Discriminant Model for Insulin Resistance in Type 2 Diabetic Patients
Abstract
:1. Introduction
2. Methods
2.1. Information Collection
2.2. Complementary Exams
2.3. Preparation and Processing of Information
2.4. Fisher’s Linear Discriminant Function
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.Y.; Gautier, J.-F.; Chon, S. Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab. J. 2021, 45, 641–654. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497920/ (accessed on 7 December 2022). [CrossRef] [PubMed]
- Kang, E.S.; Yun, Y.S.; Park, S.W.; Kim, H.J.; Ahn, C.W.; Song, Y.D.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Lee, H.C. Limitation of the validity of the homeostasis model assessment as an index of insulinresistance in Korea. Metabolism 2005, 54, 206–211. Available online: https://www.sciencedirect.com/science/article/pii/S0026049504003324 (accessed on 7 December 2022). [CrossRef]
- Van Minh, H.; Tien, H.A.; Sinh, C.T.; Thang, D.C.; Chen, C.; Tay, J.C.; Siddique, S.; Wang, T.; Sogunuru, G.P.; Chia, Y.; et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J. Clin. Hypertens. 2021, 23, 529–537. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029536/ (accessed on 7 July 2022). [CrossRef] [PubMed]
- Zhu, Y.; Hu, Y.; Huang, T.; Zhang, Y.; Li, Z.; Luo, C.; Luo, Y.; Yuan, H.; Hisatome, I.; Yamamoto, T.; et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem. Biophys. Res. Commun. 2014, 447, 707–714. Available online: https://www.sciencedirect.com/science/article/pii/S0006291X14007311 (accessed on 14 March 2022). [CrossRef] [PubMed]
- Wallace, T.M.; Matthews, D.R. The assessment of insulin resistance in man. Diabet. Med. 2002, 19, 527–534. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1464-5491.2002.00745.x (accessed on 7 December 2022). [CrossRef]
- Unger, G.; Benozzi, S.F.; Perruzza, F.; Pennacchiotti, G.L. Índice triglicéridos y glucosa: Un indicador útil de insulinorresistencia. Endocrinol. Nutr. 2014, 61, 533–540. Available online: https://www.elsevier.es/es-revista-endocrinologia-nutricion-12-articulo-indice-trigliceridos-glucosa-un-indicador-S1575092214002009 (accessed on 7 December 2022). [CrossRef] [PubMed]
- Añez, R.; Morillo, J.; Rojas, M.; Torres, Y.; Apruzzese, V.; Martínez, M.S.; Salazar, J.; Rojas, J.; Bermúdez, V. Punto de corte de homeostasis model assessment (HOMA-IR) para determinar insulinorresistencia en individuos adultos del municipio Maracaibo-Estado Zulia, Venezuela. Av. En. Biomed 2016, 4, 9–18. Available online: https://www.redalyc.org/journal/3313/331338651003/html/ (accessed on 7 December 2022).
- Joo, H.J.; Kim, G.R.; Park, E.-C.; Jang, S.-I. Association between Frequency of Breakfast Consumption and Insulin Resistance Using Triglyceride-Glucose Index: A Cross-Sectional Study of the Korea National Health and Nutrition Examination Survey (2016–2018). Int. J. Environ. Res. Public Health 2020, 17, 3322. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246451/ (accessed on 7 December 2022). [CrossRef]
- Yanes Quesada, M.; Cruz Hernández, J.; Cabrera Rode, E.; González Hernández, O.; Calderin Bouza, R.; Yanes Quesada, M.A. Índice glucosa-triglicéridos como marcador de resistencia a la insulina en pacientes con diagnóstico de hipertensión arterial esencial. Rev. Cuba. Med. 2020, 59, 1. Available online: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0034-75232020000100003&lng=es&nrm=iso&tlng=es (accessed on 7 December 2022).
- Vila Nova, L.P. Asociación de los indicadores antropométricos y de composición corporal en la predicción de la resistencia a la insulina en pacientes con enfermedad de las arterias coronarias. NutrHosp 2016, 33, 376. Available online: http://revista.nutricionhospitalaria.net/index.php/nh/article/view/376 (accessed on 7 December 2022). [CrossRef]
- Barrios, Y.; Carías, D.; Sánchez, A.; Barón, M.A.; Curiel, S.; Fernández, M. Variables antropométricas que estiman adiposidad como predictores de resistencia a la insulina en mujeres posmenopáusicas con exceso de peso. Rev Venezo Endocrinol. Metab. 2013, 11, 917. Available online: http://www.saber.ula.ve/handle/123456789/37018 (accessed on 7 December 2022).
