Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Operative Techniques
2.4. Concomitant Procedures
2.5. Data Collection
2.6. Outcomes and Definitions
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Intraoperative Characteristics
3.3. Postoperative Outcomes and Survival
4. Discussion
Study and Clinical Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, J.M.; O’Brien, S.M.; Wu, C.; Sikora, J.A.H.; Griffith, B.P.; Gammie, J.S. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: Changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 2009, 137, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Frilling, B.; von Renteln-Kruse, W.; Riess, F.C. Evaluation of operative risk in elderly patients undergoing aortic valve replacement: The predictive value of operative risk scores. Cardiology 2010, 116, 213–218. [Google Scholar] [CrossRef]
- Zubarevich, A.; Szczechowicz, M.; Zhigalov, K.; Osswald, A.; Eynde, J.V.D.; Rad, A.A.; Vardanyan, R.; Wendt, D.; Schmack, B.; Ruhparwar, A.; et al. Sutureless aortic valve replacement in multivalve procedures. J. Thorac. Dis. 2021, 13, 3392–3398. [Google Scholar] [CrossRef]
- Hori, D.; Yamaguchi, A. Redo Aortic Valve Replacement. Kyobu Geka 2021, 74, 740–745. [Google Scholar] [PubMed]
- Onorati, F.; Biancari, F.; De Feo, M.; Mariscalco, G.; Messina, A.; Santarpino, G.; Santini, F.; Beghi, C.; Nappi, G.; Troise, G.; et al. Mid-term results of aortic valve surgery in redo scenarios in the current practice: Results from the multicentre European RECORD (REdo Cardiac Operation Research Database) initiative†. Eur. J. Cardiothorac. Surg. 2015, 47, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Leontyev, S.; Borger, M.; Davierwala, P.; Walther, T.; Lehmann, S.; Kempfert, J.; Mohr, F.W. Redo aortic valve surgery: Early and late outcomes. Ann. Thorac. Surg. 2011, 91, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Launcelott, S.; Ouzounian, M.; Buth, K.J.; Légaré, J.F. Predicting in-hospital mortality after redo cardiac operations: Development of a preoperative scorecard. Ann. Thorac. Surg. 2012, 94, 778–784. [Google Scholar] [CrossRef]
- Goldstone, A.B.; Chiu, P.; Baiocchi, M.; Lingala, B.; Patrick, W.L.; Fischbein, M.P.; Woo, Y.J. Mechanical or Biologic Prostheses for Aortic-Valve and Mitral-Valve Replacement. N. Engl. J. Med. 2017, 377, 1847–1857. [Google Scholar] [CrossRef]
- Santarpino, G.; Pietsch, L.E.; Jessl, J.; Pfeiffer, S.; Pollari, F.; Pauschinger, M.; Fischlein, T. Transcatheter aortic valve-in-valve implantation and sutureless aortic valve replacement: Two strategies for one goal in redo patients. Minerva Cardioangiol. 2016, 64, 581–585. [Google Scholar]
- Santarpino, G.; Berretta, P.; Kappert, U.; Teoh, K.; Mignosa, C.; Meuris, B.; Villa, E.; Albertini, A.; Carrel, T.P.; Misfeld, M.; et al. Minimally Invasive Redo Aortic Valve Replacement: Results From a Multicentric Registry (SURD-IR). Ann. Thorac. Surg. 2020, 110, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Ahmed, A.; Levy, K.H. Valve-in-valve transcatheter aortic valve replacement versus redo surgical aortic valve replacement: A systematic review and meta-analysis. J. Card. Surg. 2021, 36, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Tam, D.Y.; Vo, T.X.; Wijeysundera, H.C.; Dvir, D.; Friedrich, J.O.; Fremes, S.E. Transcatheter valve-in-valve versus redo surgical aortic valve replacement for the treatment of degenerated bioprosthetic aortic valve: A systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 2018, 92, 1404–1411. [Google Scholar] [CrossRef]
