, H.; Phillips, C.K.; Humphrey, P.A.; Gupta, M.; Landman, J. Pilot study evaluating ureteric physiological changes with a novel ‘ribbon stent’ design using electromyographic and giant magnetoresistive sensors. BJU Int. 2009, 103, 1128–1131. [Google Scholar] [CrossRef]
- Ramsey, S.; Robertson, A.; Ablett, M.J.; Meddings, R.N.; Hollins, G.W.; Little, B. Evidence-based drainage of infected hydronephrosis secondary to ureteric calculi. J. Endourol. 2010, 24, 185–189. [Google Scholar] [CrossRef]
- Guercio, S.; Ambu, A.; Mangione, F.; Mari, M.; Vacca, F.; Bellina, M. Randomized prospective trial comparing immediate versus delayed ureteroscopy for patients with ureteral calculi and normal renal function who present to the emergency department. J. Endourol. 2011, 25, 1137–1141. [Google Scholar] [CrossRef]
- Rubenstein, R.A.; Zhao, L.C.; Loeb, S.; Shore, D.M.; Nadler, R.B. Prestenting improves ureteroscopic stone-free rates. J. Endourol. 2007, 21, 1277–1280. [Google Scholar] [CrossRef]
- Lumma, P.P.; Schneider, P.; Strauss, A.; Plothe, K.D.; Thelen, P.; Ringert, R.H.; Loertzer, H. Impact of ureteral stenting prior to ureterorenoscopy on stone-free rates and complications. World J. Urol. 2013, 31, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Netsch, C.; Knipper, S.; Bach, T.; Herrmann, T.R.; Gross, A.J. Impact of preoperative ureteral stenting on stone-free rates of ureteroscopy for nephroureterolithiasis: A matched-paired analysis of 286 patients. Urology 2012, 80, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Shields, J.M.; Bird, V.G.; Graves, R.; Gómez-Marín, O. Impact of preoperative ureteral stenting on outcome of ureteroscopic treatment for urinary lithiasis. J. Urol. 2009, 182, 2768–2774. [Google Scholar] [CrossRef]
- Chu, L.; Sternberg, K.M.; Averch, T.D. Preoperative stenting decreases operative time and reoperative rates of ureteroscopy. J. Endourol. 2011, 25, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Ito, H.; Terao, H.; Ishigaki, H.; Ogawa, T.; Uemura, H.; Kubota, Y.; Matsuzaki, J. Preoperative stenting for ureteroscopic lithotripsy for a large renal stone. Int. J. Urol. 2012, 19, 881–885. [Google Scholar] [CrossRef]
- Türk, C.; Petřík, A.; Sarica, K.; Seitz, C.; Skolarikos, A.; Straub, M.; Knoll, T. Eau guidelines on interventional treatment for urolithiasis. Eur. Urol. 2016, 69, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Lee, B.K.; Park, Y.H.; Lee, S.; Jeong, S.J.; Lee, S.E.; Jeong, C.W. Modified seoul national university renal stone complexity score for retrograde intrarenal surgery. Urolithiasis 2014, 42, 335–340. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Cho, K.S.; Kim, D.H.; Jun, D.Y.; Moon, Y.J.; Lee, J.Y. A new parameter for calcium oxalate stones: Impact of linear calculus density on non-contrast computed tomography. Medicina 2023, 59, 267. [Google Scholar] [CrossRef]
- Jung, H.D.; Seo, I.Y.; Lee, J.Y. Large database study of urinary stone composition in south korea: Korean society of endourology and robotics (kser) research series. Investig Clin. Urol. 2021, 62, 462–469. [Google Scholar] [CrossRef]