- McLachlan, G.J. Discriminant analysis and statistical pattern recognition. In Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1992; p. 526. [Google Scholar]
- Castro-Juárez, C.J.; Cabrera-Pivaral, C.E.; Ramírez-García, S.A.; García-Sierra, L.; Morales-Pérez, L.; Ramírez-Concepción, H.R. Factores de riesgo para enfermedad cardiovascular en adultos mexicanos. Rev. Méd. MD 2018, 8, 152–162. Available online: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=77487 (accessed on 7 December 2022).
- Arrieta, F.; Iglesias, P.; Pedro-Botet, J.; Tébar, F.J.; Ortega, E.; Nubiola, A.; Pardo, J.L.; Maldonado, G.F.; Obaya, J.C.; Matute, P.; et al. Diabetes mellitus y riesgo cardiovascular: Recomenda-ciones del Grupo de Trabajo Diabetes y Enfermedad Cardiovascular de la Sociedad Española de Diabetes (SED, 2015). Aten Primaria 2016, 48, 325–336. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877822/ (accessed on 7 December 2022). [CrossRef] [PubMed]
- González Roca, R. Indicadores de riesgo aterogénico como predictores de síndrome metabólico en una población del munici-pio Sifontes del estado Bolívar, Venezuela. Saber 2016, 28, 221–229. Available online: http://ve.scielo.org/scielo.php?script=sci_abstract&pid=S1315-01622016000200004&lng=es&nrm=iso&tlng=es (accessed on 7 December 2022).
- Ortega, J.L.D.; Peláez, M.E.R. Waist circumference and its relation to the basal level of glucose in adult patients Hospital of Leon-cio Prado, Huamachuco. Febrero-Marzo, 2015. Crescendo 2016, 7, 25–34. Available online: https://revistas.uladech.edu.pe/index.php/increscendo/article/view/1336 (accessed on 7 December 2022). [CrossRef]
- Miao, Z.; Alvarez, M.; Ko, A.; Bhagat, Y.; Rahmani, E.; Jew, B.; Heinonen, S.; Muñoz-Hernandez, L.L.; Herrera-Hernandez, M.; Aguilar-Salinas, C.; et al. The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance. PLoS Genet. 2020, 16, e1009018. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515203/ (accessed on 7 December 2022). [CrossRef]
- Ascaso, J.F.; Romero, P.; Real, J.T.; Priego, A.; Valdecabres, C.; Carmena, R. Insulin resistance quantification by fasting insulin plasma values and HOMA index in a non-diabetic population. Med. Clin. 2001, 117, 530–533. Available online: https://pubmed.ncbi.nlm.nih.gov/11707218/ (accessed on 7 December 2022). [CrossRef]
- Chang, S.A.; Kim, H.S.; Yoon, K.H.; Ko, S.H.; Kwon, H.S.; Kim, S.R.; Lee, W.C.; Yoo, S.J.; Son, H.S.; Cha, B.Y.; et al. Body mass index is the most important determining factor for the degree of insulin resistance in non-obese type 2 diabetic patients in Korea. Metabolism 2004, 53, 142–146. Available online: https://pubmed.ncbi.nlm.nih.gov/14767863/ (accessed on 7 December 2022). [CrossRef]
- Paradisi, G.; Smith, L.; Burtner, C.; Leaming, R.; Garvey, W.T.; Hook, G.; Johnson, A.; Cronin, J.; O Steinberg, H.; Baron, A.D. Dual energy X-ray absorptiometry assessment of fat mass distribution and its association with the insulin resistance syndrome. Diabetes Care 1999, 22, 1310–1317. Available online: https://diabetesjournals.org/care/article/22/8/1310/21550/Dual-energy-X-ray-absorptiometry-assessment-of-fat (accessed on 16 March 2022). [CrossRef]
