A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance—Could Endocrine Disruptors Be the Other Side of the Same Coin?
Abstract
:1. Introduction
1.1. Thyroid Autoimmunity
1.2. Adrenal Incidentalomas
2. Common Relationships between the Thyroid and Adrenal Glands
3. Insulin Resistance
3.1. Insulin Resistance and the Thyroid
Insulin Resistance and Hashimoto’s Disease
3.2. Insulin Resistance and Adrenal Incidentalomas
4. Endocrine Disruptors
4.1. Endocrine Disruptors and Obesity/Insulin Resistance
4.2. Endocrine Disruptors and Thyroid Autoimmunity
4.3. Endocrine Disruptors and Adrenal Incidentalomas
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLeod, D.S.A.; Cooper, D.S. The incidence and prevalence of thyroid autoimmunity. Endocrine 2012, 42, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Prevalence and Incidence of Endocrine and Metabolic Disorders in the United States: A Comprehensive Review. J. Clin. Endocrinol. Metab. 2009, 94, 1853–1878. [Google Scholar] [CrossRef] [PubMed]
- Iddah, M.A.; Macharia, B.N. Autoimmune Thyroid Disorders. ISRN Endocrinol. 2013, 2013, 509764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delemer, B.; Aubert, J.-P.; Nys, P.; Landron, F.; Bouee, S. An observational study of the initial management of hypothyroidism in France: The ORCHIDEE study. Eur. J. Endocrinol. 2012, 167, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicka-Gutaj, N.; Zybek-Kocik, A.; Klimowicz, A.; Kloska, M.; Mańkowska-Wierzbicka, D.; Sowiński, J.; Ruchała, M. Circulating Visfatin in Hypothyroidism Is Associated with Free Thyroid Hormones and Antithyroperoxidase Antibodies. Int. J. Endocrinol. 2016, 2016, 7402469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowska, A.; Rachoń, D.; Milewicz, A.; Ruchała, M.; Bolanowski, M.; Jędrzejuk, D.; Bednarczuk, T.; Górska, M.; Hubalewska-Dydejczyk, A.; Kudła, B.K.; et al. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs). Endokrynol. Polska 2015, 66, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Lauretta, R.; Sansone, A.; Sansone, M.; Romanelli, F.; Appetecchia, M. Endocrine Disrupting Chemicals: Effects on Endocrine Glands. Front. Endocrinol. 2019, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Kerkhofs, T.M.; Roumen, R.M.; Demeyere, T.B.; van der Linden, A.N.; Haak, H.R. Adrenal Tumors with Unexpected Outcome: A Review of the Literature. Int. J. Endocrinol. 2015, 2015, 710514. [Google Scholar] [CrossRef] [Green Version]
- Bednarczuk, T.; Bolanowski, M.; Sworczak, K.; Górnicka, B.; Cieszanowski, A.; Otto, M.; Ambroziak, U.; Pachucki, J.; Kubicka, E.; Babińska, A.; et al. Adrenal incidentaloma in adults—Management recommendations by the Polish Society of Endocrinology. Endokrynol. Polska 2016, 67, 234–258. [Google Scholar] [CrossRef] [Green Version]
- Terzolo, M.; Stigliano, A.; Chiodini, I.; Loli, P.; Furlani, L.; Arnaldi, G.; Reimondo, G.; Pia, A.; Toscano, V.; Zini, M.; et al. AME Position Statement on adrenal incidentaloma. Eur. J. Endocrinol. 2011, 164, 851–870. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, C.F.; Wehrmann, T.; Hoffmann, C.; Herrmann, G.; Caspary, W.F.; Seifert, H. Detection of the Adrenal Glands by Endoscopic or Transabdominal Ultrasound. Endoscopy 1997, 29, 859–864. [Google Scholar] [CrossRef]
- Glazer, H.; Weyman, P.; Sagel, S.; Levitt, R.; McClennan, B.; Glazer, P.W.H.; Dunnick, N.R.; Korobkin, M.; Song, J.H.; Chaudhry, F.S.; et al. Nonfunctioning adrenal masses: Incidental discovery on computed tomography. Am. J. Roentgenol. 1982, 139, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papierska, L.; Nowak, K. Morfologiczne i czynnościowe obrazowanie nadnerczy Morphological and functional imaging of adrenal glands. Postępy Nauk. Med. 2013, XXVI, 819–825. [Google Scholar]
- Fassnacht, M.; Libe, R.; Kroiss, M.; Allolio, B. Adrenocortical carcinoma: A clinician’s update. Nat. Rev. Endocrinol. 2011, 7, 323–335. [Google Scholar] [CrossRef]