- Sá, M.P.B.O.; Van den Eynde, J.; Simonato, M.; Cavalcanti, L.R.P.; Doulamis, I.P.; Weixler, V.; Kampaktsis, P.N.; Gallo, M.; Laforgia, P.L.; Zhigalov, K.; et al. Valve-in-Valve Transcatheter Aortic Valve Replacement Versus Redo Surgical Aortic Valve Replacement: An Updated Meta-Analysis. JACC Cardiovasc. Interv. 2021, 14, 211–220. [Google Scholar] [CrossRef]
- Vendramin, I.; Lechiancole, A.; Piani, D.; Nucifora, G.; Benedetti, G.; Sponga, S.; Muser, D.; Bortolotti, U.; Livi, U. Use of Sutureless and Rapid Deployment Prostheses in Challenging Reoperations. J. Cardiovasc. Dev. Dis. 2021, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Szczechowicz, M.; Arjomandi Rad, A.; Amanov, L.; Ruhparwar, A.; Weymann, A. Conventional Biological versus Sutureless Aortic Valve Prostheses in Combined Aortic and Mitral Valve Replacement. Life 2023, 13, 737. [Google Scholar] [CrossRef]
- Folliguet, T.A.; Laborde, F.; Zannis, K.; Ghorayeb, G.; Haverich, A.; Shrestha, M. Sutureless perceval aortic valve replacement: Results of two European centers. Ann. Thorac. Surg. 2012, 93, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Dhanekula, A.S.; Nishath, T.; Aldea, G.S.; Burke, C.R. Use of a sutureless aortic valve in reoperative aortic valve replacement. JTCVS Tech. 2022, 13, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Mashhour, A.; Zhigalov, K.; Szczechowicz, M.; Mkalaluh, S.; Easo, J.; Eichstaedt, H.; Borodin, D.; Ennker, J.; Weymann, A. Snugger method—The Oldenburg modification of perceval implantation technique. World J. Cardiol. 2018, 10, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Ramlawi, B.; Ramchandani, M.; Reardon, M.J. Surgical Approaches to Aortic Valve Replacement and Repair—Insights and Challenges. Interv. Cardiol. 2014, 9, 32–36. [Google Scholar] [CrossRef]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. Eur. Heart J. 2012, 33, 2403–2418. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Rad, A.A.; Amanov, L.; Szczechowicz, M.; Osswald, A.; Torabi, S.; Schmack, B.; Ruhparwar, A.; Weymann, A. Sutureless aortic valve replacement in pure aortic regurgitation: Expanding the indications. J. Cardiothorac. Surg. 2022, 17, 198. [Google Scholar] [CrossRef]
- Santarpino, G.; Pfeiffer, S.; Concistrè, G.; Fischlein, T. REDO aortic valve replacement: The sutureless approach. J. Heart Valve Dis. 2013, 22, 615–620. [Google Scholar]
- Matthews, I.G.; Fazal, I.A.; Bates, M.G.D.; Turley, A.J. In patients undergoing aortic valve replacement, what factors predict the requirement for permanent pacemaker implantation? Interact. Cardiovasc. Thorac. Surg. 2011, 12, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Nalluri, N.; Atti, V.; Munir, A.B.; Karam, B.; Patel, N.J.; Kumar, V.; Vemula, P.; Edla, S.; Asti, D.; Paturu, A.; et al. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo-Surgical aortic valve replacement (redo-SAVR): A systematic review and meta-analysis. J. Interv. Cardiol. 2018, 31, 661–671. [Google Scholar] [CrossRef]
- Rad, A.A.; Naruka, V.; Vardanyan, R.; Salmasi, M.Y.; Tasoudis, P.T.; Kendall, S.; Casula, R.; Athanasiou, T. Renal outcomes in valve-in-valve transcatheter versus redo surgical aortic valve replacement: A systematic review and meta-analysis. J. Card. Surg. 2022, 37, 3743–3753. [Google Scholar]
