Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crataegi fructus Extract
2.2. Antimicrobial and Antifungal Activity
2.3. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) or Minimal Fungicidal Concentration (MFC) Measurements
2.4. Cytotoxic Effects
2.5. Statistical Analysis
3. Results
3.1. Changes in Oral Disease-Causing Bacteria and Yeast
3.2. Determination of MIC and MBC or MFC
3.3. Cell Viability Assay Using HaCaT Cells
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.H.; Lee, J.H. The relationship of quality of health-related life with the status of oral health in adults. J. Korean Acad. Oral. Health 2016, 40, 165–170. [Google Scholar] [CrossRef]
- Carramolino-cuellar, E.; Tomas, I.; Jimenez-Soriano, Y. Relationship between the oral cavity and cardiovascular diseases and metabolic syndrome. Med. Oral. Patol. Oral. Cir. Bucal 2014, 19, e289–e294. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.O. A study on the actual conditions of denture prosthodontics used by the elderly aged 65 or older in Seoul. J. Dent. Hyg. Sci. 2007, 7, 113–119. [Google Scholar]
- Albandar, J.M.; Brunelle, J.A.; Kingman, A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988–1994. J. Periodontol. 1999, 70, 13–29. [Google Scholar] [CrossRef]
- Richmond, S.; Chestnutt, I.; Shennan, J.; Brown, B. The relationship of medical and dental factors to perceived oral and general health. Community Dent. Epidemiol. 2007, 35, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Choi, Y.K. Survey of adults’ perceptions of the association between chronic diseases and oral health. J. Dent. Hyg. Sci. 2017, 17, 12–19. [Google Scholar] [CrossRef]
- Contardo, M.S.; Díaz, N.A.; Lobos, O.; Padilla, C.; Giacaman, R.A. Oral colonization by Streptococcus mutans and its association with the severity of periodontal disease in adults. Rev. Clín. Periodoncia Implantol. Rehabil. Oral. 2011, 4, 9–12. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, H.W.; Shin, I.S.; Lee, J.H.; Seo, H.W. The antimicrobial effect of horseradish (Armoracia rusticana) root extracts against Streptococcus mutans isolated from human dental plaque. J. Korean Acad. Pediatr. Dent. 2008, 35, 225–234. [Google Scholar]
- Heo, N.S.; Choi, H.J.; Hwang, S.M.; Choi, Y.W.; Lee, Y.G.; Jo, W.H. Antimicrobial and anti-oral malodor efficacy of Schizandra chinensis extracts against oral pathogens. J. Life Sci. 2013, 23, 443–447. [Google Scholar] [CrossRef]
- Katsura, H.; Tsukiyama, R.I.; Suzuki, A.; Kobayashi, M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob. Agents Chemother. 2001, 45, 3009–3013. [Google Scholar] [CrossRef]
- Bagg, J.; Macfarlane, T.W.; Poxtone, I.R.; Miller, C.H.; Smith, A.J. Essentials of Microbiology for Dental Students, 3rd ed.; Koonja Publishing: Seoul, Republic of Korea, 2008; pp. 154–196. [Google Scholar]
- Park, M.J.; Choi, Y.H.; Song, K.B.; Kim, E.K. Antifungal effects of hydrogen water on the growth of Candida albicans. J. Korean Acad. Oral. Health 2019, 43, 173–177. [Google Scholar] [CrossRef]
- Ellepola, A.N.; Samaranayake, L.P. Oral candida infections and antimycotics. Crit. Rev. Oral Biol. Med. 2000, 11, 172–198. [Google Scholar] [CrossRef] [PubMed]
- Almohefer, S.A.; Levon, J.A.; Gregory, R.L.; Eckert, G.J.; Lippert, F. Caries lesion remineralization with fluoride toothpastes and chlorhexidine—Effects of application timing and toothpaste surfactant. J. Appl. Oral Sci. 2018, 26, e20170499. [Google Scholar] [CrossRef] [PubMed]
- Fahimipour, A.K.; Ben Mamaar, S.; McFarland, A.G.; Blaustein, R.A.; Chen, J.; Glawe, A.J.; Kline, J.; Green, J.L.; Halden, R.U.; Wymelenberg, K.V.D.; et al. Antimicrobial chemicals associate with microbial function and antibiotic resistance indoors. mSystems 2018, 3, e00200-18. [Google Scholar] [CrossRef] [PubMed]
