Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Calado, R.T.; Young, N.S. Telomere diseases. N. Engl. J. Med. 2009, 361, 2353–2365. [Google Scholar] [CrossRef]
- Weischer, M.; Bojesen, S.E.; Nordestgaard, B.G. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014, 10, e1004191. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.V.; Schneider, K.M.; Teumer, A.; Rudolph, K.L.; Hartmann, D.; Rader, D.J.; Strnad, P. Association of telomere length with risk of disease and mortality. JAMA Intern. Med. 2022, 182, 291–300. [Google Scholar] [CrossRef]
- Willeit, P.; Willeit, J.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Brandstätter, A.; Kronenberg, F.; Kiechl, S. Telomere length and risk of incident cancer and cancer mortality. JAMA 2010, 304, 69–75. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, G.; Zhang, H. Causal relationship between telomere length and sepsis: A bidirectional Mendelian randomization study. Sci. Rep. 2024, 14, 5397. [Google Scholar] [CrossRef] [PubMed]
- Østhus, I.B.Ø.; Lydersen, S.; Dalen, H.; Nauman, J.; Wisløff, U. Association of telomere length with myocardial infarction: A prospective cohort from the population based HUNT 2 study. Prog. Cardiovasc. Dis. 2017, 59, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Yetim, E.; Topcuoglu, M.A.; Yurur Kutlay, N.; Tukun, A.; Oguz, K.K.; Arsava, E.M. The association between telomere length and ischemic stroke risk and phenotype. Sci. Rep. 2021, 11, 10967. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Broderick, J.P.; Adeoye, O.; Elm, J. Evolution of the modified Rankin scale and its use in future stroke trials. Stroke 2017, 48, 2007–2012. [Google Scholar] [CrossRef]
- Chalos, V.; van der Ende, N.A.M.; Lingsma, H.F.; Mulder, M.J.H.L.; Venema, E.; Dijkland, S.A.; Berkhemer, O.A.; Yoo, A.J.; Broderick, J.P.; Palesch, Y.Y.; et al. National Institutes of Health stroke scale: An alternative primary outcome measure for trials of acute treatment for ischemic stroke. Stroke 2020, 51, 282–290. [Google Scholar] [CrossRef]
- Amarenco, P.; Lavallée, P.C.; Labreuche, J.; Albers, G.W.; Bornstein, N.M.; Canhão, P.; Caplan, L.R.; Donnan, G.A.; Ferro, J.M.; Hennerici, M.G.; et al. One-year risk of stroke after transient ischemic attack or minor stroke. N. Engl. J. Med. 2016, 374, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: The importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2255–2264. [Google Scholar] [CrossRef]
- Matthews, C.; Gorenne, I.; Scott, S.; Figg, N.; Kirkpatrick, P.; Ritchie, A.; Goddard, M.; Bennett, M. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ. Res. 2006, 99, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Harley, C.B. Telomere length and replicative aging in human vascular tissues. Proc. Natl. Acad. Sci. USA 1995, 92, 11190–11194. [Google Scholar] [CrossRef]
- Willeit, P.; Willeit, J.; Brandstätter, A.; Ehrlenbach, S.; Mayr, A.; Gasperi, A.; Weger, S.; Oberhollenzer, F.; Reindl, M.; Kronenberg, F.; et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1649–1656. [Google Scholar] [CrossRef]
