Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Collection of Aqueous Humor Samples
2.3. Assessment of Macular Edema
2.4. Fundus Examination
2.5. Assessment of Effects of IRI
2.6. Assessment of VEGF and Novel Inflammatory Factors
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. BCVA, SD-OCT Findings, and Aqueous Flare Values after IRI
3.3. Comparison of Cytokines between CRVO and Control Group
3.4. Relationship among Cytokines and SD-OCT Findings and Aqueous Flare Values
3.5. Correlations among Each Cytokines in CRVO Group
3.6. Correlations between Cytokines and Changes in Clinical Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noma, H.; Yasuda, K.; Shimura, M. Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J. Clin. Med. 2020, 9, 3457. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Quinlan, E.; Zimmer-Galler, I.; Haller, J.A.; Solomon, S.D.; et al. Ranibizumab for macular edema due to retinal vein occlusions: Implication of VEGF as a critical stimulator. Mol. Ther. 2008, 16, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Choy, D.F.; Do, D.V.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Rubio, R.; Arron, J.R. Monitoring ocular drug therapy by analysis of aqueous samples. Ophthalmology 2009, 116, 2158–2164. [Google Scholar] [CrossRef] [PubMed]
- Noma, H.; Funatsu, H.; Mimura, T.; Harino, S.; Sone, T.; Hori, S. Increase of vascular endothelial growth factor and interleukin-6 in the aqueous humour of patients with macular oedema and central retinal vein occlusion. Acta Ophthalmol. 2010, 88, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, C.; Pagani, I.S.; Pirrone, C.; Borroni, D.; Donati, S.; Al Oum, M.; Pigni, D.; Chiaravalli, A.M.; Vinciguerra, R.; Simonelli, F.; et al. Expression of VEGF-A, Otx homeobox and p53 family genes in proliferative vitreoretinopathy. Mediat. Inflamm. 2013, 2013, 857380. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 2012, 119, 802–809. [Google Scholar] [CrossRef]
- Heier, J.S.; Clark, W.L.; Boyer, D.S.; Brown, D.M.; Vitti, R.; Berliner, A.J.; Kazmi, H.; Ma, Y.; Stemper, B.; Zeitz, O.; et al. Intravitreal aflibercept injection for macular edema due to central retinal vein occlusion: Two-year results from the COPERNICUS study. Ophthalmology 2014, 121, 1414–1420.e1. [Google Scholar] [CrossRef]
- Larsen, M.; Waldstein, S.M.; Priglinger, S.; Hykin, P.; Barnes, E.; Gekkieva, M.; Das Gupta, A.; Wenzel, A.; Monés, J. Sustained Benefits from Ranibizumab for Central Retinal Vein Occlusion with Macular Edema: 24-Month Results of the CRYSTAL Study. Ophthalmol. Retina 2018, 2, 134–142. [Google Scholar] [CrossRef]
- Ach, T.; Hoeh, A.E.; Schaal, K.B.; Scheuerle, A.F.; Dithmar, S. Predictive factors for changes in macular edema in intravitreal bevacizumab therapy of retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 155–159. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Channa, R.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Zimmer-Galler, I.; Solomon, S.D.; Sung, J.U.; et al. Antagonism of vascular endothelial growth factor for macular edema caused by retinal vein occlusions: Two-year outcomes. Ophthalmology 2010, 117, 2387–2394. [Google Scholar] [CrossRef]
- Noma, H.; Mimura, T.; Masahara, H.; Shimada, K. Pentraxin 3 and other inflammatory factors in central retinal vein occlusion and macular edema. Retina 2014, 34, 352–359. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, J.; Gu, J.; Xu, B.; Sun, X.; Zhang, S. FMS-Related Tyrosine Kinase 3 Ligand Promotes Radioresistance in Esophageal Squamous Cell Carcinoma. Front. Pharmacol. 2021, 12, 659735. [Google Scholar] [CrossRef] [PubMed]