- Szecel, D.; Lamberigts, M.; Rega, F.; Verbrugghe, P.; Dubois, C.; Meuris, B. Avoiding oversizing in sutureless valves leads to lower transvalvular gradients and less permanent pacemaker implants postoperatively. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac157. [Google Scholar] [CrossRef] [PubMed]
- Vogt, F.; Pfeiffer, S.; Dell’Aquila, A.M.; Fischlein, T.; Santarpino, G. Sutureless aortic valve replacement with Perceval bioprosthesis: Are there predicting factors for postoperative pacemaker implantation? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 253–258. [Google Scholar] [CrossRef]
- Davierwala, P.M.; Borger, M.A.; David, T.E.; Rao, V.; Maganti, M.; Yau, T.M. Reoperation is not an independent predictor of mortality during aortic valve surgery. J. Thorac. Cardiovasc. Surg. 2006, 131, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Dvir, D.; Webb, J.; Brecker, S.; Bleiziffer, S.; Hildick-Smith, D.; Colombo, A.; Descoutures, F.; Hengstenberg, C.; Moat, N.E.; Bekeredjian, R.; et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: Results from the global valve-in-valve registry. Circulation 2012, 126, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E. Transapical aortic “valve-in-valve” procedure for degenerated stented bioprosthesis. Eur. J. Cardiothorac. Surg. 2012, 41, 485–490. [Google Scholar] [CrossRef]
- Bortolotti, U.; Milano, A.; Mossuto, E.; Mazzaro, E.; Thiene, G.; Casarotto, D. Early and late outcome after reoperation for prosthetic valve dysfunction: Analysis of 549 patients during a 26-year period. J. Heart Valve Dis. 1994, 3, 81–87. [Google Scholar]
- Bortolotti, U.; Milano, A.D.; Valente, M.; Thiene, G. The Stented Porcine Bioprosthesis: A 50-Year Journey Through Hopes and Realities. Ann. Thorac. Surg. 2019, 108, 304–308. [Google Scholar] [CrossRef]
- Formica, F.; Gallingani, A.; Tuttolomondo, D.; Hernandez-Vaquero, D.; D’Alessandro, S.; Pattuzzi, C.; Çelik, M.; Singh, G.; Ceccato, E.; Niccoli, G.; et al. Redo Surgical Aortic Valve Replacement versus Valve-In-Valve Transcatheter Aortic Valve Implantation: A Systematic Review and Reconstructed Time-To-Event Meta-Analysis. J. Clin. Med. 2023, 12, 541. [Google Scholar] [CrossRef] [PubMed]
- Falcetta, G.; Del Re, F.; Pratali, S.; Bortolotti, U. Replacement of a Calcified Aortic Valve in a Porcine Aortic Root with the Perceval Sutureless Bioprosthesis. Aorta 2022, 10, 302–303. [Google Scholar] [CrossRef]
- Sponga, S.; Daffarra, C.; Pavoni, D.; Vendramin, I.; Mazzaro, E.; Piani, D.; Nalli, C.; Nucifora, G.; Livi, U. Surgical management of destructive aortic endocarditis: Left ventricular outflow reconstruction with the Sorin Pericarbon Freedom stentless bioprosthesis†. Eur. J. Cardiothorac. Surg. 2016, 49, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Lio, A.; Miceli, A.; Solinas, M.; Glauber, M. Initial Experience with Sutureless Sorin Perceval S Aortic Prosthesis for the Treatment of Prosthetic Valve Endocarditis. Thorac. Cardiovasc. Surg. 2015, 63, 501–503. [Google Scholar]
- Zubarevich, A.; Rad, A.A.; Szczechowicz, M.; Ruhparwar, A.; Weymann, A. Sutureless aortic valve replacement in high-risk patients with active infective endocarditis. J. Thorac. Dis. 2022, 14, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
Age | 67.9 ± 11.1 |
---|---|
BMI, kg/m2 | 27.5 ± 3.4 |
Atrial fibrillation | 7 (38.9%) |
Arterial hypertension | 16 (88.9%) |