- Wikgren, M.; Karlsson, T.; Söderlund, H.; Nordin, A.; Roos, G.; Nilsson, L.G.; Adolfsson, R.; Norrback, K.F. Shorter telomere length is linked to brain atrophy and white matter hyperintensities. Age Ageing 2014, 43, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Forero, D.A.; González-Giraldo, Y.; López-Quintero, C.; Castro-Vega, L.J.; Barreto, G.E.; Perry, G. Meta-analysis of telomere length in Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1069–1073. [Google Scholar] [CrossRef]
- Jin, X.; Pan, B.; Dang, X.; Wu, H.; Xu, D. Relationship between short telomere length and stroke: A meta-analysis. Medicine 2018, 97, e12489. [Google Scholar] [CrossRef]
- Allende, M.; Molina, E.; González-Porras, J.R.; Toledo, E.; Lecumberri, R.; Hermida, J. Short leukocyte telomere length is associated with cardioembolic stroke risk in patients with atrial fibrillation. Stroke 2016, 47, 863–865. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Wang, Y.; Liu, P.; Zhang, M.; Zhang, C.; Hu, F.B.; Hui, R. Short telomere length in blood leucocytes contributes to the presence of atherothrombotic stroke and haemorrhagic stroke and risk of post-stroke death. Clin. Sci. 2013, 125, 27–36. [Google Scholar] [CrossRef]
- Ding, H.; Chen, C.; Shaffer, J.R.; Liu, L.; Xu, Y.; Wang, X.; Hui, R.; Wang, D.W. Telomere length and risk of stroke in Chinese. Stroke 2012, 43, 658–663. [Google Scholar] [CrossRef]
- Martin-Ruiz, C.; Dickinson, H.O.; Keys, B.; Rowan, E.; Kenny, R.A.; Von Zglinicki, T. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann. Neurol. 2006, 60, 174–180. [Google Scholar] [CrossRef]
- Payabvash, S.; Taleb, S.; Benson, J.C.; McKinney, A.M. Acute ischemic stroke infarct topology: Association with lesion volume and severity of symptoms at admission and discharge. AJNR Am. J. Neuroradiol. 2017, 38, 58–63. [Google Scholar] [CrossRef]
- Panchal, H.N.; Shah, M.S.; Shah, D.S. Intracerebral hemorrhage score and volume as an independent predictor of mortality in primary intracerebral hemorrhage patients. Indian J. Surg. 2015, 77 (Suppl. S2), 302–304. [Google Scholar] [CrossRef]
- Ojaghihaghighi, S.; Vahdati, S.S.; Mikaeilpour, A.; Ramouz, A. Comparison of neurological clinical manifestation in patients with hemorrhagic and ischemic stroke. World J. Emerg. Med. 2017, 8, 34–38. [Google Scholar] [CrossRef]
Total (n = 271) | Short Telomere Length (n = 61) | Long Telomere Length (n = 210) | p-Value | |
---|---|---|---|---|
Age (years) | 70 (60–79) | 71 (61–82) | 69 (59–79) | 0.208 |
Sex (Male) | 149 (55.0) | 24 (39.3) | 125 (59.5) | 0.004 |
Height (cm) | 163 (155–172) | 161 (155–169) | 165 (155–173) | 0.024 |
Weight (kg) | 61 (55–70) | 60 (54–64) | 62 (55–70) | 0.018 |
Smoker, n (%) | ||||
Non-smoker | 140 (51.7) | 35 (57.4) | 105 (50.0) | 0.492 |
Ex-smoker | 41 (15.1) | 4 (6.6) | 37 (17.6) | 0.034 |
Smoker | 55 (20.3) | 11 (18.0) | 44 (21.0) | 0.053 |
Alcohol drinker | 85 (31.4) | 16 (26.2) | 69 (32.9) | 0.329 |
Previous illness | ||||
Hypertension | 181 (68.3) | 38 (62.3) | 143 (68.1) | 0.243 |
Diabetes | 86 (31.7) | 21 (34.4) | 65 (31.0) | 0.357 |
Hypercholesterol | 56 (20.7) | 15 (24.6) | 41 (19.5) | 0.245 |
Coronary artery disease | 24 (8.9) | 6 (9.8) | 18 (8.6) | 0.464 |
Cerebrovascular accident | 69 (25.5) | 14 (23.0) | 55 (26.2) | 0.371 |
Atrial fibrillation//flutter | 34 (12.5) | 6 (9.8) | 28 (13.3) | 0.315 |
Chronic kidney disease | 17 (6.3) | 6 (9.8) | 11 (5.2) | 0.157 |
Anti-coagulation medication | 90 (33.2) | 20 (32.8) | 70 (33.3) | 0.534 |
Mental status | ||||