- Nadolnik, L. Role of Glucocorticoids in Regulation of Iodine Metabolism in Thyroid Gland: Effects of Hyper-And Hypocorticism. In Glucocorticoids—New Recognition of Our Familiar Friend; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Ylli, D.; Wartofsky, L.; Burman, K.D. Evaluation and Treatment of Amiodarone-Induced Thyroid Disorders. J. Clin. Endocrinol. Metab. 2020, 106, 226–236. [Google Scholar] [CrossRef]
- Huang, C.-C.J.; Kraft, C.; Moy, N.; Ng, L.; Forrest, D. A Novel Population of Inner Cortical Cells in the Adrenal Gland That Displays Sexually Dimorphic Expression of Thyroid Hormone Receptor-β1. Endocrinology 2015, 156, 2338–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizcano, F.; Rodríguez, J.S. Thyroid hormone therapy modulates hypothalamo-pituitary-adrenal axis. Endocr. J. 2011, 58, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.O.; Kamilaris, T.C.; Calogero, A.E.; Gold, P.W.; Chrousos, G.P. Experimentally-induced hyperthyroidism is associated with activation of the rat hypothalamic–pituitary–adrenal axis. Eur. J. Endocrinol. 2005, 153, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.O.; Calogero, A.E.; Konstandi, M.; Kamilaris, T.C.; La Vignera, S.; Chrousos, G.P. Effects of short- and long-duration hypothyroidism on hypothalamic–pituitary–adrenal axis function in rats: In vitro and in situ studies. Endocrine 2012, 42, 684–693. [Google Scholar] [CrossRef]
- Vargas, F.; Rodríguez-Gómez, I.; Vargas-Tendero, P.; Jimenez, E.; Montiel, M. The renin–angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J. Endocrinol. 2011, 213, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, V.; Ramsay, I. Thyroid and adrenal relationships. Postgrad. Med. J. 1968, 44, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.M.; Matthews, D.R. The assessment of insulin resistance in man. Diabet. Med. 2002, 19, 527–534. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Kokot, I.M.; Pawlik-Sobecka, L.; Płaczkowska, S.; Żółcińska-Wilczyńska, M.; Piwowar, A. Wskaźniki insulinooporności u młodych kobiet z prawidłową masą ciała w korelacji z ilością i dystrybucją tkanki tłuszczowej—Badanie pilotażowe. Diabetol. Prakt 2016, 2, 47–55. [Google Scholar]
- Żyła, Z.G. Original paper Insulin resistance and selected metabolic, inflammatory and anthropometric parameters in the adult population of the Tarnawa Dolna municipality in the Bieszczady. Przegląd Kardiodiabetologiczny/Cardio-Diabetol. Rev. 2011, 6, 243–249. [Google Scholar]
- Malaguarnera, R.; Frasca, F.; Garozzo, A.; Gianì, F.; Pandini, G.; Vella, V.; Vigneri, R.; Belfiore, A. Insulin Receptor Isoforms and Insulin-Like Growth Factor Receptor in Human Follicular Cell Precursors from Papillary Thyroid Cancer and Normal Thyroid. J. Clin. Endocrinol. Metab. 2011, 96, 766–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burikhanov, R.; Coulonval, K.; Pirson, I.; Lamy, F.; Dumont, J.E.; Roger, P.P. Thyrotropin via Cyclic AMP Induces Insulin Receptor Expression and Insulin Co-stimulation of Growth and Amplifies Insulin and Insulin-like Growth Factor Signaling Pathways in Dog Thyroid Epithelial Cells. J. Biol. Chem. 1996, 271, 29400–29406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, C.C.; Neumann, S.; Gershengorn, M.C. TSH/IGF1 receptor crosstalk: Mechanism and clinical implications. Pharmacol. Ther. 2020, 209, 107502. [Google Scholar] [CrossRef]
- Douglas, R.S.; Kahaly, G.J.; Patel, A.; Sile, S.; Thompson, E.H.; Perdok, R.; Fleming, J.C.; Fowler, B.T.; Marcocci, C.; Marinò, M.; et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N. Engl. J. Med. 2020, 382, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Vella, V.; Malaguarnera, R. The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int. J. Mol. Sci. 2018, 19, 3814. [Google Scholar] [CrossRef] [Green Version]