- Matos, L.N.; de Giorelli, G.V.; Dias, C.B. Correlation of anthropometric indicators for identifying insulin sensitivity and re-sistance. Sao Paulo Med. J. Rev. Paul Med. 2011, 129, 30–35. Available online: https://pubmed.ncbi.nlm.nih.gov/21437506/ (accessed on 7 December 2022). [CrossRef]
- Raji, A.; Seely, E.W.; Arky, R.A.; Simonson, D.C. Body Fat Distribution and Insulin Resistance in Healthy Asian Indians and Caucasians. J. Clin. Endocrinol. Metab. 2001, 86, 5366–5371. [Google Scholar] [CrossRef] [PubMed]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of adipose tissue inflammation to the devel-op-ment of type 2 diabetes mellitus. Compr. Physiol. 2018, 9, 1–58. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557583/ (accessed on 3 July 2022). [PubMed]
- Fabbrini, E.; Magkos, F.; Mohammed, B.S.; Pietka, T.; Abumrad, N.A.; Patterson, B.W.; Okunade, A.; Klein, S. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. USA 2009, 106, 15430–15435. [Google Scholar] [CrossRef] [PubMed]
- Soto, N.I. Tabaquismo y Diabetes. Rev. Chil. Enferm. Respir. 2017, 33, 222–224. Available online: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-73482017000300222&lng=es (accessed on 7 December 2022). [CrossRef]
- San Miguel, M.G.F.; Abreu, C.C. Tabaquismo y diabetes. Rev. Inst. Nal. Enf. Resp. Mex. 2007, 20, 149–158. Available online: https://www.medigraphic.com/pdfs/iner/in-2007/in072i.pdf (accessed on 7 December 2022).
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. Available online: https://link.springer.com/article/10.1007/BF00280883 (accessed on 7 December 2022). [CrossRef]
- Lee, M.J.; Wu, Y.; Fried, S.K. Adipose Tissue Heterogeneity: Implication of depot differences in adipose tissue for Obesity Com-plications. Mol. Asp. Med. 2013, 34, 1–11. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549425/ (accessed on 14 March 2022). [CrossRef] [PubMed]
Variables | Presence of Insulin Resistance | p | |||
---|---|---|---|---|---|
No | Yes | ||||
DS | DS | ||||
Age | 50.47 | 10.38 | 51.25 | 8.73 | 0.703 |
Weight | 74.66 | 10.44 | 83.10 | 13.57 | 0.003 |
Body Mass Index (BMI) | 27.91 | 3.90 | 30.88 | 4.36 | 0.002 |
Hip Circumference | 95.78 | 10.80 | 102.57 | 10.82 | 0.005 |
Waist–Hip Index | 0.956 | 0.106 | 1.01 | 0.11 | 0.018 |
Waist–Height Index | 0.559 | 0.077 | 0.636 | 0.092 | 0.000 |
Body Adiposity index | 28.06 | 6988 | 30.99 | 5662 | 0.033 |
Conicity Index | 1.2413 | 0.113 | 1.34 | 0.125 | 0.000 |
Glycemia (GLY) | 6.83 | 1.55 | 8417 | 1.63 | 0.000 |
Insulinemia | 3231 | 2303 | 11,012 | 3486 | 0.000 |
Cholesterol | 4.12 | 1.13 | 5.35 | 1.03 | 0.000 |
Low-density lipoprotein (LDL-c) | 2.01 | 0.81 | 2.78 | 0.69 | 0.000 |
Triglycerides/Glucose Index (TGI) | 8.9629 | 0.510 | 9.6236 | 0.545 | 0.000 |
Median | Range | Median | Range | ||
Age at debut | 48.5 | 40 | 48 | 36 | 0.582 |
Diabetes evolution time | 3 | 15.33 | 5.5 | 11.25 | 0.000 |
Tobacco exposure time (TET) | 0 | 30 | 12 | 32 | 0.006 |
Systolic blood pressure | 120 | 60 | 135 | 70 | 0.079 |
Diastolic blood pressure | 80 | twenty | 90 | fifty | 0.000 |
Mean arterial pressure | 95 | 37 | 103 | fifty | 0.002 |