Pulmonary hypertension | 3 (16.7%) |
Diabetes mellitus type 2 | 4 (22.2%) |
Chronic obstructive pulmonary disease | 3 (16.7%) |
Coronary artery disease | 12 (66.7%) |
Chronic kidney injury | 10 (55.6%) |
Creatinine, g/dL | 1.7 ± 1.5 |
Infective endocarditis | 5 (27.8%) |
Previous operation: | |
SAVR | 12 (66.7%) |
Bentall | 1 (5.6%) |
CABG | 5 (27.8%) |
David | 1 (5.6%) |
SMVR | 2 (11.1%) |
STVRp | 1 (5.6%) |
PDA closure | 1 (5.6%) |
TA-TAVR | 1 (5.6%) |
EuroSCORE II, % | 7.8 (IQR of 3.8–32.0) |
Time since the first operation, days | 1561.5 (IQR of 1232.7–3504.0) |
Time since the first operation, years | 4.28 (IQR of 3.8–9.6) |
AV-MPG, mmHg | 35.6 ± 18.2 |
AR moderate or greater | 7 (38.9%) |
AS moderate or greater | 9 (50%) |
MS moderate or greater | 1 (5.6%) |
MR moderate or greater | 5 (27.8%) |
TAPSE, mm | 20.8 ± 3.0 |
EF, % | 47.9 ± 12.7 |
Procedural Time, min | 158.7 ± 73.3 |
---|---|
CPB time, min | 103.3 ± 50.0 |
CC time, min | 69.1 ± 38.8 |
Urgency of the procedure | |
elective | 7 (38.9%) |
urgent | 8 (44.4%) |
emergent | 3 (16.7%) |
Concomitant procedure | |
CABG | 1 (5.6%) |
SMVR | 4 (22.2%) |
SMVRp | 2 (11.1%) |
TMVRp | 2 (11.1%) |
Myectomy | 1 (5.6%) |
Perceval size | |
S (21 mm) | 2 (11.1%) |
M (23 mm) | 7 (38.9%) |
L (25 mm) | 3 (16.7%) |
XL (27 mm) | 6 (33.3%) |
Postoperative MPG, mmHg | 7.3 ± 2.4 |
---|---|
Paravalvular leakage | 0 |
30-day mortality | 2 (11.1%) |
In-hospital length of stay | 11.4 ± 6.2 |
ICU length of stay | 4.5 (IQR of 2.0–7.25) |
New onset dialysis | 4 (22.2%) |
Stroke | 0 |
New pacemaker implantation | 0 |
Re-endocarditis at follow-up | 0 |
Follow-up time, days | 248.5 (IQR of 37.5–462.25) |
Valve Type | Size, mm | Perceval Size | ID of Explanted Valve, mm | ID of Implanted Valve, mm |
---|---|---|---|---|
Perimount | 23 | M | 22 | 23 |
Biointegral | 29 | M | 29 | 23 |
Native AV | S | 21 | ||
Perimount | 23 | XL | 22 | 27 |
SJM Biocor | 21 | S | 19 | 21 |
Native AV | XL | 27 | ||
Perimount | 21 | M | 20 | 23 |
Perimount | 23 | L | 22 | 25 |
Trifecta GT | 25 | XL | 22 | 27 |
Perimount | 23 | XL | 22 | 27 |
Perimount | 21 | M | 20 | 23 |
Perimount | 23 | L | 22 | 25 |
Sapien | 26 | L | 23 | 25 |
Trifecta | 23 | M | 21 | 23 |
Native AV | M | 23 | ||
Perimount | 23 | XL | 22 | 27 |
Native AV | XL | 27 | ||
Perimount magna ease | 19 | M | 18 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubarevich, A.; Beltsios, E.T.; Arjomandi Rad, A.; Amanov, L.; Szczechowicz, M.; Ruhparwar, A.; Weymann, A. Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience. Medicina 2023, 59, 1126. https://doi.org/10.3390/medicina59061126
Zubarevich A, Beltsios ET, Arjomandi Rad A, Amanov L, Szczechowicz M, Ruhparwar A, Weymann A. Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience. Medicina. 2023; 59(6):1126. https://doi.org/10.3390/medicina59061126
Chicago/Turabian StyleZubarevich, Alina, Eleftherios T. Beltsios, Arian Arjomandi Rad, Lukman Amanov, Marcin Szczechowicz, Arjang Ruhparwar, and Alexander Weymann. 2023. "Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience" Medicina 59, no. 6: 1126. https://doi.org/10.3390/medicina59061126
APA StyleZubarevich, A., Beltsios, E. T., Arjomandi Rad, A., Amanov, L., Szczechowicz, M., Ruhparwar, A., & Weymann, A. (2023). Sutureless Aortic Valve Prosthesis in Redo Procedures: Single-Center Experience. Medicina, 59(6), 1126. https://doi.org/10.3390/medicina59061126