- Morgan, S.J.; Neumann, S.; Marcus-Samuels, B.; Gershengorn, M.C. Thyrotropin Stimulates Differentiation Not Proliferation of Normal Human Thyrocytes in Culture. Front. Endocrinol. 2016, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Bidey, S.P.; Hill, D.J.; Eggo, M.C. Growth factors and goitrogenesis. J. Endocrinol. 1999, 160, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Mesiano, S.; Mellon, S.H.; Jaffe, R.B. Mitogenic action, regulation, and localization of insulin-like growth factors in the human fetal adrenal gland. J. Clin. Endocrinol. Metab. 1993, 76, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Angelousi, A.; Kyriakopoulos, G.; Nasiri-Ansari, N.; Karageorgou, M.; Kassi, E. The role of epithelial growth factors and insulin growth factors in the adrenal neoplasms. Ann. Transl. Med. 2018, 6, 253. [Google Scholar] [CrossRef] [PubMed]
- Reincke, M.; Faßnacht, M.; Väth, S.; Mora, P.; Allolio, B. Adrenal incidentalomas: A manifestation of the metabolic syndrome? Endocr. Res. 1996, 22, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.; Priya, G.; Gupta, Y. Glucocrinology. J. Pak. Med. Assoc. 2018, 68, 963–965. [Google Scholar]
- Åsvold, B.O.; Bjøro, T.; Vatten, L.J. Association of Serum TSH with High Body Mass Differs between Smokers and Never-Smokers. J. Clin. Endocrinol. Metab. 2009, 94, 5023–5027. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Sorice, G.P.; Mezza, T.; Prioletta, A.; Lassandro, A.P.; Pirronti, T.; Della Casa, S.; Pontecorvi, A.; Giaccari, A. High-normal tsh values in obesity: Is it insulin resistance or adipose tissue’s guilt? Obesity 2013, 21, 101–106. [Google Scholar] [CrossRef]
- Singla, R.; Gupta, Y.; Khemani, M.; Aggarwal, S. Thyroid disorders and polycystic ovary syndrome: An emerging relationship. Indian J. Endocrinol. Metab. 2015, 19, 25–29. [Google Scholar] [CrossRef]
- Bandurska-Stankiewicz, E. Thyroid hormones—Obesity and metabolic syndrome. Thyroid. Res. 2013, 6, A5. [Google Scholar] [CrossRef] [Green Version]
- Rotondi, M.; Cappelli, C.; Magri, F.; Botta, R.; Dionisio, R.; Iacobello, C.; De Cata, P.; Nappi, R.E.; Castellano, M.; Chiovato, L. Thyroidal effect of metformin treatment in patients with polycystic ovary syndrome. Clin. Endocrinol. 2011, 75, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Lupoli, R.; Di Minno, A.; Tortora, A.; Ambrosino, P.; Lupoli, G.A.; Di Minno, M.N.D. Effects of Treatment With Metformin on TSH Levels: A Meta-analysis of Literature Studies. J. Clin. Endocrinol. Metab. 2014, 99, E143–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, V.; Farishta, F.; Bhole, M. Thyroid Dysfunction in Patients with Metabolic Syndrome: A Cross-Sectional, Epidemiological, Pan-India Study. Int. J. Endocrinol. 2018, 2018, 2930251. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Duan, Y.; Fu, J.; Wang, G. Association Between Thyroid Hormones, Thyroid Antibodies, and Cardiometabolic Factors in Non-Obese Individuals With Normal Thyroid Function. Front. Endocrinol. 2018, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemińska, L.; Wojciechowska, C.; Kos-Kudła, B.; Marek, B.; Kajdaniuk, D.; Nowak, M.; Głogowska-Szeląg, J.; Foltyn, W.; Strzelczyk, J. Serum concentrations of leptin, adiponectin, and interleukin-6 in postmenopausal women with Hashimo-to’s thyroiditis. Endokrynol. Pol. 2010, 61, 112–117. [Google Scholar] [PubMed]
- Marzullo, P.; Minocci, A.; Tagliaferri, M.A.; Guzzaloni, G.; Di Blasio, A.; De Medici, C.; Aimaretti, G.; Liuzzi, A. Investigations of Thyroid Hormones and Antibodies in Obesity: Leptin Levels Are Associated with Thyroid Autoimmunity Independent of Bioanthropometric, Hormonal, and Weight-Related Determinants. J. Clin. Endocrinol. Metab. 2010, 95, 3965–3972. [Google Scholar] [CrossRef] [Green Version]
- Matarese, G.; Leiter, E.H.; La Cava, A. Leptin in autoimmunity: Many questions, some answers. Tissue Antigens 2007, 70, 87–95. [Google Scholar] [CrossRef]
