Post-Lunch Napping as a Strategy to Enhance Physiological Performance and Cognitive Function in Elite Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Inclusion Criteria
2.1.2. Exclusion Criteria
2.1.3. General Procedures
2.2. Experimental Design
2.2.1. No-Nap Protocol
2.2.2. Nap-25 Protocol
2.2.3. Nap-45 Protocol
2.3. Data Collection Tools
2.3.1. Pittsburg Sleep Scale
2.3.2. Subjective Sleepiness Scale
2.3.3. D2 Attention Test
2.3.4. Volleyball Agility Test
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonato, M.; De Capitani, M.C.; Banfi, G. Agility Training in Volleyball. J. Sports. Med. Phys. Fit. 2022, 62, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Frohner, B.; Cengiz, A. Volleyball Game Theory and Exercises; Bağirgan Publishing House: Chicago, IL, USA, 1999. [Google Scholar]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef] [PubMed]
- Khemila, S.; Abedelmalek, S.; Romdhani, M.; Souissi, A.; Chtourou, H.; Souissi, N. Listening to Motivational Music during Warming-up Attenuates the Negative Effects of Partial Sleep Deprivation on Cognitive and Short-Term Maximal Performance: Effect of Time of Day. Chronobiol. Int. 2021, 38, 1052–1063. [Google Scholar] [CrossRef]
- Charest, J.; Grandner, M.A. Sleep and Athletic Performance. Sleep Med. Clin. 2020, 15, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Nédélec, M.; Halson, S.; Abaidia, A.-E.; Ahmaidi, S.; Dupont, G. Stress, Sleep and Recovery in Elite Soccer: A Critical Review of the Literature. Sports Med. 2015, 45, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, N.; Yu, P.K.; Siegel, N.S. Sleep Physiology, Pathophysiology, and Sleep Hygiene. Prog. Cardiovasc. Dis. 2023, 77, 59–69. [Google Scholar] [CrossRef]
- Luppi, P.-H.; Fort, P. Sleep–Wake Physiology. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 359–370. [Google Scholar] [CrossRef]
- Reutrakul, S.; Van Cauter, E. Sleep Influences on Obesity, Insulin Resistance, and Risk of Type 2 Diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef]
- Waterhouse, J.; Atkinson, G.; Edwards, B.; Reilly, T. The Role of a Short Post-Lunch Nap in Improving Cognitive, Motor, and Sprint Performance in Participants with Partial Sleep Deprivation. J. Sports Sci. 2007, 25, 1557–1566. [Google Scholar] [CrossRef]
- Ammar, A.; Boukhris, O.; Hsouna, H.; Ben Dhia, I.; Trabelsi, K.; Ali Gujar, T.; Clark, C.C.T.; Chtourou, H.; Driss, T.; Hoekelmann, A. The Effect of a Daytime 60-Min Nap Opportunity on Postural Control in Highly Active Individuals. Biol. Sport 2021, 38, 683–691. [Google Scholar] [CrossRef]
- Romdhani, M.; Dergaa, I.; Moussa-Chamari, I.; Souissi, N.; Chaabouni, Y.; Mahdouani, K.; Abene, O.; Driss, T.; Chamari, K.; Hammouda, O. The Effect of Post-Lunch Napping on Mood, Reaction Time, and Antioxidant Defense during Repeated Sprint Exercice. Biol. Sport 2021, 38, 629–638. [Google Scholar] [CrossRef]
- Monk, T.H. The Post-Lunch Dip in Performance. Clin. Sports Med. 2005, 24, e15–e23. [Google Scholar] [CrossRef] [PubMed]
