Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review
Abstract
:1. Introduction
2. Venous Minus Arterial Carbon Dioxide Partial Pressure Difference
2.1. Physiological Background
2.2. Venous Minus Arterial Carbon Dioxide Partial Pressure in Shock States
2.3. Venous Minus Arterial Carbon Dioxide Partial Pressure as a Monitor of Microcirculatory Perfusion in Septic Shock
3. Venous Minus Arterial Carbon Dioxide Partial Pressure to Arterial Minus Venous Oxygen Content Difference Ratio
3.1. Physiological Background
3.2. Limitations of Pcv-aCO2/Ca-cvO2 as a Surrogate of RQ
3.3. The Physiological Feasibility of Increased Pcv-aCO2/Ca-cvO2 as a Reflection of Tissue Hypoxia in Critically Ill Patients
3.4. The Clinical Usefulness of Pcv-aCO2/Ca-cvO2
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kattan, E.; Hernández, G. The role of peripheral perfusion markers and lactate in septic shock resuscitation. J. Intensive Med. 2021, 2, 17–21. [Google Scholar] [CrossRef]
- La Via, L.; Sanfilippo, F.; Continella, C.; Triolo, T.; Messina, A.; Robba, C.; Astuto, M.; Hernandez, G.; Noto, A. Agreement between Capillary Refill Time measured at Finger and Earlobe sites in different positions: A pilot prospective study on healthy volunteers. BMC Anesthesiol. 2023, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; Harris, G.D.; Li, S.; Finberg, L. Capillary refilling (skin turgor) in the assessment of dehydration. Am. J. Dis. Child. 1991, 145, 296–298. [Google Scholar] [CrossRef] [PubMed]
- Nickel, A.J.; Hunter, R.B.; Jiang, S.; Boulet, J.R.; Hanks, J.; Napolitano, N.; Nadkarni, V.M.; Nishisaki, A. Comparison of Bedside and Video-Based Capillary Refill Time Assessment in Children. Pediatr. Emerg. Care 2022, 38, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Pickard, A.; Karlen, W.; Ansermino, J.M. Capillary refill time: Is it still a useful clinical sign? Anesth. Analg. 2011, 113, 120–123. [Google Scholar] [CrossRef]
- Edul, V.S.; Ince, C.; Navarro, N.; Previgliano, L.; Risso-Vazquez, A.; Rubatto, P.N.; Dubin, A. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann. Intensive Care 2014, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Zampieri, F.G.; Damiani, L.P.; Bakker, J.; Ospina-Tascón, G.A.; Castro, R.; Cavalcanti, A.B.; Hernandez, G. Effects of a Resuscitation Strategy Targeting Peripheral Perfusion Status versus Serum Lactate Levels among Patients with Septic Shock. A Bayesian Reanalysis of the ANDROMEDA-SHOCK Trial. Am. J. Respir. Crit. Care Med. 2020, 201, 423–429. [Google Scholar] [CrossRef]
- Taylor, D.E.; Gutierrez, G. Tonometry. A review of clinical studies. Crit. Care Clin. 1996, 12, 1007–1018. [Google Scholar] [CrossRef]
- Massey, M.J.; Larochelle, E.; Najarro, G.; Karmacharla, A.; Arnold, R.; Trzeciak, S.; Angus, D.C.; Shapiro, N.I. The microcirculation image quality score: Development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J. Crit. Care 2013, 28, 913–917. [Google Scholar] [CrossRef]
- Levitt, D.G.; Levitt, J.E.; Levitt, M.D. Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial Energy Source. Biomed. Res. Int. 2020, 2020, 2608318. [Google Scholar] [CrossRef]
- Cohen, I.L.; Sheikh, F.M.; Perkins, R.J.; Feustel, P.J.; Foster, E.D. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit. Care Med. 1995, 23, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, A.B.; Vermeij, C.G.; Thijs, L.G. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth. Analg. 1991, 73, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Murias, G.; Estenssoro, E.; Canales, H.; Sottile, P.; Badie, J.; Barán, M.; Rossi, S.; Laporte, M.; Pálizas, F.; et al. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000, 26, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; Kanoore Edul, V.S.; Martins, E.; Canales, H.S.; Canullán, C.; Murias, G.; Pozo, M.O.; Estenssoro, E.; Ince, C.; Dubin, A. Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage. J. Appl. Physiol. 2016, 120, 1132–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perner, A.; Gordon, A.C.; De Backer, D.; Dimopoulos, G.; Russell, J.A.; Lipman, J.; Jensen, J.U.; Myburgh, J.; Singer, M.; Bellomo, R.; et al. Sepsis: Frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med. 2016, 42, 1958–1969. [Google Scholar] [CrossRef] [PubMed]