- Peterlin, P.; Chevallier, P.; Knapper, S.; Collin, M. FLT3 ligand in acute myeloid leukemia: A simple test with deep implications. Leuk. Lymphoma Soc. 2021, 62, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Guermonprez, P.; Gerber-Ferder, Y.; Vaivode, K.; Bourdely, P.; Helft, J. Origin and development of classical dendritic cells. Int. Rev. Cell Mol. Biol. 2019, 349, 1–54. [Google Scholar] [PubMed]
- Ramos, M.I.; Tak, P.P.; Lebre, M.C. Fms-like tyrosine kinase 3 ligand-dependent dendritic cells in autoimmune inflammation. Autoimmun. Rev. 2014, 13, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Ueland, H.O.; Ueland, G.; Løvås, K.; Breivk, L.E.; Thrane, A.S.; Meling Stokland, A.E.; Rødahl, E.; Husebye, E.S. Novel inflammatory biomarkers in thyroid eye disease. Eur. J. Endocrinol. 2022, 187, 293–300. [Google Scholar] [CrossRef]
- Isozaki, T.; Arbab, A.S.; Haas, C.S.; Amin, M.A.; Arendt, M.D.; Koch, A.E.; Ruth, J.H. Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis: Studies in mice with K/BxN serum-induced arthritis. Arthritis Rheumatol. 2013, 65, 1736–1746. [Google Scholar] [CrossRef]
- Rabquer, B.J.; Tsou, P.S.; Hou, Y.; Thirunavukkarasu, E.; Haines, G.K., 3rd; Impens, A.J.; Phillips, K.; Kahaleh, B.; Seibold, J.R.; Koch, A.E. Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis. Arthritis Res. Ther. 2011, 13, R18. [Google Scholar] [CrossRef]
- Hald, S.M.; Kiselev, Y.; Al-Saad, S.; Richardsen, E.; Johannessen, C.; Eilertsen, M.; Kilvaer, T.K.; Al-Shibli, K.; Andersen, S.; Busund, L.T.; et al. Prognostic impact of CXCL16 and CXCR6 in non-small cell lung cancer: Combined high CXCL16 expression in tumor stroma and cancer cells yields improved survival. BMC Cancer 2015, 15, 441. [Google Scholar] [CrossRef]
- Wittel, U.A.; Schmidt, A.I.; Poxleitner, P.J.; Seifert, G.J.; Chikhladze, S.; Puolakkainen, P.; Hopt, U.T.; Kylänpää, L. The chemokine ligand CXCL16 is an indicator of bacterial infection in necrotizing pancreatitis. Pancreatology 2015, 15, 124–130. [Google Scholar] [CrossRef]
- Sarrazin, S.; Adam, E.; Lyon, M.; Depontieu, F.; Motte, V.; Landolfi, C.; Lortat-Jacob, H.; Bechard, D.; Lassalle, P.; Delehedde, M. Endocan or endothelial cell specific molecule-1 (ESM-1): A potential novel endothelial cell marker and a new target for cancer therapy. Biochim. Biophys. Acta 2006, 1, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Strasser, G.A.; Kaminker, J.S.; Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 2010, 115, 5102–5110. [Google Scholar] [CrossRef] [PubMed]
- Roudnicky, F.; Poyet, C.; Wild, P.; Krampitz, S.; Negrini, F.; Huggenberger, R.; Rogler, A.; Stöhr, R.; Hartmann, A.; Provenzano, M.; et al. Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis. Cancer Res. 2013, 73, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Liu, X.; Wang, S.L.; Qin, C.Y. Over-expression of the Endocan gene in endothelial cells from hepatocellular carcinoma is associated with angiogenesis and tumour invasion. J. Int. Med. Res. 2010, 38, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Baseline and early natural history report: The central vein occlusion study. Arch. Ophthalmol. 1993, 111, 1087–1095. [CrossRef] [PubMed]
- Noma, H.; Funatsu, H.; Mimura, T.; Eguchi, S.; Hori, S. Soluble vascular endothelial growth factor receptor-2 and inflammatory factors in macular edema with branch retinal vein occlusion. Am. J. Ophthalmol. 2011, 152, 669–677.e1. [Google Scholar] [CrossRef] [PubMed]
- Noma, H.; Funatsu, H.; Mimura, T.; Tatsugawa, M.; Shimada, K.; Eguchi, S. Vitreous inflammatory factors and serous macular detachment in branch retinal vein occlusion. Retina 2012, 32, 86–91. [Google Scholar] [CrossRef]