- Scheer, F.A.J.L.; Hu, K.; Evoniuk, H.; Kelly, E.E.; Malhotra, A.; Hilton, M.F.; Shea, S.A. Impact of the Human Circadian System, Exercise, and Their Interaction on Cardiovascular Function. Proc. Natl. Acad. Sci. USA 2010, 107, 20541–20546. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.A.; Esser, K.A. Exercise Timing and Circadian Rhythms. Curr. Opin. Physiol. 2019, 10, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Bes, F.; Jobert, M.; Schulz, H. Modeling Napping, Post-Lunch Dip, and Other Variations in Human Sleep Propensity. Sleep 2009, 32, 392–398. [Google Scholar] [CrossRef]
- Slama, H.; Deliens, G.; Schmitz, R.; Peigneux, P.; Leproult, R. Afternoon Nap and Bright Light Exposure Improve Cognitive Flexibility Post Lunch. PLoS ONE 2015, 10, e0125359. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Pejovic, S.; Zoumakis, E.; Lin, H.M.; Bixler, E.O.; Basta, M.; Fang, J.; Sarrigiannidis, A.; Chrousos, G.P. Daytime Napping after a Night of Sleep Loss Decreases Sleepiness, Improves Performance, and Causes Beneficial Changes in Cortisol and Interleukin-6 Secretion. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E253–E261. [Google Scholar] [CrossRef]
- Abdessalem, R.; Boukhris, O.; Hsouna, H.; Trabelsi, K.; Ammar, A.; Taheri, M.; Irandoust, K.; Hill, D.W.; Chtourou, H. Effect of Napping Opportunity at Different Times of Day on Vigilance and Shuttle Run Performance. Chronobiol. Int. 2019, 36, 1334–1342. [Google Scholar] [CrossRef]
- Petit, E.; Bourdin, H.; Tio, G.; Yenil, O.; Haffen, E.; Mougin, F. Effects of a 20-Min Nap Post Normal and Jet Lag Conditions on P300 Components in Athletes. Int. J. Sports Med. 2018, 39, 508–516. [Google Scholar] [CrossRef]
- Kurtoğlu, A.; Eken, Ö.; Aydın, E.; Çar, B.; Nobari, H. The Impact of Strategic Napping on Peak Expiratory Flow and Respiratory Function in Young Elite Athletes. BMC Sports Sci. Med. Rehabil. 2024, 16, 41. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Reilly, T.; Atkinson, G.; Edwards, B.; Waterhouse, J.; Farrelly, K.; Fairhurst, E. Diurnal Variation in Temperature, Mental and Physical Performance, and Tasks Specifically Related to Football (Soccer). Chronobiol. Int. 2007, 24, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, Y.S.; Del Vecchio, F.B. Meta-analysis of the acute effects of stretching on high intensity sprint performance. Rev. Bras. Educ. Fis. Esporte. 2011, 25, 567–581. [Google Scholar] [CrossRef]
- Karvonen, M.J.; Kentala, E.; Mustala, O. The effects of training on heart rate; a longitudinal study. Ann. Med. Exp. Biol. Fenn. 1957, 35, 307–315. [Google Scholar] [PubMed]
- Boukhris, O.; Abdessalem, R.; Ammar, A.; Hsouna, H.; Trabelsi, K.; Engel, F.A.; Sperlich, B.; Hill, D.W.; Chtourou, H. Nap Opportunity During the Daytime Affects Performance and Perceived Exertion in 5-m Shuttle Run Test. Front. Physiol. 2019, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Şahan, A.E. Oryantiring Eğitiminin Dikkat ve Bellek Üzerine Etkisinin İncelenmesi. Ank. Üniversitesi Beden Eğitimi Spor Yüksekokulu SPORMETRE Beden Eğitimi Spor Bilim. Derg. 2017, 15, 127–134. [Google Scholar] [CrossRef]
- Schaun, G.Z.; Ribeiro, Y.S.; Vaz, M.S.; Del Vecchio, F.B. Correlation between Agility, Lower Limb Power and Performance in a Sport-Specific Test in Female Volleyball Players. Int. J. Sports Sci. 2013, 3, 141–146. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C. Real Time Estimation of Vertical Jump Height with a Markerless Motion Capture Smartphone App: A Proof-of-Concept Case Study. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2024, 17543371241227817. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ajjimaporn, A.; Ramyarangsi, P.; Siripornpanich, V. Effects of a 20-Min Nap after Sleep Deprivation on Brain Activity and Soccer Performance. Int. J. Sports Med. 2020, 41, 1009–1016. [Google Scholar] [CrossRef]