- Mitropoulos, D.; Artibani, W.; Biyani, C.S.; Bjerggaard Jensen, J.; Rouprêt, M.; Truss, M. Validation of the clavien-dindo grading system in urology by the european association of urology guidelines ad hoc panel. Eur. Urol. Focus 2018, 4, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Mosayyebi, A.; Carugo, D. Computational simulation of the flow dynamic field in a porous ureteric stent. Med. Biol. Eng. Comput. 2022, 60, 2373–2387. [Google Scholar] [CrossRef]
- Kinn, A.C.; Lykkeskov-Andersen, H. Impact on ureteral peristalsis in a stented ureter. An experimental study in the pig. Urol. Res. 2002, 30, 213–218. [Google Scholar]
- Mosayyebi, A.; Vijayakumar, A.; Mosayebi, M.; Lange, D.; Somani, B.K.; Manes, C.; Carugo, D. The accumulation of particles in ureteric stents is mediated by flow dynamics: Full-scale computational and experimental modeling of the occluded and unoccluded ureter. APL Bioeng 2022, 6, 026102. [Google Scholar] [CrossRef] [PubMed]
- Law, Y.X.T.; Teoh, J.Y.C.; Castellani, D.; Lim, E.J.; Chan, E.O.T.; Wroclawski, M.; Pirola, G.M.; Giulioni, C.; Rubilotta, E.; Gubbioti, M. Role of pre-operative ureteral stent on outcomes of retrograde intra-renal surgery (rirs): Systematic review and meta-analysis of 3831 patients and comparison of asian and non-asian cohorts. World J. Urol. 2022, 40, 1377–1389. [Google Scholar] [CrossRef]
- Assimos, D.; Crisci, A.; Culkin, D.; Xue, W.; Roelofs, A.; Duvdevani, M.; Desai, M.; de la Rosette, J. Preoperative jj stent placement in ureteric and renal stone treatment: Results from the clinical research office of endourological society (croes) ureteroscopy (urs) global study. BJU Int. 2016, 117, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Jun, D.Y.; Cho, K.S.; Jeong, J.Y.; Moon, Y.J.; Kang, D.H.; Jung, H.D.; Lee, J.Y. Comparison of surgical outcomes between single-use and reusable flexible ureteroscopes for renal stone management: A systematic review and meta-analysis. Medicina 2022, 58, 1388. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, C.; He, D.; Lu, Y.; Hu, H.; Qin, B.; Wang, Y.; Wang, Q.; Li, C.; Wang, S. Flexible ureteroscopy for renal stone without preoperative ureteral stenting shows good prognosis. PeerJ 2016, 4, e2728. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Sakamaki, K.; Kawahara, T.; Terao, H.; Yasuda, K.; Kuroda, S.; Yao, M.; Kubota, Y.; Matsuzaki, J. Development and internal validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones. BJU Int. 2015, 115, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.M.; Louie, M.; Mucksavage, P. Ureteral stent discomfort and its management. Curr. Urol. Rep. 2018, 19, 64. [Google Scholar] [CrossRef] [PubMed]
- Scotland, K.B.; Lo, J.; Grgic, T.; Lange, D. Ureteral stent-associated infection and sepsis: Pathogenesis and prevention: A review. Biofouling 2019, 35, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chugh, S.; Pietropaolo, A.; Montanari, E.; Sarica, K.; Somani, B.K. Predictors of urinary infections and urosepsis after ureteroscopy for stone disease: A systematic review from eau section of urolithiasis (eulis). Curr. Urol. Rep. 2020, 21, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuller, T.W.; Rycyna, K.J.; Ayyash, O.M.; Ferroni, M.C.; Mitchell, C.R.; Ohmann, E.; Wollin, D.A.; Shah, O.; Miller, N.L.; Semins, M.J. Defining the rate of primary ureteroscopic failure in unstented patients: A multi-institutional study. J. Endourol. 2016, 30, 970–974. [Google Scholar] [CrossRef] [PubMed]