- Prabu, G.R.; Gnanamani, A.; Sadulla, S. Guaijaverin—A plant flavonoid as potential antiplaque agent against Streptococcus mutans. J. Appl. Microbiol. 2006, 101, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Myung, H.J.; Chae, H.J. Screening of antibacterial essential oils from plant resources against oral bacteria. KSBB J. 2020, 35, 89–94. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, D.I.; Im, S.U.; Choi, Y.H.; Song, K.B. Effects of Diospyros kaki peel, Momordica charantia, and Canavalia gladiata extracts on the cariogenic traits of Streptococcus mutans. J. Korean Acad. Oral Health 2019, 43, 131–135. [Google Scholar] [CrossRef]
- Nam, S.H. Anticariogenic effect of Sambucuswilliamsii var. coreana NAKAI (S. Williamsii) extract on against Streptococcus mutans. Med. Legal Update 2020, 20, 2020–2024. [Google Scholar]
- Choi, Y.S.; Nam, S.H. Antibacterial activity of essential oils against Streptococcus mutans. Med. Legal Update 2020, 20, 1804–1809. [Google Scholar]
- Nam, S.H. The improvement effect of Lespedeza cuneata extract on oral health care. Ann. Rom. Soc. Cell Biol. 2021, 25, 1691–1699. [Google Scholar]
- Choi, Y.S.; Kim, N.H.; Kim, H.J.; An, S.J.; Lee, B.N.; Jung, M.J.; Hwang, J.Y.; Nam, S.H. A study on the antibacterial effect of Acanthopanax sessiliflorum on inflammatory diseases in the oral cavity. Biomed. Res. 2017, 28, 8376–8380. [Google Scholar]
- Kim, Y.; Kim, G.C.; Nam, S.H. Evaluation of antioxidant and antifungal activity of Chamaecyparis obtuse extract for use in oral herbal medicine. Appl. Sci. 2023, 13, 10236. [Google Scholar] [CrossRef]
- Park, S.J.; Shin, E.H.; Lee, J.H. Biological activities of solvent fractions from methanolic extract of Crataegi fructus. Korean J. Food Nutr. 2012, 25, 897–902. [Google Scholar] [CrossRef]
- Lee, J.J.; Lee, H.J. Comparisons of physicochemical composition of Korean and Chinese Crataegi fructrus. Korean J. Food Preserv. 2012, 19, 569–576. [Google Scholar] [CrossRef]
- Duan, Y.; Kim, M.A.; Seong, J.H.; Chung, H.S.; Kim, H.S. Antioxidative activities of various solvent extracts from haw (Crataegus pinnatifida Bunge). Korean J. Food Preserv. 2014, 21, 246–253. [Google Scholar] [CrossRef]
- Al-Tameemi, W.; Dunnill, C.; Hussain, O.; Komen, M.M.; van den Hurk, C.J.; Collett, A.; Georgopoulos, N.T. Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity. Toxicol. Vitr. 2014, 28, 1366–1376. [Google Scholar] [CrossRef]
- Hewitt, N.J.; Edwards, R.J.; Fritsche, E.; Goebel, C.; Aeby, P.; Scheel, J.; Reisinger, K.; Ouédraogo, G.; Duche, D.; Eilstein, J.; et al. Use of human in vitro skin models for accurate and ethical risk assessment: Metabolic considerations. Toxicol. Sci. 2013, 133, 209–217. [Google Scholar] [CrossRef]
- Odraska, P.; Mazurova, E.; Dolezalova, L.; Blaha, L. In vitro evaluation of the permeation of cytotoxic drugs through reconstructed human epidermis and oral epithelium. Klin. Onkol. 2011, 24, 195–202. [Google Scholar]
- Ahn, J.S.; Kim, H.J. A study on the determinants of children and adolescents’ health inequality in Korea. Stud. Korean Youth 2013, 24, 205–231. [Google Scholar]
- Migliorati, C.A.; Madrid, C. The interface between oral and systemic health: The need for more collaboration. Clin. Microbiol. Infect. 2007, 13, 11–16. [Google Scholar] [CrossRef]
- Boffano, P.; Roccia, F.; Pittoni, D.; Di Dio, D.; Forni, P.; Gallesio, C. Management of 112 hospitalized patients with spreading odontogenic infections: Correlation with DMFT and oral health impact profile 14 indexes. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Dahl, K.E.; Calogiuri, G.; Jönsson, B. Perceived oral health and its association with symptoms of psychological distress, oral status and socio-demographic characteristics among elderly in Norway. BMC Oral Health 2018, 18, 93. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Paster, B.J.; Boches, S.K.; Galvin, J.; Ericson, R.E.; Lau, C.N.; Levanos, V.A.; Sahasrabudhe, A.; Dewhirst, F.E. Bacterial diversity in human subgingival plaque. J. Bacteriol. 2001, 183, 3770–3783. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Edlund, A. Exploiting the oral microbiome to prevent tooth decay: Has evolution already provided the best tools? Front. Microbiol. 2018, 9, 3323. [Google Scholar] [CrossRef] [PubMed]
