Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Evaluation of the Individual
2.2. DNA Extraction and Single-Nucleotide Polymorphism–Comparative Genomic Hybridisation (SNP-CGH)
2.3. Cell Cultures
2.4. RNA Extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR)
2.5. Gene Expression Analysis via Quantitative Polymerase Chain Reaction (qPCR)
2.6. Sanger Sequencing of Proband’s cDNA Sample
2.7. Western Blot
2.8. MED13L Editing via CRISPR-Cas9 Technique
2.9. Functional Assays of Fibroblast Cultures
2.10. In Silico Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
CdLS | Cornelia de Lange syndrome |
cDNA | Complementary DNA |
CNVs | Copy number variants |
CRISPR-Cas9 | Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 |
D-TGA | Dextro-looped transposition of the great arteries |
EEG | Electroencephalography |
FC | Fold change |
gDNA | Genomic DNA |
kb | Kilobase |
MED13L | Mediator Complex Subunit 13-Like |
MRFACD | Impaired intellectual development and distinctive facial features with or without cardiac defects |
NCCs | Cranial neural crest cells |
NMD | Nonsense-mediated decay |
nt | Nucleotide |
qPCR | Quantitative polymerase chain reaction |
Rb | Retinoblastoma |
SA-β-gal | Senescence-associated beta-galactosidase |
SNP-CGH | Single Nucleotide Polymorphism array and Comparative Genomic Hybridisation array |
SNP | Single Nucleotide Polymorphism |
THRAP2 | Thyroid Hormone Receptor-Associated Protein 2 |
References
- Rehm, H.L.; Fowler, D.M. Keeping up with the genomes: Scaling genomic variant interpretation. Genome Med. 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.J.; Dinwiddie, D.L.; Miller, N.A.; Hateley, S.L.; Ganusova, E.E.; Mudge, J.; Langley, R.J.; Zhang, L.; Lee, C.C.; Schilkey, F.D.; et al. Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing. Sci. Transl. Med. 2011, 3, 65ra4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Kelso, J. High-throughput DNA sequencing-concepts and limitations. Bioessays 2010, 32, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.V.; Hu, Y.-J. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases. Adv. Genet. 2016, 93, 147–190. [Google Scholar] [CrossRef] [Green Version]
- Bunnik, E.M.; Le Roch, K.G. An Introduction to Functional Genomics and Systems Biology. Adv. Wound Care 2013, 2, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Aoi, H.; Mizuguchi, T.; Ceroni, J.R.; Kim, V.E.H.; Furquim, I.; Honjo, R.S.; Iwaki, T.; Suzuki, T.; Sekiguchi, F.; Uchiyama, Y.; et al. Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome. J. Hum. Genet. 2019, 64, 967–978. [Google Scholar] [CrossRef]
- García-Gutiérrez, P.; García-Domínguez, M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front. Mol. Biosci. 2021, 8, 709232. [Google Scholar] [CrossRef]
- Adegbola, A.; Musante, L.; Callewaert, B.; Maciel, P.; Hu, H.; Isidor, B.; Picker-Minh, S.; Le Caignec, C.; Chiaie, B.D.; Vanakker, O.; et al. Redefining the MED13L syndrome. Eur. J. Hum. Genet. 2015, 23, 1308–1317. [Google Scholar] [CrossRef] [Green Version]
- Muncke, N.; Jung, C.; Rüdiger, H.; Ulmer, H.; Roeth, R.; Hubert, A.; Goldmuntz, E.; Driscoll, D.; Goodship, J.; Schön, K.; et al. Missense Mutations and Gene Interruption in PROSIT240, a Novel TRAP240 -like Gene, in Patients with Congenital Heart Defect (Transposition of the Great Arteries). Circulation 2003, 108, 2843–2850. [Google Scholar] [CrossRef] [Green Version]
- Smol, T.; Petit, F.; Piton, A.; Keren, B.; Sanlaville, D.; Afenjar, A.; Baker, S.; Bedoukian, E.C.; Bhoj, E.J.; Bonneau, D.; et al. MED13L-related intellectual disability: Involvement of missense variants and delineation of the phenotype. Neurogenetics 2018, 19, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Javadi, A.; Shamaei, M.; Ziazi, L.M.; Pourabdollah, M.; Dorudinia, A.; Seyedmehdi, S.M.; Karimi, S. Qualification Study of Two Genomic DNA Extraction Methods in Different Clinical Samples. Tanaffos 2014, 13, 41–47. [Google Scholar]
- Colella, S.; Yau, C.; Taylor, J.M.; Mirza, G.; Butler, H.; Clouston, P.; Bassett, A.S.; Seller, A.; Holmes, C.C.; Ragoussis, J. QuantiSNP: An Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 2007, 35, 2013–2025. [Google Scholar] [CrossRef] [Green Version]