- Noma, H.; Mimura, T.; Yasuda, K.; Motohashi, R.; Kotake, O.; Shimura, M. Aqueous Humor Levels of Soluble Vascular Endothelial Growth Factor Receptor and Inflammatory Factors in Diabetic Macular Edema. Ophthalmologica 2017, 238, 81–88. [Google Scholar] [CrossRef]
- Mastropasqua, R.; D’Aloisio, R.; Di Nicola, M.; Di Martino, G.; Lamolinara, A.; Di Antonio, L.; Tognetto, D.; Toto, L. Relationship between aqueous humor cytokine level changes and retinal vascular changes after intravitreal aflibercept for diabetic macular edema. Sci. Rep. 2020, 8, 16548. [Google Scholar] [CrossRef]
- Zeng, Y.; Cao, D.; Yu, H.; Zhuang, X.; Yang, D.; Hu, Y.; He, M.; Zhang, L. Comprehensive analysis of vitreous chemokines involved in ischemic retinal vein occlusion. Mol. Vis. 2019, 25, 756–765. [Google Scholar]
- Zhang, M.; Yin, L.; Zhang, K.; Sun, W.; Yang, S.; Zhang, B.; Salzman, P.; Wang, W.; Liu, C.; Vidyasagar, S.; et al. Response patterns of cytokines/chemokines in two murine strains after irradiation. Cytokine 2012, 58, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Lele, A.V.; Alunpipatthanachai, B.; Qiu, Q.; Clark-Bell, C.; Watanitanon, A.; Moore, A.; Chesnut, R.M.; Armstead, W.; Vavilala, M.S. Plasma Levels, Temporal Trends and Clinical Associations between Biomarkers of Inflammation and Vascular Homeostasis after Pediatric Traumatic Brain Injury. Dev. Neurosci. 2019, 41, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wan, J.; Luo, C.; Liu, H.; Zhou, Y.; Xu, H.; Chen, Z. Higher aqueous levels of matrix metalloproteinases indicated visual impairment in patients with retina vein occlusion after anti-VEGF therapy. Br. J. Ophthalmol. 2021, 105, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, P.; Molet, S.; Janin, A.; Heyden, J.V.; Tavernier, J.; Fiers, W.; Devos, R.; Tonnel, A.B. ESM-1 is a novel human endothelial cell-specific molecule expressed in lung and regulated by cytokines. J. Biol. Chem. 1996, 271, 20458–20464. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, M.Y.; Kim, C.N.; Kim, K.H.; Kang, H.B.; Kim, K.D.; Kim, J.W. Expression of endothelial cell-specific molecule-1 regulated by hypoxia inducible factor-1α in human colon carcinoma: Impact of ESM-1 on prognosis and its correlation with clinicopathological features. Oncol. Rep. 2012, 28, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Béchard, D.; Scherpereel, A.; Hammad, H.; Gentina, T.; Tsicopoulos, A.; Aumercier, M.; Pestel, J.; Dessaint, J.P.; Tonnel, A.B.; Lassalle, P. Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1. J. Immunol. 2001, 167, 3099–3106. [Google Scholar] [CrossRef]
- Lee, W.; Ku, S.K.; Kim, S.W.; Bae, J.S. Endocan elicits severe vascular inflammatory responses in vitro and in vivo. J. Cell. Physiol. 2014, 229, 620–630. [Google Scholar] [CrossRef]
- Rathnasamy, G.; Sivakumar, V.; Foulds, W.S.; Ling, E.A.; Kaur, C. Vascular changes in the developing rat retina in response to hypoxia. Exp. Eye Res. 2015, 130, 73–86. [Google Scholar] [CrossRef]
- Muehlhoefer, A.; Saubermann, L.J.; Gu, X.; Luedtke-Heckenkamp, K.; Xavier, R.; Blumberg, R.S.; Podolsky, D.K.; MacDermott, R.P.; Reinecker, H.C. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J. Immunol. 2000, 164, 3368–3376. [Google Scholar] [CrossRef]
- Imaizumi, T.; Yoshida, H.; Satoh, K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J. Atheroscler. Thromb. 2004, 11, 15–21. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, D. Fractalkine/CX3CR1 and atherosclerosis. Clin. Chim. Acta 2011, 412, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Jiang, L.; Bian, C.; Liang, Y.; Xing, R.; Yishakea, M.; Dong, J. Role of CX3CL1 in Diseases. Arch. Immunol. Ther. Exp. 2016, 64, 371–383. [Google Scholar] [CrossRef] [PubMed]