- Waring, A.C.; Rodondi, N.; Harrison, S.; Kanaya, A.M.; Simonsick, E.M.; Miljkovic, I.; Satterfield, S.; Newman, A.B.; Bauer, D.C. Health, Ageing, and Body Composition (Health ABC) Study. Thyroid function and prevalent and incident metabolic syndrome in older adults: The Health, Ageing and Body Composition Study. Clin. Endocrinol. 2011, 76, 911–918. [Google Scholar] [CrossRef]
- Ong, K.K.; Kuh, D.; Pierce, M.; Franklyn, J.A.; on behalf of the Medical Research Council National Survey of Health and Development Scientific and Data Collection Teams. Childhood Weight Gain and Thyroid Autoimmunity at Age 60–64 Years: The 1946 British Birth Cohort Study. J. Clin. Endocrinol. Metab. 2013, 98, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; De Martino, M.C.; Negri, M.; Pivonello, C.; Simeoli, C.; Orio, F.; Pivonello, R.; Colao, A. Adrenal Mass: Insight Into Pathogenesis and a Common Link with Insulin Resistance. Endocrinology 2017, 158, 1527–1532. [Google Scholar] [CrossRef] [Green Version]
- Kotłowska, A.; Maliński, E.; Sworczak, K.; Kumirska, J.; Stepnowski, P. The urinary steroid profile in patients diagnosed with adrenal incidentaloma. Clin. Biochem. 2009, 42, 448–454. [Google Scholar] [CrossRef]
- Peppa, M.; Boutati, E.; Koliaki, C.; Papaefstathiou, N.; Garoflos, E.; Economopoulos, T.; Hadjidakis, D.; Raptis, S.A. Insulin resistance and metabolic syndrome in patients with nonfunctioning adrenal incidentalomas: A cause-effect relationship? Metabolism 2010, 59, 1435–1441. [Google Scholar] [CrossRef]
- Midorikawa, S.; Sanada, H.; Hashimoto, S.; Suzuki, T.; Watanabe, T. The improvement of insulin resistance in patients with adrenal incidentaloma by surgical resection. Clin. Endocrinol. 2001, 54, 797–804. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Sorice, G.P.; Prioletta, A.; Mezza, T.; Cipolla, C.; Salomone, E.; Giaccari, A.; Pontecorvi, A.; Della Casa, S. The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause-effect relationship? Clin. Endocrinol. 2011, 74, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Sereg, M.; Szappanos, A.; Tőke, J.; Karlinger, K.; Feldman, K.; Kaszper, É.; Varga, I.; Gláz, E.; Rácz, K.; Tóth, M. Atherosclerotic risk factors and complications in patients with non-functioning adrenal adenomas treated with or without adrenalectomy: A long-term follow-up study. Eur. J. Endocrinol. 2009, 160, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakose, M.; Karbek, B.; Sahin, M.; Arslan, M.S.; Topaloglu, O.; Erden, G.; Demirci, T.; Calıskan, M.; Delibasi, T. The association of autoimmune thyroiditis and non-functional adrenal incidentalomas with insulin resistance. Arq. Bras. De Endocrinol. Metabol. 2015, 59, 42–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hlisníková, H.; Petrovičová, I.; Kolena, B.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Boudalia, S.; Bousbia, A.; Boumaaza, B.; Oudir, M.; Lavier, M.C.C. Relationship between endocrine disruptors and obesity with a focus on bisphenol A: A narrative review. Bioimpacts 2020, 11, 289–300. [Google Scholar] [CrossRef]
- Le Magueresse-Battistoni, B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? Int. J. Environ. Res. Public Health 2020, 17, 9403. [Google Scholar] [CrossRef]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Greer, M.A.; Goodman, G.; Pleus, R.C.; Greer, S.E. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health Perspect. 2002, 110, 927–937. [Google Scholar] [CrossRef] [Green Version]
- Doerge, D.R.; Sheehan, D.M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 2002, 110, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thambirajah, A.A.; Wade, M.G.; Verreault, J.; Buisine, N.; Alves, V.A.; Langlois, V.S.; Helbing, C.C. Disruption by stealth—Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. Environ. Res. 2021, 203, 111906. [Google Scholar] [CrossRef] [PubMed]