- Binney, A.; Addy, M.; Newcombe, R.G. The effect of a number of commercial mouthrinses compared with toothpaste on plaque regrowth. J. Periodontol. 1992, 63, 839–842. [Google Scholar] [CrossRef]
- Park, J.H.; Song, K.Y. Comparison of oral care interventions on the oral status of intubated patients in intensive care units. J. Korean Acad. Nurs. 2010, 17, 324–333. [Google Scholar]
- McCullough, M.J.; Farah, C.S. The role of alcohol in oral carcinogenesis with particular reference to alcohol containing mouth washes. Aust. Dent. J. 2008, 53, 302–305. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Spencer, J.P.E.; Rossi, R.; Aeschbach, R.; Khan, A.; Mahmood, N.; Munoz, A.; Murcia, A.; Butler, J.; Halliwell, B. An evaluation of the antioxidant and antiviralaction of extracts of rosemary and provencal herbs. Food Chem. Toxicol. 1996, 34, 449–456. [Google Scholar] [CrossRef]
- Chang, Q.; Zuo, Y.; Harrison, F.; Chow, M.S. Hawthorn—An overview of chemical, pharmacological and clinical studies. J. Clin. Pharmacol. 2002, 42, 605–612. [Google Scholar] [CrossRef]
- Tadić, V.M.; Dobrić, S.; Marković, G.M.; Dordević, S.M.; Arsić, I.A.; Menković, N.R.; Stević, T. Anti -inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J. Agric. Food Chem. 2008, 56, 7700–7709. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.R.; Kang, J.; Kang, K.H. Antibacterial effects of extracts from citrus peels. J. Dight. Converg. 2012, 10, 559–564. [Google Scholar]
- Shetty, S.B.; Mahin-Syed-Ismail, P.; Varghese, S.; Thomas-George, B.; Kandathil-Thajuraj, P.; Baby, D.; Haleem, S.; Sreedhar, S.; Devang-Divakar, D. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. J. Clin. Exp. Dent. 2016, 8, e71–e77. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.R.; Kang, M.K. A convergence study of antibacterial effect of Solanum nigrum extract on Candida albicans. J. Korea Converg. Soc. 2018, 9, 69–74. [Google Scholar]
- Muhongo, M.N.; Kangogo, M.; Bii, C. The antimicrobial activity of Pechuel-Loeschea leubnitziae leaf extract and its effect on the expression level of methicillin resistant Staphylococcus aureus and Candida albicans virulence-associated genes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Maixent, J.M. Opinion paper food supplements: The European regulation and its application in France. Thoughts on safety of food supplements. Cell Mol. Biol. 2012, 58, OL1720-9. [Google Scholar]
- ISO 10993-5; Biological Evaluation of Medical Devices. Part 5: Tests for Cytotoxicity: In Vitro Methods. ISO: Geneva, Switzerland, 1992.
- François, C.; Fares, M.; Baiocchi, C.; Maixent, J.M. Safety of Desmodium adscendens extract on hepatocytes and renal cells. Protective effect against oxidative stress. J. Intercult. Ethnopharmacol. 2015, 4, 1–5. [Google Scholar] [CrossRef]
Group | 0 mg/mL | 1 mg/mL | 3 mg/mL | 5 mg/mL | 10 mg/mL | 20 mg/mL | 30 mg/mL | 40 mg/mL | ANOVA p-Value |
---|---|---|---|---|---|---|---|---|---|
S. mutans | 4.58 ± 1.0 1012,a | 2.37 ± 2.1 1012,b | 2.12 ± 1.6 1012,b | 1.75 ± 1.9 1012,c | 1.14 ± 1.7 1011,d | 6.79 ± 2.7 103,e | 1.60 ± 1.3 102,e | 0.00 e | 0.000 * |
C. albicans | 4.75 ± 1.0 1012,a | 2.59 ± 1.7 1010,b | 1.16 ± 1.9 103,c | 2.00 ± 2.1 101,c | 1.30 ± 1.4 101,c | 0.00 c | 0.00 c | 0.00 c | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.-H. Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases. Medicina 2024, 60, 13. https://doi.org/10.3390/medicina60010013
Nam S-H. Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases. Medicina. 2024; 60(1):13. https://doi.org/10.3390/medicina60010013
Chicago/Turabian StyleNam, Seoul-Hee. 2024. "Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases" Medicina 60, no. 1: 13. https://doi.org/10.3390/medicina60010013
APA StyleNam, S.-H. (2024). Antimicrobial Activity of Crataegi fructus Extract Used for Potential Application in the Prevention and Treatment of Oral Diseases. Medicina, 60(1), 13. https://doi.org/10.3390/medicina60010013