Size | 1635 | 0.38 | 1.63 | 0.30 | 0.780 |
Waist circumference | 90 | 53 | 101.5 | 59 | 0.000 |
Visceral adiposity index | 1875 | 6.23 | 5.26 | 71.57 | 0.000 |
HOMA-IR | 0.8 | 2.41 | 3705 | 4.59 | 0.000 |
Triglycerides | 1.7 | 2.29 | 2.7 | 5.76 | 0.000 |
High-density lipoprotein (HDL-c) | 1.25 | 1.2 | 0.9 | 1.4 | 0.000 |
Triglycerides/HDL-c Index (THI) | 1255 | 3.1 | 2865 | 32.8 | 0.000 |
Proatherogenic Index | 1.5 | 3.77 | 3195 | 12.56 | 0.000 |
Castelli Index | 3465 | 3.97 | 5.89 | 33.83 | 0.000 |
Mean fasting blood glucose | 5.85 | 3.6 | 7.15 | 4.8 | 0.000 |
Average postprandial blood glucose | 12.65 | 5 | 14.1 | 6 | 0.000 |
Discriminant model | −8.29075 | 9.7459 | −1.9262 | 12.9878 | 0.000 |
Variables in the Model | Structure Matrix | Discrimination Coefficients (ap) | p | |
---|---|---|---|---|
Insulin Resistance | ||||
No | Yes | |||
TET (X1) | 0.24 | −0.186 | −0.075 | 0.000 |
BMI (X2) | 0.28 | 2457 | 2257 | |
GLY (X3) | 0.39 | 1612 | 2263 | |
LDL-c (X4) | 0.41 | −0.943 | 0.712 | |
HDL-c (X5) | −0.69 | 37,235 | 28,445 | |
Constant (a0) | - | −62,940 | −57,662 |
Parameters | Cut-Off Point | Sensitivity | Specificity | PPV | VPN | Youden’s Index | Area under the Curve | p |
---|---|---|---|---|---|---|---|---|
TET (X1) | 1.5 | 0.68 | 0.62 | 0.77 | 0.51 | 0.30833 | 0.66 | 0.008 |
BMI (X2) | 29.17 | 0.68 | 0.78 | 0.85 | 0.56 | 0.46458 | 0.70 | 0.001 |
GLY (X3) | 7.95 | 0.66 | 0.81 | 0.86 | 0.56 | 0.47916 | 0.75 | 0.000 |
HDL-c (X4) | 1025 | 0.90 | 0.88 | 0.94 | 0.80 | 0.78958 | 0.91 | 0.000 |
LDL-c (X5) | 2.05 | 0.85 | 0.56 | 0.78 | 0.66 | 0.41250 | 0.76 | 0.000 |
Discriminant model | −5.4893 | 0.95 | 0.90 | 0.95 | 0.90 | 0.85625 | 0.96 | 0.000 |
TGI | 8.94 | 0.95 | 0.53 | 0.79 | 0.85 | 0.48125 | 0.81 | 0.000 |
THI | 1.85 | 0.91 | 0.87 | 0.93 | 0.84 | 0.79166 | 0.93 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Galán, E.; Barrio-Deler, R.; Fernández-Fernández, M.A.; Del Toro-Delgado, Y.; Peñuela-Puente, I.E.; Sánchez-Hechavarría, M.E.; Muñoz-Bustos, M.E.; Muñoz-Bustos, G.A. Discriminant Model for Insulin Resistance in Type 2 Diabetic Patients. Medicina 2023, 59, 839. https://doi.org/10.3390/medicina59050839
López-Galán E, Barrio-Deler R, Fernández-Fernández MA, Del Toro-Delgado Y, Peñuela-Puente IE, Sánchez-Hechavarría ME, Muñoz-Bustos ME, Muñoz-Bustos GA. Discriminant Model for Insulin Resistance in Type 2 Diabetic Patients. Medicina. 2023; 59(5):839. https://doi.org/10.3390/medicina59050839
Chicago/Turabian StyleLópez-Galán, Erislandis, Rafael Barrio-Deler, Manuel Alejandro Fernández-Fernández, Yaquelin Del Toro-Delgado, Isaac Enrique Peñuela-Puente, Miguel Enrique Sánchez-Hechavarría, Mario Eugenio Muñoz-Bustos, and Gustavo Alejandro Muñoz-Bustos. 2023. "Discriminant Model for Insulin Resistance in Type 2 Diabetic Patients" Medicina 59, no. 5: 839. https://doi.org/10.3390/medicina59050839
APA StyleLópez-Galán, E., Barrio-Deler, R., Fernández-Fernández, M. A., Del Toro-Delgado, Y., Peñuela-Puente, I. E., Sánchez-Hechavarría, M. E., Muñoz-Bustos, M. E., & Muñoz-Bustos, G. A. (2023). Discriminant Model for Insulin Resistance in Type 2 Diabetic Patients. Medicina, 59(5), 839. https://doi.org/10.3390/medicina59050839