Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Surgery and General Anesthesia
2.4. Paired RIPC in Recipients and Living Donors
2.5. Definition of PRS and Rescue Epinephrine
2.6. Clinical Variables
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Comparison of Preoperative Recipient and Donor/Graft Factors Before and After PSM
3.3. PRS Occurrence and Rescue Epinephrine Requirement
3.4. Association Between Paired RIPC and PRS in PSM Patients
3.5. Intra- and Postoperative Findings in PS-Matched Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Jeong, S.M. Postreperfusion syndrome during liver transplantation. Korean J. Anesthesiol. 2015, 68, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.S.; Kim, H.Y.; Shin, Y.H.; Ko, J.S.; Gwak, M.S.; Sim, W.S.; Kim, G.S.; Lee, S.K. Incidence and predictors of post-reperfusion syndrome in living donor liver transplantation. Clin. Transplant. 2012, 26, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, A.; Pillay, P.; Crawford, M.; Nakasuji, M.; Verran, D.J.; Painter, D. Analysis of postrevascularization syndrome after orthotopic liver transplantation: The experience of an Australian liver transplantation center. J. Hepatobiliary Pancreat. Surg. 2001, 8, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Bezinover, D.; Kadry, Z.; McCullough, P.; McQuillan, P.M.; Uemura, T.; Welker, K.; Mastro, A.M.; Janicki, P.K. Release of cytokines and hemodynamic instability during the reperfusion of a liver graft. Liver Transplant. 2011, 17, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Palermo, N.E.; Gianchandani, R.Y.; McDonnell, M.E.; Alexanian, S.M. Stress Hyperglycemia During Surgery and Anesthesia: Pathogenesis and Clinical Implications. Curr. Diabetes Rep. 2016, 16, 33. [Google Scholar] [CrossRef]
- Chae, S.; Choi, J.; Lim, S.; Choi, H.J.; Park, J.; Hong, S.H.; Park, C.S.; Choi, J.H.; Chae, M.S. Stress burden related to postreperfusion syndrome may aggravate hyperglycemia with insulin resistance during living donor liver transplantation: A propensity score-matching analysis. PLoS ONE 2020, 15, e0243873. [Google Scholar] [CrossRef]
- Kloner, R.A.; Shi, J.; Dai, W.; Carreno, J.; Zhao, L. Remote Ischemic Conditioning in Acute Myocardial Infarction and Shock States. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 103–109. [Google Scholar] [CrossRef]
- Jung, K.W.; Kang, J.; Kwon, H.M.; Moon, Y.J.; Jun, I.G.; Song, J.G.; Hwang, G.S. Effect of Remote Ischemic Preconditioning Conducted in Living Liver Donors on Postoperative Liver Function in Donors and Recipients Following Liver Transplantation: A Randomized Clinical Trial. Ann. Surg. 2020, 271, 646–653. [Google Scholar] [CrossRef]
- Robertson, F.P.; Fuller, B.J.; Davidson, B.R. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J. Clin. Med. 2017, 6, 69. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, J.; Xiong, X.; Xu, Y.; Zhang, H.; Huang, C.; Tian, Y.; Jiao, C.; Wang, X.; Li, X. Remote ischemic preconditioning protects against liver ischemia-reperfusion injury via heme oxygenase-1-induced autophagy. PLoS ONE 2014, 9, e98834. [Google Scholar] [CrossRef]
- Jakubauskiene, L.; Jakubauskas, M.; Stiegler, P.; Leber, B.; Schemmer, P.; Strupas, K. Ischemic Preconditioning for Liver Transplantation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Visc. Med. 2021, 37, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, K.S.; Kumar, Y.; Sharma, D.; Davidson, B.R. Ischaemic preconditioning for liver transplantation. Cochrane Database Syst. Rev. 2008, 2008, CD006315. [Google Scholar] [CrossRef] [PubMed]