Alert | 184 (67.9) | 45 (73.8) | 139 (66.2) | 0.169 |
Drowsy | 48 (17.7) | 8 (13.1) | 40 (19.0) | 0.191 |
Stupor | 24 (8.9) | 6 (9.8) | 18 (8.6) | 0.464 |
Semi-coma | 11 (4.1) | 0 (0) | 11 (5.2) | 0.057 |
Coma | 4 (1.5) | 2 (3.3) | 2 (1.0) | 0.219 |
Vital sign | ||||
Systolic blood pressure, mmHg | 158 (140–175) | 158 (140–170) | 160 (140–180) | 0.295 |
Diastolic blood pressure, mmHg | 90 (80–100) | 89 (76–100) | 90 (80–100) | 0.035 |
Heart rate, rate/minute | 81 (71–91) | 80 (71–86) | 82 (71–92) | 0.138 |
Respiratory rate, rate/minute | 20 (19–20) | 20 (19–20) | 20 (19–20) | 0.328 |
Body temperature, °C | 36.6 (36.4–36.8) | 36.6 (36.4–36.8) | 36.7 (36.4–36.8) | 0.296 |
Laboratory | ||||
WBC, ×103/µL | 7.43 (6.28–9.91) | 7.38 (6.38–9.86) | 7.53 (6.24–9.98) | 0.471 |
CRP, mg/dL | 0.1 (0.1–0.3) | 0.1 (0.1–0.3) | 0.1 (0.1–0.3) | 0.270 |
Lactic acid, mmol/L | 1.6 (1.2–2.2) | 1.6 (1.1–2.4) | 1.6 (1.2–2.2) | 0.422 |
Hemoglobin, g/dL | 13.5 (12.2–14.6) | 13.3 (11.2–14) | 13.6 (12.2–14.6) | 0.048 |
Creatinine, mg/dL | 0.9 (0.7–1.1) | 0.8 (0.7–1.1) | 0.9 (0.7–1.1) | 0.378 |
Albumin, g/dL | 4.2 (3.9–4.5) | 4.2 (4.0–4.5) | 4.2 (3.9–4.5) | 0.236 |
Total cholesterol, mg/dL | 163 (129–190) | 166 (128–192) | 161 (130–190) | 0.278 |
HDL cholesterol, mg/dL | 49 (39–60) | 46 (37–59) | 49 (39–60) | 0.330 |
LDL cholesterol, mg/dL | 97 (69–126) | 100 (71–129) | 96 (69–126) | 0.495 |
Triglyceride, mg/dL | 95 (67–143) | 94 (73–129) | 95 (66–147) | 0.303 |
Glucose, mg/dL | 136 (112–172) | 131 (109–150) | 140 (113–178) | 0.036 |
HbA1C, % | 6.1 (5.7–6.7) | 6.1 (5.7–7.0) | 6.1 (5.7–6.7) | 0.453 |
Apolipoprotein A1, mg/dL | 135 (116–151) | 127 (115–147) | 136 (116–154) | 0.185 |
Apolipoprotein B, mg/dL | 83 (68–108) | 85 (70–107) | 83 (67–108) | 0.384 |
Time to taken manage | ||||
LNT-to-door time, minute | 228 (78–690) | 247 (93–694) | 217 (76–692) | 0.396 |
Door-to-CT, minute | 23 (17–35) | 30 (20–42) | 23 (16–32) | <0.001 |
Door-to-IVT, minute | 38 (27–44) | 32 (26–58) | 42 (27–61) | 0.193 |
Door-to-EVT, minute | 130 (107–236) | 124 (101–142) | 135 (110–279) | 0.211 |
mRS | ||||
Pre-mRS | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.360 |
mRS at ED visit | 3 (1–5) | 2 (1–5) | 3 (1–5) | 0.240 |
Delta mRS | 2 (1–4) | 1 (0–4) | 2 (1–4) | 0.137 |
NIHSS | ||||
NIHSS at ED visit | 5 (2–12) | 3 (1–13) | 6 (2–12) | 0.358 |
1 day after NIHSS | 5 (1–11) | 3 (1–15) | 6 (1–11) | 0.325 |
7 days after NIHSS | 3 (0–10) | 2 (0–11) | 4 (1–10) | 0.232 |
ABCD2 score | 4 (3–5) | 4 (3–6) | 4 (3–5) | 0.468 |
Survival discharge | 243 (89.7) | 56 (91.8) | 187 (89.0) | 0.363 |
Diagnosis | ||||
Acute ischemic stroke | 172 (63.5) | 43 (70.5) | 129 (61.4) | 0.126 |
Large artery atherosclerosis | 47 (17.3) | 10 (16.4) | 37 (17.6) | 0.315 |
Small artery occlusion | 31 (11.4) | 9 (14.8) | 22 (10.5) | 0.358 |
Cardioembolism | 37 (13.7) | 10 (16.4) | 27 (12.9) | 0.449 |
Other determined or undetermined cause | 57 (21.0) | 14 (23.0) | 43 (20.5) | 0.541 |
Hemorrhagic stroke | 66 (24.4) | 13 (21.3) | 53 (25.2) | 0.328 |
Transient ischemic attack | 33 (12.2) | 5 (8.2) | 28 (13.3) | 0.198 |
All | Crude Odds Ratio | 95% CI | p-Value |
---|---|---|---|
mRS | |||
Pre-mRS | 0.86 | 0.38–1.94 | 0.71 |
mRS at ED visit | 1.26 | 0.71–2.24 | 0.42 |
Delta mRS | 1.48 | 0.81–2.73 | 0.20 |
NIHSS | |||
NIHSS at ED visit | 1.74 | 0.92–3.29 | 0.09 |