- Geers, C.; Gros, G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol. Rev. 2000, 80, 681–715. [Google Scholar] [CrossRef] [Green Version]
- Fick, A. Uber die messung des Blutquantums in den Hertzvent rikeln. Sitzber. Physik. Med. Ges. Wurzburg. 1870, 36, 290–291. [Google Scholar]
- Caminos Eguillor, J.F.; Ferrara, G.; Kanoore Edul, V.S.; Buscetti, M.G.; Canales, H.S.; Lattanzio, B.; Gatti, L.; Gutierrez, F.J.; Dubin, A. Effects of Systemic Hypothermia on Microcirculation in Conditions of Hemodynamic Stability and in Hemorrhagic Shock. Shock 2021, 55, 686–692. [Google Scholar] [CrossRef]
- Douglas, A.R.; Jones, N.L.; Reed, J.W. Calculation of whole blood CO2 content. J. Appl. Physiol. 1988, 65, 473–477. [Google Scholar] [CrossRef]
- Cavaliere, F.; Giovannini, I.; Chiarla, C.; Conti, G.; Pennisi, M.A.; Montini, L.; Gaspari, R.; Proietti, R. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir. Physiol. Neurobiol. 2005, 146, 77–83. [Google Scholar] [CrossRef]
- Chiarla, C.; Giovannini, I. Blood CO2 exchange monitoring, Haldane effect and other calculations in sepsis and critical illness. J. Clin. Monit. Comput. 2019, 33, 357–358. [Google Scholar] [CrossRef]
- Christiansen, J.; Douglas, C.G.; Haldane, J.S. The absorption and dissociation of carbon dioxide by human blood. J. Physiol. 1914, 48, 244–271. [Google Scholar] [CrossRef] [Green Version]
- Cavaliere, F.; Antonelli, M.; Arcangeli, A.; Conti, G.; Pennisi, M.A.; Proietti, R. Effects of acid-base abnormalities on blood capacity of transporting CO2: Adverse effect of metabolic acidosis. Intensive Care Med. 2002, 28, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Chiarla, C.; Giovannini, I.; Giuliante, F.; Vellone, M.; Ardito, F.; Tenhunen, J.; Nuzzo, G. Significance of hemoglobin concentration in determining blood CO2 binding capacity in critical illness. Respir. Physiol. Neurobiol. 2010, 172, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Albers, C.; Usinger, W.; Spaich, P. Effect of temperature on the intracellular CO2 dissociation curve and pH. Respir. Physiol. 1971, 11, 211–222. [Google Scholar] [CrossRef]
- Vallet, B.; Teboul, J.L.; Cain, S.; Curtis, S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J. Appl. Physiol. 2000, 89, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Dubin, A.; Murias, G.; Estenssoro, E.; Canales, H.; Badie, J.; Pozo, M.; Sottile, J.P.; Barán, M.; Pálizas, F.; Laporte, M. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit. Care 2002, 6, 514–520. [Google Scholar] [CrossRef]
- Dubin, A.; Estenssoro, E.; Murias, G.; Pozo, M.O.; Sottile, J.P.; Barán, M.; Piacentini, E.; Canales, H.S.; Etcheverry, G. Intramucosal-arterial PCO2 gradient does not reflect intestinal dysoxia in anemic hypoxia. J. Trauma 2004, 57, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Ferrara, G.; Kanoore Edul, V.S.; Martins, E.; Canales, H.S.; Canullán, C.; Murias, G.; Pozo, M.O.; Estenssoro, E. Venoarterial PCO2-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: An experimental study. Ann. Intensive Care 2017, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundler, W.; Weil, M.H.; Rackow, E.C. Arteriovenous carbon dioxide and pH gradients during cardiac arrest. Circulation 1986, 74, 1071–1074. [Google Scholar] [CrossRef] [Green Version]