- Jassem, W.; Fuggle, S.V.; Cerundolo, L.; Heaton, N.D.; Rela, M. Ischemic preconditioning of cadaver donor livers protects allografts following transplantation. Transplantation 2006, 81, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Choukèr, A.; Schachtner, T.; Schauer, R.; Dugas, M.; Löhe, F.; Martignoni, A.; Pollwein, B.; Niklas, M.; Rau, H.G.; Jauch, K.W.; et al. Effects of Pringle manoeuvre and ischaemic preconditioning on haemodynamic stability in patients undergoing elective hepatectomy: A randomized trial. Br. J. Anaesth. 2004, 93, 204–211. [Google Scholar] [CrossRef]
- Azoulay, D.; Del Gaudio, M.; Andreani, P.; Ichai, P.; Sebag, M.; Adam, R.; Scatton, O.; Min, B.Y.; Delvard, V.; Lemoine, A.; et al. Effects of 10 minutes of ischemic preconditioning of the cadaveric liver on the graft’s preservation and function: The ying and the yang. Ann. Surg. 2005, 242, 133–139. [Google Scholar] [CrossRef]
- Costa, F.L.; Yamaki, V.N.; Gonçalves, T.B.; Coelho, J.V.; Percário, S.; Brito, M.V. Combined remote ischemic perconditioning and local postconditioning on liver ischemia-reperfusion injury. J. Surg. Res. 2014, 192, 98–102. [Google Scholar] [CrossRef]
- Czigány, Z.; Turóczi, Z.; Ónody, P.; Harsányi, L.; Lotz, G.; Hegedüs, V.; Szijártó, A. Remote ischemic perconditioning protects the liver from ischemia-reperfusion injury. J. Surg. Res. 2013, 185, 605–613. [Google Scholar] [CrossRef]
- Schmidt, M.R.; Smerup, M.; Konstantinov, I.E.; Shimizu, M.; Li, J.; Cheung, M.; White, P.A.; Kristiansen, S.B.; Sorensen, K.; Dzavik, V.; et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: First demonstration of remote ischemic perconditioning. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1883–H1890. [Google Scholar] [CrossRef]
- Bang, J.Y.; Kim, S.G.; Oh, J.; Kim, S.O.; Go, Y.J.; Hwang, G.S.; Song, J.G. Impact of Remote Ischemic Preconditioning Conducted in Living Kidney Donors on Renal Function in Donors and Recipients Following Living Donor Kidney Transplantation: A Randomized Clinical Trial. J. Clin. Med. 2019, 8, 713. [Google Scholar] [CrossRef]
- Anttila, V.; Haapanen, H.; Yannopoulos, F.; Herajärvi, J.; Anttila, T.; Juvonen, T. Review of remote ischemic preconditioning: From laboratory studies to clinical trials. Scand. Cardiovasc. J. 2016, 50, 355–361. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, J.H.; Ko, J.S.; Min, J.J.; Gwak, M.S.; Kim, G.S.; Lee, S.K. Effect of remote ischemic postconditioning on patients undergoing living donor liver transplantation. Liver Transplant. 2014, 20, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.S.; Park, C.S.; Oh, S.A.; Hong, S.H. Predictive Role of Intraoperative Plasma Fibrinogen for Postoperative Portal Venous Flow in Living Donor Liver Transplantation. Ann. Transplant. 2017, 22, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, M.; Bellomo, R.; Burdmann, E.A.; Doi, K.; Endre, Z.H.; Goldstein, S.L.; Kane-Gill, S.L.; Liu, K.D.; Prowle, J.R.; Shaw, A.D.; et al. Controversies in acute kidney injury: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020, 98, 294–309. [Google Scholar] [CrossRef]
- Agrawal, D.; Saigal, S. Early allograft dysfunction after living donor liver transplantation-current concepts and future directions. Liver Transplant. 2023, 29, 871–884. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, Y.; Chung, H.S.; Park, C.S.; Lee, J.; Choi, J.H.; Hong, S.H. Predictive Role of Serum Cytokine Profiles in Acute Kidney Injury after Living Donor Liver Transplantation. Mediators Inflamm. 2018, 2018, 8256193. [Google Scholar] [CrossRef]