1 day after NIHSS | 1.83 | 0.96–3.49 | 0.07 |
7 days after NIHSS | 1.33 | 0.70–2.53 | 0.39 |
Acute ischemic stroke | |||
mRS | |||
mRS at ED visit | 1.93 | 0.96–3.88 | 0.06 |
Delta mRS | 2.47 | 1.09–5.58 | 0.03 |
NIHSS | |||
NIHSS at ED visit | 2.66 | 1.31–5.44 | <0.01 |
1 day after NIHSS | 3.20 | 1.54–6.66 | <0.01 |
7 days after NIHSS | 1.99 | 0.96–4.10 | 0.06 |
Hemorrhagic stroke | |||
mRS | |||
mRS at ED visit | 0.74 | 0.18–3.07 | 0.68 |
Delta mRS | 0.52 | 0.13–2.13 | 0.36 |
Transient ischemic attack | |||
mRS | |||
mRS at ED visit | 2.93 | 0.52–16.63 | 0.22 |
Delta mRS | 3.16 | 0.64–18.87 | 0.18 |
Adjusted Odds Ratio | 95% CI | p-Value | |
---|---|---|---|
mRS | |||
mRS at ED visit | 3.30 | 0.90–12.15 | 0.07 |
Delta mRS | 3.88 | 0.88–17.03 | 0.07 |
NIHSS | |||
NIHSS at ED visit | 5.23 | 1.59–17.2 | <0.01 |
1 day after NIHSS | 7.78 | 1.97–30.70 | <0.01 |
7 days after NIHSS | 2.29 | 0.68–7.71 | 0.18 |
LAA | SVO | CE | OD or UD | |||||
---|---|---|---|---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | OR (95%CI) | p-Value | OR (95%CI) | p-Value | |
Crude | ||||||||
mRS | ||||||||
At ED visit | 1.01 (0.22–4.66) | 0.99 | 0.93 (0.18–4.86) | 0.94 | 2.86 (0.63–12.92) | 0.17 | 2.50 (0.72–8.73) | 0.15 |
Delta | 0.85 (0.21–3.44) | 0.82 | 1.26 (0.11–14.05) | 0.85 | 2.51 (0.53–11.83) | 0.24 | 8.50 (1.02–71.09) | 0.05 |
NIHSS | ||||||||
At ED visit | 1.33 (0.28–6.26) | 0.72 | 1.04 (0.22–4.96) | 0.96 | 4.40 (0.91–21.25) | 0.07 | 7.33 (1.76–30.61) | <0.01 |
After 1 day | 0.93 (0.16–5.40) | 0.93 | 3.50 (0.59–20.75) | 0.17 | 2.86 (0.63–12.92) | 0.17 | 6.55 (1.56–27.48) | 0.01 |
After 7 days | 0.90 (0.19–4.15) | 0.89 | 1.63 (0.27–9.98) | 0.60 | 1.46 (0.34–6.25) | 0.61 | 5.14 (1.01–26.09) | 0.05 |
Adjusted | ||||||||
mRS | ||||||||
At ED visit | 24.29 (1.12–525.56) | 0.04 | 0.74 (0.10–5.38) | 0.77 | 2.62 (0.26–26.06) | 0.41 | 2.52 (0.51–12.61) | 0.26 |
Delta | 3.37 (0.22–51.26) | 0.38 | 6.87 (0.11–416.31) | 0.36 | 1.14 (0.18–7.32) | 0.89 | 13.93 (0.65–298.44) | 0.09 |
NIHSS | ||||||||
At ED visit | 2.62 (0.30–22.51) | 0.38 | 1.74 (0.07–44.36) | 0.74 | 6.42 (0.56–73.54) | 0.14 | 7.89 (1.32–47.25) | 0.02 |
After 1 day | 4.21 (0.29–61.68) | 0.29 | 3.69 (0.33–40.82) | 0.29 | 3.22 (0.29–35.46) | 0.34 | 7.02 (1.14–43.47) | 0.04 |
After 7 days | 2.23 (0.29–17.29) | 0.44 | 1.01 (0.11–11.05) | 0.94 | 0.56 (0.03–10.58) | 0.70 | 4.84 (0.67–35.02) | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-H.; Kim, T.-K.; Yoo, J.-H.; Park, H.-J.; Kim, J.-H.; Lee, J.-H. Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types. Medicina 2024, 60, 1657. https://doi.org/10.3390/medicina60101657
Lee S-H, Kim T-K, Yoo J-H, Park H-J, Kim J-H, Lee J-H. Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types. Medicina. 2024; 60(10):1657. https://doi.org/10.3390/medicina60101657
Chicago/Turabian StyleLee, Sang-Hun, Tae-Kwon Kim, Jong-Hoon Yoo, Hyung-Jong Park, Jae-Hyun Kim, and Jae-Ho Lee. 2024. "Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types" Medicina 60, no. 10: 1657. https://doi.org/10.3390/medicina60101657
APA StyleLee, S. -H., Kim, T. -K., Yoo, J. -H., Park, H. -J., Kim, J. -H., & Lee, J. -H. (2024). Analysis of the Association between Telomere Length and Neurological Disability in Stroke Types. Medicina, 60(10), 1657. https://doi.org/10.3390/medicina60101657