- Weil, M.H.; Rackow, E.C.; Trevino, R.; Grundler, W.; Falk, J.L.; Griffel, M.I. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N. Engl. J. Med. 1986, 315, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Adrogué, H.J.; Rashad, M.N.; Gorin, A.B.; Yacoub, J.; Madias, N.E. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N. Engl. J. Med. 1989, 320, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Adrogué, H.J.; Rashad, M.N.; Gorin, A.B.; Yacoub, J.; Madias, N.E. Arteriovenous acid-base disparity in circulatory failure: Studies on mechanism. Am. J. Physiol. 1989, 257, F1087–F1093. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Silva, C.; Calvo, G.; Valli, J.; Fariña, O.; Estenssoro, E.; Mordujovich, P. End-tidal CO2 pressure in the monitoring of cardiac output during canine hemorrhagic shock. J. Crit. Care 1990, 5, 42–46. [Google Scholar] [CrossRef]
- Van der Linden, P.; Rausin, I.; Deltell, A.; Bekrar, Y.; Gilbart, E.; Bakker, J.; Vincent, J.L. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth. Analg. 1995, 80, 269–275. [Google Scholar]
- Zhang, H.; Vincent, J.L. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am. Rev. Respir. Dis. 1993, 148, 867–871. [Google Scholar] [CrossRef]
- Cuschieri, J.; Rivers, E.P.; Donnino, M.W.; Katilius, M.; Jacobsen, G.; Nguyen, H.B.; Pamukov, N.; Horst, H.M. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005, 31, 818–822. [Google Scholar] [CrossRef]
- Bowles, S.A.; Schlichtig, R.; Kramer, D.J.; Klions, H.A. Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J. Crit. Care 1992, 7, 95–105. [Google Scholar]
- Mecher, C.E.; Rackow, E.C.; Astiz, M.E.; Weil, M.H. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit. Care Med. 1990, 18, 585–589. [Google Scholar] [CrossRef]
- Bakker, J.; Vincent, J.L.; Gris, P.; Leon, M.; Coffernils, M.; Kahn, R.J. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992, 101, 509–515. [Google Scholar] [CrossRef]
- Mallat, J.; Pepy, F.; Lemyze, M.; Gasan, G.; Vangrunderbeeck, N.; Tronchon, L.; Vallet, B.; Thevenin, D. Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: A prospective observational study. Eur. J. Anaesthesiol. 2014, 31, 371–380. [Google Scholar] [CrossRef]
- van Beest, P.A.; Lont, M.C.; Holman, N.D.; Loef, B.; Kuiper, M.A.; Boerma, E.C. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013, 39, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Nassar, B.; Badr, M.; Van Grunderbeeck, N.; Temime, J.; Pepy, F.; Gasan, G.; Tronchon, L.; Thevenin, D.; Mallat, J. Central venous-to-arterial PCO2 difference as a marker to identify fluid responsiveness in septic shock. Sci. Rep. 2021, 11, 17256. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Pozo, M.O.; Kanoore Edul, V.S.; Risso Vazquez, A.; Enrico, C. Poor agreement in the calculation of venoarterial PCO2 to arteriovenous O2 content difference ratio using central and mixed venous blood samples in septic patients. J. Crit. Care 2018, 48, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Al Duhailib, Z.; Hegazy, A.F.; Lalli, R.; Fiorini, K.; Priestap, F.; Iansavichene, A.; Slessarev, M. The Use of Central Venous to Arterial Carbon Dioxide Tension Gap for Outcome Prediction in Critically Ill Patients: A Systematic Review and Meta-Analysis. Crit. Care Med. 2020, 48, 1855–1861. [Google Scholar] [CrossRef]
- Diaztagle Fernández, J.J.; Rodríguez Murcia, J.C.; Sprockel Díaz, J.J. Venous-to-arterial carbon dioxide difference in the resuscitation of patients with severe sepsis and septic shock: A systematic review. Med. Intensiva 2017, 41, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascón, G.A.; Bautista-Rincón, D.F.; Umaña, M.; Tafur, J.D.; Gutiérrez, A.; García, A.F.; Bermúdez, W.; Granados, M.; Arango-Dávila, C.; Hernández, G. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit. Care 2013, 17, R294. [Google Scholar] [CrossRef] [Green Version]