- Chtourou, H.; H’mida, C.; Boukhris, O.; Trabelsi, K.; Ammar, A.; Souissi, N. Nap Opportunity as a Strategy to Improve Short-Term Repetitive Maximal Performance During the 5-m Shuttle Run Test: A Brief Review. Int. J. Sport Stu. Health 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Dutheil, F.; Danini, B.; Bagheri, R.; Fantini, M.L.; Pereira, B.; Moustafa, F.; Trousselard, M.; Navel, V. Effects of a Short Daytime Nap on the Cognitive Performance: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 10212. [Google Scholar] [CrossRef]
- Hayashi, M.; Watanabe, M.; Hori, T. The Effects of a 20 Min Nap in the Mid-Afternoon on Mood, Performance and EEG Activity. Clin. Neurophysiol. 1999, 110, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, H.; Boukhris, O.; Abdessalem, R.; Trabelsi, K.; Ammar, A.; Shephard, R.J.; Chtourou, H. Effect of Different Nap Opportunity Durations on Short-Term Maximal Performance, Attention, Feelings, Muscle Soreness, Fatigue, Stress and Sleep. Physiol. Behav. 2019, 211, 112673. [Google Scholar] [CrossRef] [PubMed]
- Hsouna, H.; Boukhris, O.; Hill, D.W.; Abdessalem, R.; Trabelsi, K.; Ammar, A.; Irandoust, K.; Souissi, N.; Taheri, M.; Hammouda, O.; et al. A Daytime 40-Min Nap Opportunity after a Simulated Late Evening Soccer Match Reduces the Perception of Fatigue and Improves 5-m Shuttle Run Performance. Res. Sports Med. 2022, 30, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Takeyama, H.; Matsumoto, S.; Ebara, T.; Murata, K.; Tachi, N.; Itani, T. Impact of Nap Length, Nap Timing and Sleep Quality on Sustaining Early Morning Performance. Ind. Health 2007, 45, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, H.T.; Low, C.Y.; Choong, G.; Chia, M. Effects of a Short Daytime Nap on Shooting and Sprint Performance in High-Level Adolescent Athletes. Int. J. Sports Physiol. Perform. 2019, 14, 76–82. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Cronin, J.B.; Gabbett, T.J.; McGuigan, M.R.; Etxebarria, N.; Newton, R.U. Relative Importance of Strength, Power, and Anthropometric Measures to Jump Performance of Elite Volleyball Players. J. Strength Cond. Res. 2008, 22, 758–765. [Google Scholar] [CrossRef]
- Pereira, A.; Costa, A.M.; Santos, P.; Figueiredo, T.; João, P.V. Training Strategy of Explosive Strength in Young Female Volleyball Players. Medicina 2015, 51, 126–131. [Google Scholar] [CrossRef]
- Souabni, M.; Hammouda, O.; Souabni, M.J.; Romdhani, M.; Driss, T. 40-Min Nap Opportunity Attenuates Heart Rate and Perceived Exertion and Improves Physical Specific Abilities in Elite Basketball Players. Res. Sports Med. 2023, 31, 859–872. [Google Scholar] [CrossRef]
- Boukhris, O.; Trabelsi, K.; Suppiah, H.; Ammar, A.; Clark, C.C.T.; Jahrami, H.; Chtourou, H.; Driller, M. The Impact of Daytime Napping Following Normal Night-Time Sleep on Physical Performance: A Systematic Review, Meta-Analysis and Meta-Regression. Sports Med. 2024, 54, 323–345. [Google Scholar] [CrossRef]