- You, J.J.; Yang, C.H.; Huang, J.S.; Chen, M.S.; Yang, C.M. Fractalkine, a CX3C chemokine, as a mediator of ocular angiogenesis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5290–5298. [Google Scholar] [CrossRef] [PubMed]
- Bhisitkul, R.B.; Campochiaro, P.A.; Shapiro, H.; Rubio, R.G. Predictive value in retinal vein occlusions of early versus late or incomplete ranibizumab response defined by optical coherence tomography. Ophthalmology 2013, 120, 1057–1063. [Google Scholar] [CrossRef]
- Koss, M.; Pfister, M.; Rothweiler, F.; Rejdak, R.; Ribeiro, R.; Cinatl, J.; Schubert, R.; Kohnen, T.; Koch, F. Correlation from undiluted vitreous cytokines of untreated central retinal vein occlusion with spectral domain optical coherence tomography. Open Ophthalmol. J. 2013, 7, 11–17. [Google Scholar] [CrossRef]
- Glacet-Bernard, A.; Girmens, J.F.; Kodjikian, L.; Delcourt, C.; Fajnkuchen, F.; Creuzot-Garcher, C.; San Nicolas, N.; Massin, P. Real-World Outcomes of Ranibizumab Treatment in French Patients with Visual Impairment due to Macular Edema Secondary to Retinal Vein Occlusion: 24-Month Results from the BOREAL-RVO Study. Ophthalmic Res. 2023, 66, 824–834. [Google Scholar] [CrossRef]
Control (n = 20) | CRVO (n = 19) | p Value | |
---|---|---|---|
VEGF (pg/mL) | 58.1 ± 23.8 | 121 ± 130 | <0.05 |
Flt-3L (pg/mL) | 1.01 ± 0.26 | 10.9 ± 4.63 | <0.05 |
Fractalkine (pg/mL) | 19.1 ± 2.08 | 136 ± 268 | <0.05 |
CXCL-16 (pg/mL) | 241 ± 138 | 352 ± 161 | <0.05 |
Endocan-1 (pg/mL) | 286 ± 95.5 | 1667 ± 1069 | <0.05 |
VEGF | Flt-3L | Fractalkine | CXCL-16 | Endocan-1 | |
---|---|---|---|---|---|
Variable | r | r | r | r | r |
p value | p value | p value | p value | p value | |
CMT | 0.58 | 0.02 | 0.01 | 0.29 | 0.30 |
<0.05 | 0.933 | 0.961 | 0.231 | 0.214 | |
TNeuro | 0.42 | 0.23 | −0.08 | 0.41 | 0.49 |
0.075 | 0.348 | 0.738 | 0.080 | <0.05 | |
SRT | −0.23 | 0.42 | −0.15 | 0.22 | 0.33 |
0.328 | 0.066 | 0.517 | 0.351 | 0.160 | |
Aqueous flare | 0.10 | 0.58 | 0.12 | 0.64 | 0.48 |
0.549 | <0.05 | 0.461 | <0.05 | <0.05 |
VEGF | Flt-3L | Fractalkine | CXCL-16 | Endocan-1 | |
---|---|---|---|---|---|
Variable | r | r | r | r | r |
p value | p value | p value | p value | p value | |
VEGF | −0.12 | 0.09 | −0.01 | 0.39 | |
0.615 | 0.705 | 0.973 | 0.097 | ||
Flt-3L | 0.17 | 0.77 | 0.46 | ||
0.309 | <0.05 | <0.05 | |||
Fractalkine | 0.60 | 0.10 | |||
<0.05 | 0.696 | ||||
CXCL-16 | 0.46 | ||||
<0.05 |
Improvement in BCVA | Change in CMT | Change in TNeuro | |
---|---|---|---|
Variable | r, p value | r, p value | |
VEGF (pg/mL) | 0.21, 0.321 | 0.19, 0.425 | 0.06, 0.789 |
Flt-3L (pg/mL) | 0.06, 0.783 | −0.67, <0.05 | −0.42, 0.070 |
Fractalkine (pg/mL) | 0.20, 0.338 | 0.11, 0.647 | 0.03, 0.890 |
CXCL-16 (pg/mL) | −0.01, 0.991 | −0.51, <0.05 | −0.47, <0.05 |
Endocan-1 (pg/mL) | −0.04, 0.847 | −0.46, <0.05 | −0.33, 0.172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuda, K.; Noma, H.; Mimura, T.; Nonaka, R.; Sasaki, S.; Ofusa, A.; Shimura, M. Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema. Medicina 2024, 60, 4. https://doi.org/10.3390/medicina60010004
Yasuda K, Noma H, Mimura T, Nonaka R, Sasaki S, Ofusa A, Shimura M. Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema. Medicina. 2024; 60(1):4. https://doi.org/10.3390/medicina60010004
Chicago/Turabian StyleYasuda, Kanako, Hidetaka Noma, Tatsuya Mimura, Ryota Nonaka, Shotaro Sasaki, Akemi Ofusa, and Masahiko Shimura. 2024. "Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema" Medicina 60, no. 1: 4. https://doi.org/10.3390/medicina60010004
APA StyleYasuda, K., Noma, H., Mimura, T., Nonaka, R., Sasaki, S., Ofusa, A., & Shimura, M. (2024). Role of Novel Inflammatory Factors in Central Retinal Vein Occlusion with Macular Edema. Medicina, 60(1), 4. https://doi.org/10.3390/medicina60010004