- Kriswidyatomo, P.; Pradnyan Kloping, Y.; Guntur Jaya, M.; Adrian Nugraha, R.; Prawira Putri, C.; Hendrawan Putra, D.; Ananda Kloping, N.; Adityawardhana, T.; Yogiswara, N.; Margarita Rehatta, N. Prognostic Value of PCO2 Gap in Adult Septic Shock Patients: A Systematic Review and Meta-Analysis. Turk. J. Anaesthesiol. Reanim. 2022, 50, 324–331. [Google Scholar] [CrossRef]
- Ltaief, Z.; Schneider, A.G.; Liaudet, L. Pathophysiology and clinical implications of the veno-arterial PCO2 gap. Crit. Care 2021, 25, 318. [Google Scholar] [CrossRef]
- Vallee, F.; Vallet, B.; Mathe, O.; Parraguette, J.; Mari, A.; Silva, S.; Samii, K.; Fourcade, O.; Genestal, M. Central venous-to-arterial carbon dioxide difference: An additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008, 34, 2218–2225. [Google Scholar] [CrossRef]
- Hassanein, A.; Abbas, I.; Mohammed, R. Central blood gases versus lactate level for assessment of initial resuscitation success in patients with sepsis in critical care. Egypt. J. Anaesth. 2022, 38, 439–445. [Google Scholar] [CrossRef]
- Jakob, S.M.; Kosonen, P.; Ruokonen, E.; Parviainen, I.; Takala, J. The Haldane effect—An alternative explanation for increasing gastric mucosal PCO2 gradients? Br. J. Anaesth. 1999, 83, 740–746. [Google Scholar] [CrossRef]
- Saludes, P.; Proença, L.; Gruartmoner, G.; Enseñat, L.; Pérez-Madrigal, A.; Espinal, C.; Mesquida, J. Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia: A limiting factor, or an additional marker of severity in shock? J. Clin. Monit. Comput. 2017, 31, 1203–1211. [Google Scholar] [CrossRef]
- Valenzuela Espinoza, E.D.; Pozo, M.O.; Kanoore Edul, V.S.; Furche, M.; Motta, M.F.; Risso Vazquez, A.; Rubatto Birri, P.N.; Dubin, A. Effects of short-term hyperoxia on sytemic hemodynamics, oxygen transport, and microcirculation: An observational study in patients with septic shock and healthy volunteers. J. Crit. Care 2019, 53, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hachamovitch, R.; Brown, H.V.; Rubin, S.A. Respiratory and circulatory analysis of CO2 output during exercise in chronic heart failure. Circulation 1991, 84, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Mallat, J.; Mohammad, U.; Lemyze, M.; Meddour, M.; Jonard, M.; Pepy, F.; Gasan, G.; Barrailler, S.; Temime, J.; Vangrunderbeeck, N.; et al. Acute hyperventilation increases the central venous-to-arterial PCO2 difference in stable septic shock patients. Ann. Intensive Care 2017, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shastri, L.; Kjærgaard, B.; Rees, S.E.; Thomsen, L.P. Changes in central venous to arterial carbon dioxide gap (PCO2 gap) in response to acute changes in ventilation. BMJ Open Respir. Res. 2021, 8, e000886. [Google Scholar] [CrossRef]
- Slater, R.M.; Symreng, T.; Ping, S.T.; Starr, J.; Tatman, D. The effect of respiratory alkalosis on oxygen consumption in anesthetized patients. J. Clin. Anesth. 1992, 4, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Lazkani, A.; Lemyze, M.; Pepy, F.; Meddour, M.; Gasan, G.; Temime, J.; Vangrunderbeeck, N.; Tronchon, L.; Thevenin, D. Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine 2015, 94, e415. [Google Scholar] [CrossRef]
- Dubin, A.; Edul, V.S.; Pozo, M.O.; Murias, G.; Canullán, C.M.; Martins, E.F.; Ferrara, G.; Canales, H.S.; Laporte, M.; Estenssoro, E.; et al. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Crit. Care Med. 2008, 36, 535–542. [Google Scholar] [CrossRef]