- Fang, W.; Le, S.; Han, W.; Peng-Jiao, X.; Shuai, Y.; Rui-Ling, Z.; Lin, L.; Ya-Hui, X. Association between Napping and Cognitive Impairment: A Systematic Review and Meta-Analysis. Sleep Med. 2023, 111, 146–159. [Google Scholar] [CrossRef]
- Boukhris, O.; Trabelsi, K.; Ammar, A.; Abdessalem, R.; Hsouna, H.; Glenn, J.M.; Bott, N.; Driss, T.; Souissi, N.; Hammouda, O.; et al. A 90 Min Daytime Nap Opportunity Is Better Than 40 Min for Cognitive and Physical Performance. Int. J. Environ. Res. Public Health 2020, 17, 4650. [Google Scholar] [CrossRef] [PubMed]
- Mierzejewska-Krzyżowska, B.; Drzymała-Celichowska, H.; Celichowski, J. Gender Differences in the Morphometric Properties of Muscle Fibres and the Innervation Ratio of Motor Units in Rat Medial Gastrocnemius Muscle. Anat. Histol. Embryol. 2011, 40, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Landen, S.; Hiam, D.; Voisin, S.; Jacques, M.; Lamon, S.; Eynon, N. Physiological and Molecular Sex Differences in Human Skeletal Muscle in Response to Exercise Training. J. Physiol. 2023, 601, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Maki, P.M.; Sundermann, E. Hormone Therapy and Cognitive Function. Hum. Reprod. Update 2009, 15, 667–681. [Google Scholar] [CrossRef]
- Vermeersch, H.; T’Sjoen, G.; Kaufman, J.M.; Vincke, J.; Van Houtte, M. Gender ideology, same-sex peer group affiliation and the relationship between testosterone and dominance in adolescent boys and girls. J. Biosoc. Sci. 2010, 42, 463–475. [Google Scholar] [CrossRef]
- Downing, K.; Chan, S.; Downing, W.; Kwong, T.; Lam, T. Measuring Gender Differences in Cognitive Functioning. Multicult. Educ. Technol. J. 2008, 2, 4–18. [Google Scholar] [CrossRef]
- Halpern, D.F. Sex Differences in Cognitive Abilities, 3rd ed.; Psychology Press: Hove, UK, 2000. [Google Scholar] [CrossRef]
- Ruigrok, A.N.V.; Salimi-Khorshidi, G.; Lai, M.-C.; Baron-Cohen, S.; Lombardo, M.V.; Tait, R.J.; Suckling, J. A Meta-Analysis of Sex Differences in Human Brain Structure. Neurosci. Biobehav. Rev. 2014, 39, 34–50. [Google Scholar] [CrossRef]
- Kimura, D. Sex hormones influence human cognitive pattern. Neuro. Endocrinol. Lett. 2002, 23, 67–77. [Google Scholar]
- Adanur, O.; Eken, Ö. Enhancing Anaerobic Performance in Kickboxers: The Strategic Role of Short-Duration Napping. Spor. Bilim. Araştırmaları Derg. 2024, 9, 181–194. [Google Scholar] [CrossRef]
Variables | N | Minimum | Maximum | M + S.D. |
---|---|---|---|---|
Age (year) | 16 | 19 | 24 | 21.13 ± 1.66 |
Height (cm) | 16 | 160 | 187 | 176.25 ± 8.43 |
Weight (kg) | 16 | 48 | 82 | 65.31 ± 9.30 |
BMI (kg/m2) | 16 | 18.8 | 24.2 | 20.93 ± 1.52 |
Parameters | Male | Female |
---|---|---|
Age (years) | 22.1 ± 1.5 | 20.1 ± 1.1 |
Weight (kg) | 71.8 ± 6.7 | 58.7 ± 6.3 |
Height (cm) | 183.0 ± 3.5 | 169.5 ± 6.0 |
BMI (kg/m2) | 21.4 ± 1.6 | 20.4 ± 1.3 |
Leg length (cm) | 113.0 ± 3.5 | 104.0 ± 5.6 |
Leg length at 90° flexion (cm) | 79.2 ± 2.7 | 76.3 ± 5.3 |
Parameters | Time | Male | Female | Group | Time | Group × Time |
---|---|---|---|---|---|---|
M ± SD | M ± SD | MD | F | F | ||
Std. Err. | ηp2 | ηp2 | ||||
p | p | p | ||||
CMJ (cm) | NoN | 56.6 ± 6.5 | 31.0 ± 4.0 | 24.28 | 1.281 | 1.117 |
N25 | 56.4 ± 7.0 | 33.8 ± 6.0 | 3.2 | 0.114 | 0.105 | |
N45 | 55.98 ± 6.45 | 31.3 ± 5.5 | <0.001 | 0.3 | 0.329 | |