- Preikšaitienė, E.; Ambrozaitytė, L.; Maldžienė, Z.; Morkūnienė, A.; Cimbalistienė, L.; Rančelis, T.; Utkus, A.; Kučinskas, V. Identification of genetic causes of congenital neurodevelopmental disorders using genome wide molecular technologies. Acta Med. Litu. 2016, 23, 73–85. [Google Scholar] [CrossRef]
- Villegas, J.; McPhaul, M. Establishment and Culture of Human Skin Fibroblasts. Curr. Protoc. Mol. Biol. 2005, 71, 28.3.1–28.3.9. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Gasteiger, E. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [Green Version]
- Asadollahi, R.; Zweier, M.; Gogoll, L.; Schiffmann, R.; Sticht, H.; Steindl, K.; Rauch, A. Genotype-phenotype evaluation of MED13L defects in the light of a novel truncating and a recurrent missense mutation. Eur. J. Med. Genet. 2017, 60, 451–464. [Google Scholar] [CrossRef]
- Tørring, P.M.; Larsen, M.J.; Brasch-Andersen, C.; Krogh, L.N.; Kibæk, M.; Laulund, L.; Illum, N.; Dunkhase-Heinl, U.; Wiesener, A.; Popp, B.; et al. Is MED13L-related intellectual disability a recognizable syndrome? Eur. J. Med. Genet. 2019, 62, 129–136. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, Y.; Song, Z.; Pan, H.; Yang, C.; Li, F.; Xue, J.; Qu, Z. Report of a de novo c.2605C > T (p.Pro869Ser) change in the MED13L gene and review of the literature for MED13L-related intellectual disability. Ital. J. Pediatr. 2020, 46, 95. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.S.J.; Carrasco-Salas, P.; Benítez-Burraco, A. Language and Cognitive Impairment Associated with a Novel p.Cys63Arg Change in the MED13L Transcriptional Regulator. Mol. Syndr. 2018, 9, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.M.L.; Costa, S.S.; Campagnari, F.; Kaufman, A.; Bertola, D.R.; Silva, I.T.; Krepischi, A.C.V.; Koiffmann, C.P.; Rosenberg, C. Two novel pathogenic variants in MED13L: One familial and one isolated case. J. Intellect. Disabil. Res. 2021, 65, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Sabo, A.; Murdock, D.; Dugan, S.; Meng, Q.; Gingras, M.; Hu, J.; Muzny, D.; Gibbs, R. Community-based recruitment and exome sequencing indicates high diagnostic yield in adults with intellectual disability. Mol. Genet. Genom. Med. 2020, 8, e1439. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, N.; Jeong, S.-H.; Jeong, M.-H.; Byun, S.-Y.; Park, K.-H. Genetic Aspects of Small for Gestational Age Infants Using Targeted-Exome Sequencing and Whole-Exome Sequencing: A Single Center Study. J. Clin. Med. 2022, 11, 3710. [Google Scholar] [CrossRef]
- Bessenyei, B.; Balogh, I.; Mokánszki, A.; Ujfalusi, A.; Pfundt, R.; Szakszon, K. MED13L-related intellectual disability due to paternal germinal mosaicism. Mol. Case Stud. 2022, 8, a006124. [Google Scholar] [CrossRef]
- Mainali, A.; Athey, T.; Bahl, S.; Hung, C.; Caluseriu, O.; Chan, A.; Eaton, A.; Ghai, S.J.; Kannu, P.; MacPherson, M.; et al. Diagnostic yield of clinical exome sequencing in adulthood in medical genetics clinics. Am. J. Med. Genet. Part A 2022, 191, 510–517. [Google Scholar] [CrossRef]
- Burroughs, A.M.; Iyer, L.M.; Aravind, L. Two novel PIWI families: Roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol. Direct 2013, 8, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Soutourina, J. Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 2018, 19, 262–274. [Google Scholar] [CrossRef]
- Verger, A.; Monté, D.; Villeret, V. Twenty years of Mediator complex structural studies. Biochem. Soc. Trans. 2019, 47, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.-W.; Wang, G. The Mediator complex: A master coordinator of transcription and cell lineage development. Development 2014, 141, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Schiano, C.; Soricelli, A. Increasing evidence of pathogenic role of the Mediator (MED) complex in the development of cardiovascular diseases. Biochimie 2019, 165, 1–8. [Google Scholar] [CrossRef]
- Zhang, N.; Song, Y.; Xu, Y.; Liu, J.; Shen, Y.; Zhou, L.; Yu, J.; Yang, M. MED13L integrates Mediator-regulated epigenetic control into lung cancer radiosensitivity. Theranostics 2020, 10, 9378–9394. [Google Scholar] [CrossRef]
- Stieg, D.C.; Cooper, K.F.; Strich, R. The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. J. Biol. Chem. 2020, 295, 16280–16291. [Google Scholar] [CrossRef]