- Creteur, J.; De Backer, D.; Sakr, Y.; Koch, M.; Vincent, J.L. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006, 32, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Vallée, F.; Mateo, J.; Dubreuil, G.; Poussant, T.; Tachon, G.; Ouanounou, I.; Payen, D. Cutaneous ear lobe CO2 at 37 °C to evaluate microperfusion in patients with septic shock. Chest 2010, 138, 1062–1070. [Google Scholar] [CrossRef]
- De Backer, D. Is microcirculatory assessment ready for regular use in clinical practice? Curr. Opin. Crit. Care 2019, 25, 280–284. [Google Scholar] [CrossRef]
- De Backer, D.; Ricottilli, F.; Ospina-Tascón, G.A. Septic shock: A microcirculation disease. Curr. Opin. Anaesthesiol. 2021, 34, 85–91. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Hernández, G.; Cecconi, M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. Intensive Care Med. 2016, 42, 1801–1804. [Google Scholar] [CrossRef]
- Ospina-Tascón, G.A.; Umaña, M.; Bermúdez, W.F.; Bautista-Rincón, D.F.; Valencia, J.D.; Madriñán, H.J.; Hernandez, G.; Bruhn, A.; Arango-Dávila, C.; De Backer, D. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016, 42, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Duranteau, J.; De Backer, D.; Donadello, K.; Shapiro, N.I.; Hutchings, S.D.; Rovas, A.; Legrand, M.; Harrois, A.; Ince, C. The future of intensive care: The study of the microcirculation will help to guide our therapies. Crit. Care 2023, 27, 190. [Google Scholar] [CrossRef] [PubMed]
- Ellouze, O.; Nguyen, M.; Missaoui, A.; Berthoud, V.; Aho, S.; Bouchot, O.; Guinot, P.G.; Bouhemad, B. Prognosis Value of Early Veno Arterial PCO2 Difference in Patients Under Peripheral Veno Arterial Extracorporeal Membrane Oxygenation. Shock 2020, 54, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Edul, V.S.; Ince, C.; Vazquez, A.R.; Rubatto, P.N.; Espinoza, E.D.; Welsh, S.; Enrico, C.; Dubin, A. Similar Microcirculatory Alterations in Patients with Normodynamic and Hyperdynamic Septic Shock. Ann. Am. Thorac. Soc. 2016, 13, 240–247. [Google Scholar] [CrossRef]
- Wasserman, K.; Beaver, W.L.; Whipp, B.J. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 1990, 81 (Suppl. 1), II14–II30. [Google Scholar]
- Martikainen, T.J.; Tenhunen, J.J.; Giovannini, I.; Uusaro, A.; Ruokonen, E. Epinephrine induces tissue perfusion deficit in porcine endotoxin shock: Evaluation by regional CO(2) content gradients and lactate-to-pyruvate ratios. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G586–G592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherniack, N.S.; Longobardo, G.S. Oxygen and carbon dioxide gas stores of the body. Physiol. Rev. 1970, 50, 196–243. [Google Scholar] [CrossRef] [PubMed]
- Ultman, J.S.; Bursztein, S. Analysis of error in the determination of respiratory gas exchange at varying FIO2. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 50, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Mekontso-Dessap, A.; Castelain, V.; Anguel, N.; Bahloul, M.; Schauvliege, F.; Richard, C.; Teboul, J.L. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002, 28, 272–277. [Google Scholar] [CrossRef]
- Hernandez, G.; Bellomo, R.; Bakker, J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019, 45, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Gavelli, F.; Teboul, J.L.; Monnet, X. How can CO2-derived indices guide resuscitation in critically ill patients? J. Thorac. Dis. 2019, 11 (Suppl. 11), S1528–S1537. [Google Scholar] [CrossRef]
- Mallat, J.; Vallet, B. Ratio of venous-to-arterial PCO2 to arteriovenous oxygen content difference during regional ischemic or hypoxic hypoxia. Sci. Rep. 2021, 11, 10172. [Google Scholar] [CrossRef]