Stentless Group (n = 106) | Stenting Group (n = 154) | p-Value | |
---|---|---|---|
Age | 58.5 ± 14.0 | 57.6 ± 13.9 | 0.608 a |
Sex | 0.415 b | ||
-Male | 55 (51.9%) | 89 (57.8%) | |
-Female | 51 (48.1%) | 65 (42.2%) | |
BMI | 24.9 ± 3.8 | 25.2 ± 5.6 | 0.559 a |
Laterality | 0.754 b | ||
-Left | 58 (54.7%) | 80 (51.9%) | |
-Right | 48 (45.3%) | 74 (48.1%) | |
Hydronephrosis | 49 (46.2%) | 96 (62.3%) | 0.015 b |
MSL (mm) | 11.2 ± 5.4 | 11.9 ± 5.4 | 0.353 a |
mS.ReSC score | 2.2 ± 1.5 | 2.5 ± 1.6 | 0.115 a |
Stone composition group | 0.25 b | ||
-Struvite | 31 (29.2%) | 49 (31.8%) | |
-Cystine | 0 (0.0%) | 0 (0.0%) | |
-Uric acid | 16 (15.1%) | 44 (28.6%) | |
-Brushite | 1 (0.9%) | 0 (0.0%) | |
-Calcium oxalate | 52 (49.1%) | 56 (36.4%) | |
-Carbonate apatite | 6 (5.7%) | 3 (1.9%) | |
-Others | 0 (0.0%) | 2 (1.3%) * |
Stentless Group (n = 106) | Stenting Group (n = 154) | p-Value | |
---|---|---|---|
Operative time | 36.1 ± 17.6 | 44.8 ± 24.2 | 0.001 a |
Complication | 0.523 b | ||
-CD grade 1 | 16 (15.1%) | 18 (11.7%) | |
-CD grade 2 | 2 (1.9%) | 4 (2.6%) | |
-CD grade 3a | 1 (0.9%) | 0 (0.0%) | |
-CD grade 3b | 0 (0.0%) | 0 (0.0%) | |
Stone-free rate * | 97 (91.5%) | 189 (90.3%) | 0.901 b |
Odds Ratio | 95% CI | p-Value | |
---|---|---|---|
Univariate | |||
Hydronephrosis | 1.031 | 0.570–0.853 | 0.917 |
Preoperative stenting | 0.942 | 0.514–1.701 | 0.845 |
MSL | 0.884 | 0.836–0.932 | <0.001 |
mS-ReSC | 0.635 | 0.527–0.759 | <0.001 |
Composition group * | |||
Struvite | 0.726 | 0.395–1.360 | 0.31 |
Uric acid | 1.194 | 0.600–2.525 | 0.625 |
Calcium oxalate | 1.008 | 0.559–1.838 | 0.978 |
Multivariate | |||
MSL | 0.920 | 0.865–0.976 | 0.006 |
mS-ReSC | 0.707 | 0.578–0.860 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.Y.; Cho, K.S.; Jun, D.Y.; Moon, Y.J.; Kang, D.H.; Jung, H.D.; Lee, J.Y. Impact of Preoperative Ureteral Stenting in Retrograde Intrarenal Surgery for Urolithiasis. Medicina 2023, 59, 744. https://doi.org/10.3390/medicina59040744
Jeong JY, Cho KS, Jun DY, Moon YJ, Kang DH, Jung HD, Lee JY. Impact of Preoperative Ureteral Stenting in Retrograde Intrarenal Surgery for Urolithiasis. Medicina. 2023; 59(4):744. https://doi.org/10.3390/medicina59040744
Chicago/Turabian StyleJeong, Jae Yong, Kang Su Cho, Dae Young Jun, Young Joon Moon, Dong Hyuk Kang, Hae Do Jung, and Joo Yong Lee. 2023. "Impact of Preoperative Ureteral Stenting in Retrograde Intrarenal Surgery for Urolithiasis" Medicina 59, no. 4: 744. https://doi.org/10.3390/medicina59040744
APA StyleJeong, J. Y., Cho, K. S., Jun, D. Y., Moon, Y. J., Kang, D. H., Jung, H. D., & Lee, J. Y. (2023). Impact of Preoperative Ureteral Stenting in Retrograde Intrarenal Surgery for Urolithiasis. Medicina, 59(4), 744. https://doi.org/10.3390/medicina59040744