- Szabo, D.T.; Richardson, V.M.; Ross, D.G.; Diliberto, J.J.; Kodavanti, P.R.S.; Birnbaum, L.S. Effects of Perinatal PBDE Exposure on Hepatic Phase I, Phase II, Phase III, and Deiodinase 1 Gene Expression Involved in Thyroid Hormone Metabolism in Male Rat Pups. Toxicol. Sci. 2008, 107, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Préau, L.; Fini, J.-B.; Morvan-Dubois, G.; Demeneix, B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim. Biophys. Acta 2015, 1849, 112–121. [Google Scholar] [CrossRef]
- Ramhøj, L.; Frädrich, C.; Svingen, T.; Scholze, M.; Wirth, E.K.; Rijntjes, E.; Köhrle, J.; Kortenkamp, A.; Axelstad, M. Testing for heterotopia formation in rats after developmental exposure to selected in vitro inhibitors of thyroperoxidase. Environ. Pollut. 2021, 283, 117135. [Google Scholar] [CrossRef]
- Guignard, D.; Gayrard, V.; Lacroix, M.Z.; Puel, S.; Picard-Hagen, N.; Viguié, C. Evidence for bisphenol A-induced disruption of maternal thyroid homeostasis in the pregnant ewe at low level representative of human exposure. Chemosphere 2017, 182, 458–467. [Google Scholar] [CrossRef]
- Qian, Y.; Shao, H.; Ying, X.; Huang, W.; Hua, Y. The Endocrine Disruption of Prenatal Phthalate Exposure in Mother and Offspring. Front. Public Health 2020, 8, 366. [Google Scholar] [CrossRef]
- Demeneix, B.; Slama, R. Endocrine Disruptors: From Scientific Evidence to Human Health Protection. 2019. Available online: https://policycommons.net/artifacts/1335366/endocrine-disruptors/1941828/ (accessed on 23 June 2023).
- Rosol, T.J.; Yarrington, J.T.; Latendresse, J.; Capen, C.C. Adrenal Gland: Structure, Function, and Mechanisms of Toxicity. Toxicol. Pathol. 2001, 29, 41–48. [Google Scholar] [CrossRef]
- Medwid, S.; Guan, H.; Yang, K. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring. Environ. Toxicol. Pharmacol. 2016, 43, 203–208. [Google Scholar] [CrossRef]
- Medwid, S.; Guan, H.; Yang, K. Bisphenol A stimulates adrenal cortical cell proliferation via ERβ-mediated activation of the sonic hedgehog signalling pathway. J. Steroid Biochem. Mol. Biol. 2018, 178, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Medwid, S.; Guan, H.; Yang, K. Bisphenol A stimulates steroidogenic acute regulatory protein expression via an unknown mechanism in adrenal cortical cells. J. Cell. Biochem. 2018, 120, 2429–2438. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Gungunes, A.; Durmaz, S.; Kisa, U.; Celik, Z.R. Nonfunctional adrenal incidentalomas may be related to bisphenol-A. Endocrine 2020, 71, 459–466. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gontarz-Nowak, K.; Szklarz, M.; Szychlińska, M.; Matuszewski, W.; Bandurska-Stankiewicz, E. A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance—Could Endocrine Disruptors Be the Other Side of the Same Coin? Medicina 2023, 59, 1234. https://doi.org/10.3390/medicina59071234
Gontarz-Nowak K, Szklarz M, Szychlińska M, Matuszewski W, Bandurska-Stankiewicz E. A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance—Could Endocrine Disruptors Be the Other Side of the Same Coin? Medicina. 2023; 59(7):1234. https://doi.org/10.3390/medicina59071234
Chicago/Turabian StyleGontarz-Nowak, Katarzyna, Michał Szklarz, Magdalena Szychlińska, Wojciech Matuszewski, and Elżbieta Bandurska-Stankiewicz. 2023. "A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance—Could Endocrine Disruptors Be the Other Side of the Same Coin?" Medicina 59, no. 7: 1234. https://doi.org/10.3390/medicina59071234
APA StyleGontarz-Nowak, K., Szklarz, M., Szychlińska, M., Matuszewski, W., & Bandurska-Stankiewicz, E. (2023). A Brief Look at Hashimoto’s Disease, Adrenal Incidentalomas, Obesity and Insulin Resistance—Could Endocrine Disruptors Be the Other Side of the Same Coin? Medicina, 59(7), 1234. https://doi.org/10.3390/medicina59071234