- Waldauf, P.; Jiroutkova, K.; Duska, F. Using pCO2 Gap in the Differential Diagnosis of Hyperlactatemia Outside the Context of Sepsis: A Physiological Review and Case Series. Crit. Care Res. Pract. 2019, 2019, 5364503. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, G.; Edul, V.S.K.; Canales, H.S.; Martins, E.; Canullán, C.; Murias, G.; Pozo, M.O.; Caminos Eguillor, J.F.; Buscetti, M.G.; Ince, C. Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock. Intensive Care Med. Exp. 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhart, K.; Kuhn, H.J.; Hartog, C.; Bredle, D.L. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004, 30, 1572–1578. [Google Scholar] [CrossRef]
- Gutierrez, G. Central and Mixed Venous O2 Saturation. Turk. J. Anaesthesiol. Reanim. 2020, 48, 2–10. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J. Parenter Enteral. Nutr. 2003, 27, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascón, G.A.; Umaña, M.; Bermúdez, W.; Bautista-Rincón, D.F.; Hernandez, G.; Bruhn, A.; Granados, M.; Salazar, B.; Arango-Dávila, C.; De Backer, D. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015, 41, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, J.; Gong, S.; Li, L.; Zhang, H.; Wang, M. Persistent hyperlactatemia-high central venous-arterial carbon dioxide to arterial-venous oxygen content ratio is associated with poor outcomes in early resuscitation of septic shock. Am. J. Emerg. Med. 2017, 35, 1136–1141. [Google Scholar] [CrossRef]
- Bar, S.; Grenez, C.; Nguyen, M.; de Broca, B.; Bernard, E.; Abou-Arab, O.; Bouhemad, B.; Lorne, E.; Guinot, P.G. Predicting postoperative complications with the respiratory exchange ratio after high-risk noncardiac surgery: A prospective cohort study. Eur. J. Anaesthesiol. 2020, 37, 1050–1057. [Google Scholar] [CrossRef]
- Vincent, J.L.; Baron, J.F.; Reinhart, K.; Gattinoni, L.; Thijs, L.; Webb, A.; Meier-Hellmann, A.; Nollet, G.; Peres-Bota, D.; ABC (Anemia and Blood Transfusion in Critical Care) Investigators. Anemia and blood transfusion in critically ill patients. JAMA 2002, 288, 1499–1507. [Google Scholar] [CrossRef] [Green Version]
- Masevicius, F.D.; Rubatto Birri, P.N.; Risso Vazquez, A.; Zechner, F.E.; Motta, M.F.; Valenzuela Espinoza, E.D.; Welsh, S.; Guerra Arias, E.F.; Furche, M.A.; Berdaguer, F.D.; et al. Relationship of at Admission Lactate, Unmeasured Anions, and Chloride to the Outcome of Critically Ill Patients. Crit. Care Med. 2017, 45, e1233–e1239. [Google Scholar] [CrossRef]
- Dubin, A.; Loudet, C.I.; Hurtado, F.J.; Pozo, M.O.; Comande, D.; Gibbons, L.; Cairoli, F.R.; Bardach, A. Comparison of central venous minus arterial carbon dioxide pressure to arterial minus central venous oxygen content ratio and lactate levels as predictors of mortality in critically ill patients: A systematic review and meta-analysis. Rev. Bras. Ter. Intensiva 2022, 34, 279–286. [Google Scholar] [CrossRef]
- Shaban, M.; Salahuddin, N.; Kolko, M.R.; Sharshir, M.; AbuRageila, M.; AlHussain, A. The Predictive Ability of PV-ACO2 Gap and PV-ACO2/CA-VO2 Ratio in Shock: A Prospective, Cohort Study. Shock 2017, 47, 395–401. [Google Scholar] [CrossRef]
- Mesquida, J.; Saludes, P.; Gruartmoner, G.; Espinal, C.; Torrents, E.; Baigorri, F.; Artigas, A. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit. Care 2015, 19, 126. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhou, Y.; Liu, A.; Pu, Z. Relationship between Dynamic Changes of Microcirculation Flow, Tissue Perfusion Parameters, and Lactate Level and Mortality of Septic Shock in ICU. Contrast Media Mol. Imaging 2022, 2022, 1192902. [Google Scholar] [CrossRef]