- Schiano, C.; Casamassimi, A.; Vietri, M.T.; Rienzo, M.; Napoli, C. The roles of Mediator complex in cardiovascular diseases. Biochim. Biophys. Acta-Gene Regul. Mech. 2014, 1839, 444–451. [Google Scholar] [CrossRef]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Hamada, N.; Iwamoto, I.; Nishikawa, M.; Nagata, K.-I. Expression Analyses of Mediator Complex Subunit 13-Like: A Responsible Gene for Neurodevelopmental Disorders during Mouse Brain Development. Dev. Neurosci. 2021, 43, 43–52. [Google Scholar] [CrossRef]
- Hamada, N.; Iwamoto, I.; Nagata, K. MED13L and its disease-associated variants influence the dendritic development of cerebral cortical neurons in the mammalian brain. J. Neurochem. 2023, 165, 334–347. [Google Scholar] [CrossRef]
- Utami, K.H.; Winata, C.L.; Hillmer, A.M.; Aksoy, I.; Long, H.T.; Liany, H.; Yan, E.C.G.; Mathavan, S.; Hong, S.T.K.; Korzh, V.; et al. Impaired Development of Neural-Crest Cell Derived Organs and Intellectual Disability Caused by MED13L haploinsufficiency. Hum. Mutat. 2014, 35, 1311–1320. [Google Scholar] [CrossRef]
- Chang, K.-T.; Jezek, J.; Campbell, A.N.; Stieg, D.C.; Kiss, Z.A.; Kemper, K.; Jiang, P.; Lee, H.-O.; Kruger, W.D.; van Hasselt, P.M.; et al. Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts. iScience 2022, 25, 103823. [Google Scholar] [CrossRef]
- Angus, S.; Nevins, J.R. A role for Mediator complex subunit MED13L in Rb/E2F-induced growth arrest. Oncogene 2012, 31, 4709–4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbour, J.W. The Rb/E2F pathway: Expanding roles and emerging paradigms. Genes Dev. 2000, 14, 2393–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, C.; Morlino, S.; Micale, L.; Ferraris, A.; Grammatico, P.; Castori, M. Characterization of Two Novel Intronic Variants Affecting Splicing in FBN1-Related Disorders. Genes 2019, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hug, N.; Longman, D.; Cáceres, J.F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016, 44, 1483–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raimondeau, E.; Bufton, J.C.; Berger-Schaffitzel, C.H. New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors. Biochem. Soc. Trans. 2018, 46, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Bork, S.; Lepperdinger, G.; Joussen, S.; Ma, N.; Strunk, D.; Koch, C. How to track cellular aging of mesenchymal stromal cells? Aging 2010, 2, 224–230. [Google Scholar] [CrossRef] [Green Version]
Cell Culture | Genotype | MED13L Variants Caused by CRISPR-Cas9 | In Silico Predicted Effect at the Protein Level |
---|---|---|---|
#A | Heterozygous | NG_023366.1(NM_015335.5):c.(72+1_73-1)_(310+1_311-1)del | NP_056150.1:p.(Ala25Cysfs*13) |
#B | Heterozygous | NG_023366.1(NM_015335.5):c.(72+1_73-1)_(310+1_311-1)del | NP_056150.1:p.(Ala25Cysfs*13) |
#C | Heterozygous | NG_023366.1(NM_015335.5):c.(72+1_73-1)_(310+1_311-1)del | NP_056150.1:p.(Ala25Cysfs*13) |
#D | Heterozygous | NM_015335.5:c.95_96del | NP_056150.1:p.(Trp32Serfs*1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siavrienė, E.; Petraitytė, G.; Mikštienė, V.; Maldžienė, Ž.; Sasnauskienė, A.; Žitkutė, V.; Ambrozaitytė, L.; Rančelis, T.; Utkus, A.; Kučinskas, V.; et al. Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome. Medicina 2023, 59, 1225. https://doi.org/10.3390/medicina59071225
Siavrienė E, Petraitytė G, Mikštienė V, Maldžienė Ž, Sasnauskienė A, Žitkutė V, Ambrozaitytė L, Rančelis T, Utkus A, Kučinskas V, et al. Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome. Medicina. 2023; 59(7):1225. https://doi.org/10.3390/medicina59071225
Chicago/Turabian StyleSiavrienė, Evelina, Gunda Petraitytė, Violeta Mikštienė, Živilė Maldžienė, Aušra Sasnauskienė, Vilmantė Žitkutė, Laima Ambrozaitytė, Tautvydas Rančelis, Algirdas Utkus, Vaidutis Kučinskas, and et al. 2023. "Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome" Medicina 59, no. 7: 1225. https://doi.org/10.3390/medicina59071225
APA StyleSiavrienė, E., Petraitytė, G., Mikštienė, V., Maldžienė, Ž., Sasnauskienė, A., Žitkutė, V., Ambrozaitytė, L., Rančelis, T., Utkus, A., Kučinskas, V., & Preikšaitienė, E. (2023). Molecular and Functional Characterisation of a Novel Intragenic 12q24.21 Deletion Resulting in MED13L Haploinsufficiency Syndrome. Medicina, 59(7), 1225. https://doi.org/10.3390/medicina59071225