Force (N) | NoN | 1882.9 ± 189.7 | 1240.1 ± 186.6 | 614.6 | 1.193 | 1.372 |
N25 | 1874.1 ± 135.8 | 1299.5 ± 201.5 | 103.2 | 0.107 | 0.121 | |
N45 | 1868.7 ± 181.9 | 1242.3 ± 174.6 | <0.001 | 0.324 | 0.276 | |
RF (N) | NoN | 25.8 ± 1.8 | 20.9 ± 1.6 | 4.47 | 1.677 | 1.687 |
N25 | 25.8 ± 1.8 | 21.9 ± 2.3 | 1.09 | 0.144 | 0.144 | |
N45 | 25.7 ± 1.7 | 21.0 ± 2.1 | 0.002 | 0.212 c | 0.21 | |
Power (W) | NoN | 3133.2 ± 366.4 | 1533.2 ± 294.7 | 1571.7 | 0.011 | 0.035 |
N25 | 3107.7 ± 221.8 | 1536.7 ± 677.1 | 204.9 | 0.001 | 0.003 | |
N45 | 3089.8 ± 336.3 | 1545.4 ± 294.7 | <0.001 | 0.989 | 0.966 | |
RP (W/kg) | NoN | 43.2 ± 5.5 | 25.8 ± 3.5 | 16.1 | 1.429 | 1.309 |
N25 | 43.0 ± 5.6 | 28.4 ± 5.3 | 2.7 | 0.125 | 0.116 | |
N45 | 42.6 ± 5.4 | 26.1 ± 4.8 | <0.001 | 0.263 c | 0.292 | |
AS (m/s) | NoN | 1.6 ± 0.09 | 1.2 ± 0.07 | 0.409 | 1.662 | 1.568 |
N25 | 1.6 ± 0.1 | 1.2 ± 0.1 | 0.05 | 0.1432 | 0.136 | |
N45 | 1.6 ± 0.09 | 1.2 ± 0.1 | <0.001 | 0.215 c | 0.233 | |
TS (m/s) | NoN | 3.3 ± 0.1 | 2.4 ± 0.1 | 0.82 | 1.516 | 1.412 |
N25 | 3.3 ± 0.2 | 2.5 ± 0.2 | 0.114 | 0.132 | 0.124 | |
N45 | 3.3 ± 0.1 | 2.4 ± 0.2 | <0.001 | 0.244 c | 0.267 | |
Impulse (kg × m/s) | NoN | 242.1 ± 20.9 | 145.7 ± 20.0 | 93.6 | 1.132 | 1.198 |
N25 | 241.3 ± 15.8 | 151.6 ± 20.8 | 11.1 | 0.102 | 0.107 | |
N45 | 240.7 ± 20.0 | 145.6 ± 18.6 | <0.001 | 0.342 | 0.323 | |
FT (ms) | NoN | 678.4 ± 40.2 | 501.8 ± 32.6 | 167.2 | 1.517 | 1.362 |
N25 | 677.4 ± 42.4 | 523.5 ± 48.5 | 23.1 | 0.132 | 0.12 | |
N45 | 674.8 ± 38.9 | 503.5 ± 45.9 | <0.001 | 0.243c | 0.279 | |
D2 test (points) | NoN | 269.6 ± 2.0 | 278.5 ± 1.7 | −3.3 | 12.883 | 0.497 |
N25 | 294.3 ± 1.5 | 293.8 ± 7.6 | 0.5.3 | 0.617 | 0.058 | |
N45 | 296.3 ± 1.5 | 298.0 ± 1.1 | 0.546 | 0.005 a,b | 0.524 | |
Volleyball test (s) | NoN | 7.0 ± 0.3 | 9.3 ± 0.6 | −1.77 | 19.111 | 3.314 |
N25 | 6.2 ± 0.5 | 8.0 ± 0.3 | 0.0.3 | 0.68 | 0.269 | |
N45 | 6.6 ± 0.5 | 7.9 ± 0.8 | <0.001 | <0.001 a,b | 0.06 | |
Sleep score (points) | N25 | 6.8 ± 1.7 | 7.7 ± 1.4 | 0.043 | 4.7 | 7.512 |
1.024 | 0.32 | 0.429 | ||||
N45 | 7.0 ± 2.0 | 6.0 ± 2.0 | 0.967 | 0.055 | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eken, Ö.; Bozkurt, O.; Türkmen, M.; Kurtoglu, A.; Alotaibi, M.H.; Elkholi, S.M. Post-Lunch Napping as a Strategy to Enhance Physiological Performance and Cognitive Function in Elite Volleyball Players. Medicina 2024, 60, 1698. https://doi.org/10.3390/medicina60101698
Eken Ö, Bozkurt O, Türkmen M, Kurtoglu A, Alotaibi MH, Elkholi SM. Post-Lunch Napping as a Strategy to Enhance Physiological Performance and Cognitive Function in Elite Volleyball Players. Medicina. 2024; 60(10):1698. https://doi.org/10.3390/medicina60101698
Chicago/Turabian StyleEken, Özgür, Oguzhan Bozkurt, Musa Türkmen, Ahmet Kurtoglu, Madawi H. Alotaibi, and Safaa M. Elkholi. 2024. "Post-Lunch Napping as a Strategy to Enhance Physiological Performance and Cognitive Function in Elite Volleyball Players" Medicina 60, no. 10: 1698. https://doi.org/10.3390/medicina60101698
APA StyleEken, Ö., Bozkurt, O., Türkmen, M., Kurtoglu, A., Alotaibi, M. H., & Elkholi, S. M. (2024). Post-Lunch Napping as a Strategy to Enhance Physiological Performance and Cognitive Function in Elite Volleyball Players. Medicina, 60(10), 1698. https://doi.org/10.3390/medicina60101698