- Lyu, Y.; Han, T.; Liu, M.; Cui, K.; Wang, D. The Prediction of Surgery Outcomes in Abdominal Tumor Patients with Sepsis by Pcv-aCO2/Ca-cvO2. Ther. Clin. Risk Manag. 2022, 18, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Güven, G.; Steekelenburg, A.V.; Akın, Ş. Venous-arterial CO2 to arterial-venous O2 content ratio in different shock types and correlation with hypoxia indicators. Tuberk. Toraks. 2022, 70, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Muller, G.; Mercier, E.; Vignon, P.; Henry-Lagarrigue, M.; Kamel, T.; Desachy, A.; Botoc, V.; Plantefève, G.; Frat, J.P.; Bellec, F.; et al. Prognostic significance of central venous-to-arterial carbon dioxide difference during the first 24 hours of septic shock in patients with and without impaired cardiac function. Br. J. Anaesth. 2017, 119, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Laimoud, M. The Value of Combining Carbon Dioxide Gap and Oxygen-Derived Variables with Lactate Clearance in Predicting Mortality after Resuscitation of Septic Shock Patients. Crit. Care Res. Pract. 2021, 2021, 6918940. [Google Scholar] [CrossRef]
- Sindhu, K.; Malviya, D.; Parashar, S.; Pandey, C.; Nath, S.S.; Misra, S. Correlation of central venous-to-arterial carbon dioxide difference to arterial-central venous oxygen difference ratio to lactate clearance and prognosis in patients with septic shock: A prospective observational cohort study. Int. J. Crit. Illn. Inj. Sci. 2022, 12, 146–154. [Google Scholar]
- Monnet, X.; Julien, F.; Ait-Hamou, N.; Lequoy, M.; Gosset, C.; Jozwiak, M.; Persichini, R.; Anguel, N.; Richard, C.; Teboul, J.L. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit. Care Med. 2013, 41, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Mallat, J.; Lemyze, M.; Meddour, M.; Pepy, F.; Gasan, G.; Barrailler, S.; Durville, E.; Temime, J.; Vangrunderbeeck, N.; Tronchon, L.; et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann. Intensive Care 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Dantzker, D.R.; Foresman, B.; Gutierrez, G. Oxygen supply and utilization relationships. A reevaluation. Am. Rev. Respir. Dis. 1991, 143, 675–679. [Google Scholar] [CrossRef]
- Abou-Arab, O.; Braik, R.; Huette, P.; Bouhemad, B.; Lorne, E.; Guinot, P.G. The ratios of central venous to arterial carbon dioxide content and tension to arteriovenous oxygen content are not associated with overall anaerobic metabolism in postoperative cardiac surgery patients. PLoS ONE 2018, 13, e0205950. [Google Scholar] [CrossRef]
- Fischer, M.O.; Bonnet, V.; Lorne, E.; Lefrant, J.Y.; Rebet, O.; Courteille, B.; Lemétayer, C.; Parienti, J.J.; Gérard, J.L.; Fellahi, J.L.; et al. Assessment of macro- and micro-oxygenation parameters during fractional fluid infusion: A pilot study. J. Crit. Care 2017, 40, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Tang, B.; Liu, Y.; Zhou, G.; Guo, Q.; He, W.; Wang, C.; Zhuang, H.; Jiang, L.; Qin, L.; et al. P(v-a)CO2/C(a-v)O2-directed resuscitation does not improve prognosis compared with SvO2 in severe sepsis and septic shock: A prospective multicenter randomized controlled clinical study. J. Crit. Care 2018, 48, 314–320. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubin, A.; Pozo, M.O. Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review. Medicina 2023, 59, 1262. https://doi.org/10.3390/medicina59071262
Dubin A, Pozo MO. Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review. Medicina. 2023; 59(7):1262. https://doi.org/10.3390/medicina59071262
Chicago/Turabian StyleDubin, Arnaldo, and Mario O. Pozo. 2023. "Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review" Medicina 59, no. 7: 1262. https://doi.org/10.3390/medicina59071262
APA StyleDubin, A., & Pozo, M. O. (2023). Venous Minus Arterial Carbon Dioxide Gradients in the Monitoring of Tissue Perfusion and Oxygenation: A Narrative Review. Medicina, 59(7), 1262. https://doi.org/10.3390/medicina59071262