Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cement Pellet Sample Preparation
2.3. Methodology
2.4. Cytotoxicity Testing
2.5. Cell Lines
2.6. Experimental Procedure
2.7. Effect on Cytotoxicity
2.8. Data Synthesis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Glossary of Prosthodontic Terms: Ninth Edition. J. Prosthet. Dent. 2017, 117, e1–e105. [CrossRef] [PubMed]
- Marvin, J.C.; Gallegos, S.I.; Parsaei, S.; Rodrigues, D.C. In vitro evaluation of cell compatibility of dental cements used with titanium implant components. J. Prosthodont. 2019, 28, e705–e712. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.C.; Saba, J.N.; Chung, K.H.; Wadhwani, C.; Rodrigues, D.C. In vitro effects of dental cements on hard and soft tissues associated with dental implants. J. Prosthet. Dent. 2017, 118, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Dumbrigue, H.B.; Abanomi, A.A.; Cheng, L.L. Techniques to minimize excess luting agent in cement-retained implant restorations. J. Prosthet. Dent. 2002, 87, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Proper Clean-Up: Removing Excess/Residual Resin-Based Dental Cement. Available online: http://www.dentallearning.net/proper-clean-removing-excessresidual-resin-based-dental-cement (accessed on 12 January 2024).
- Misch, C.E. Contemporary Implant Dentistry; Elsevier: St. Louis, MO, USA, 2008; p. 1064. [Google Scholar]
- Gultekin, P.; Gultekin, B.A.; Aydin, M.; Yalcin, S. Cement selection for implant-supported crowns fabricated with different luting space settings. J. Prosthodont. 2013, 22, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, F.; Baldensperger, R.; Buquet, J.; Freiche, R.; Laurichesse, J.M. Removing dental cement. Actual. Odontostomatol. 1977, 119, 561–578. [Google Scholar]
- Korsch, M.; Robra, B.P.; Walther, W. Predictors of excess cement and tissue response to fixed implant-supported dentures after cementation. Clin. Implant. Dent. Relat. Res. 2015, 17, e45–e53. [Google Scholar] [CrossRef] [PubMed]
- Mangano, C.; De Rosa, A.; Desiderio, V.; d’Aquino, R.; Piattelli, A.; De Francesco, F.; Tirino, V.; Mangano, F.; Papaccio, G. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 2010, 31, 3543–3551. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.R.; Kharat, A.H.; Kulkarni, D.G.; Kheur, S.M.; Bhonde, R.R. Long-term explant culture for harvesting homogeneous population of human dental pulp stem cells. Cell Biol. Int. 2018, 42, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.iso.org/obp/ui/en/#iso:std:iso-undp:pas:53002:ed-1:v1:en (accessed on 25 September 2024).
- Linkevicius, T.; Puisys, A.; Vindasiute, E.; Linkeviciene, L.; Apse, P. Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis. Clin. Oral. Implant. Res. 2013, 24, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Chumpraman, A.; Tannukit, S.; Chotigeat, W.; Kedjarune-Leggat, U. Biocompatibility and mineralization activity of modified glass ionomer cement in human dental pulp stem cells. J. Dent. Sci. 2023, 18, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Sangsuwan, P.; Tannukit, S.; Chotigeat, W.; Kedjarune-Leggat, U. Biological activities of glass ionomer cement supplemented with fortilin on human dental pulp stem cells. J. Funct. Biomater. 2022, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Brauer, D.S.; Gentleman, E.; Farrar, D.F.; Stevens, M.M.; Hill, R.G. Benefits and drawbacks of zinc in glass ionomer bone cements. Biomed. Mater. 2011, 6, 045007. [Google Scholar] [CrossRef] [PubMed]
- Bajantri, P.; Rodrigues, S.J.; Shama Prasada, K.; Pai, U.Y.; Shetty, T.; Saldanha, S.; Mahesh, M.; Hegde, P.; Sales, A.; Mukherjee, S.; et al. Cytotoxicity of dental cements on soft tissue associated with dental implants. Int. J. Dent. 2022, 2022, 4916464. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.N.; Watson, D.; Thames, K.; Primus, C.M.; Bergeron, B.E.; Jiao, K.; Bortoluzzi, E.A.; Cutler, C.W.; Chen, J.-H.; Pashley, D.H.; et al. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells. Sci. Rep. 2015, 5, 17177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Park, Y.D.; Bae, W.J.; El-Fiqi, A.; Shin, S.H.; Lee, E.J.; Kim, H.-W.; Kim, E.-C. Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J. Biomater. Appl. 2015, 29, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Galler, K.M.; Schweikl, H.; Hiller, K.A.; Cavender, A.C.; Bolay, C.; D’Souza, R.N.; Schmalz, G. TEGDMA reduces mineralization in dental pulp cells. J. Dent. Res. 2011, 90, 257–262. [Google Scholar] [CrossRef] [PubMed]
Cement Type | Group | n | Mean (Cell Viability %) | Std. Deviation | Mean Difference | t | p-Value |
---|---|---|---|---|---|---|---|
Glass ionomer cement | 1 (MTT assay) | 12 | 1.14 | 0.49 | −2.15 | −13.038 | <0.001 * |
2 (WST-1 assay) | 12 | 3.30 | 0.29 | ||||
Zinc phosphate cement | 1 (MTT assay) | 12 | 2.04 | 0.63 | −1.71 | −8.307 | <0.001 * |
2 (WST-1 assay) | 12 | 3.60 | 0.33 | ||||
Nano-integrated bio-ceramic cement | 1 (MTT assay) | 12 | 4.05 | 0.45 | 0.42 | 2.873 | 0.009 |
2 (WST-1 assay) | 12 | 3.63 | 0.22 | ||||
Control (no cement) | 1 (MTT assay) | 12 | 4.01 | 0.88 | 0.29 | 1.037 | 0.311 |
2 (WST-1 assay) | 12 | 3.72 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajoria, S.; Shetty, S.R.; Bandela, V.; Sonune, S.; Mohamed, R.N.; Nandalur, K.R.; Nagarajappa, A.K.; Aljohani, A.O.; Alsattam, A.A.; Alruwaili, E.M.; et al. Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study. Medicina 2024, 60, 1622. https://doi.org/10.3390/medicina60101622
Bajoria S, Shetty SR, Bandela V, Sonune S, Mohamed RN, Nandalur KR, Nagarajappa AK, Aljohani AO, Alsattam AA, Alruwaili EM, et al. Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study. Medicina. 2024; 60(10):1622. https://doi.org/10.3390/medicina60101622
Chicago/Turabian StyleBajoria, Sneha, Shwetha Rajesh Shetty, Vinod Bandela, Shital Sonune, Roshan Noor Mohamed, Kulashekar Reddy Nandalur, Anil Kumar Nagarajappa, Amjad Obaid Aljohani, Aljowharah Ali Alsattam, Eatedal Mukhlef Alruwaili, and et al. 2024. "Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study" Medicina 60, no. 10: 1622. https://doi.org/10.3390/medicina60101622
APA StyleBajoria, S., Shetty, S. R., Bandela, V., Sonune, S., Mohamed, R. N., Nandalur, K. R., Nagarajappa, A. K., Aljohani, A. O., Alsattam, A. A., Alruwaili, E. M., Alnuman, A. A., Alahmed, M. A., Kanaparthi, S., & Helal, D. A. A. (2024). Evaluation and Comparison of the Effect of Three Dental Luting Cements on Mineralized Bone Derived from Dental Pulp Stem Cells: An In Vitro Study. Medicina, 60(10), 1622. https://doi.org/10.3390/medicina60101622