- Jayant, K.; Cotter, T.G.; Reccia, I.; Virdis, F.; Podda, M.; Machairas, N.; Arasaradnam, R.P.; Sabato, D.D.; LaMattina, J.C.; Barth, R.N.; et al. Comparing High- and Low-Model for End-Stage Liver Disease Living-Donor Liver Transplantation to Determine Clinical Efficacy: A Systematic Review and Meta-Analysis (CHALICE Study). J. Clin. Med. 2023, 12, 5795. [Google Scholar] [CrossRef]
- Paugam-Burtz, C.; Kavafyan, J.; Merckx, P.; Dahmani, S.; Sommacale, D.; Ramsay, M.; Belghiti, J.; Mantz, J. Postreperfusion syndrome during liver transplantation for cirrhosis: Outcome and predictors. Liver Transplant. 2009, 15, 522–529. [Google Scholar] [CrossRef]
- Acosta, F.; Rodriguez, M.A.; Sansano, T.; Contreras, R.F.; Reche, M.; Roques, V.; Beltran, R.; Robles, R.; Bueno, F.S.; Ramirez, P.; et al. Influence of surgical technique on postreperfusion syndrome during liver transplantation. Transplant. Proc. 1999, 31, 2380–2381. [Google Scholar] [CrossRef]
- Gruttadauria, S.; Cintorino, D.; Musumeci, A.; Arcadipane, A.; Burgio, G.; Clarizia, S.; Piazza, T.; Spada, M.; Verzaro, R.; Marsh, J.W.; et al. Comparison of two different techniques of reperfusion in adult orthotopic liver transplantation. Clin. Transplant. 2006, 20, 159–162. [Google Scholar] [CrossRef]
- Daniela, K.; Michael, Z.; Florian, I.; Silvia, S.; Estrella, J.; Doris, D.; Karl-Heinz, T. Influence of retrograde flushing via the caval vein on the post-reperfusion syndrome in liver transplantation. Clin. Transplant. 2004, 18, 638–641. [Google Scholar] [CrossRef]
- Cordoví de Armas, L.; Jiménez Paneque, R.E.; Gala López, B.; Rápalo Romero, E.I.; Añuez Castillo, Y.; Vallongo Menéndez, M.B. Rapid and homogeneous reperfusion as a risk factor for postreperfusion syndrome during orthotopic liver transplantation. Rev. Bras. Anestesiol. 2010, 60, 154–161, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Koelzow, H.; Gedney, J.A.; Baumann, J.; Snook, N.J.; Bellamy, M.C. The effect of methylene blue on the hemodynamic changes during ischemia reperfusion injury in orthotopic liver transplantation. Anesth. Analg. 2002, 94, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.G.; Jung, C.W.; Lee, H.C.; Cho, Y.J. Epinephrine and phenylephrine pretreatments for preventing postreperfusion syndrome during adult liver transplantation. Liver Transplant. 2012, 18, 1430–1439. [Google Scholar] [CrossRef]
- Addeo, P.; Schaaf, C.; Noblet, V.; Faitot, F.; Lebas, B.; Mahoudeau, G.; Besch, C.; Serfaty, L.; Bachellier, P. The learning curve for piggyback liver transplantation: Identifying factors challenging surgery. Surgery 2021, 169, 974–982. [Google Scholar] [CrossRef]
- Przyklenk, K.; Bauer, B.; Ovize, M.; Kloner, R.A.; Whittaker, P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993, 87, 893–899. [Google Scholar] [CrossRef]
- Björnsson, B.; Winbladh, A.; Bojmar, L.; Sundqvist, T.; Gullstrand, P.; Sandström, P. Conventional, but not remote ischemic preconditioning, reduces iNOS transcription in liver ischemia/reperfusion. World J. Gastroenterol. 2014, 20, 9506–9512. [Google Scholar] [CrossRef]
- Abu-Amara, M.; Yang, S.Y.; Quaglia, A.; Rowley, P.; Tapuria, N.; Seifalian, A.M.; Fuller, B.J.; Davidson, B.R. Effect of remote ischemic preconditioning on liver ischemia/reperfusion injury using a new mouse model. Liver Transplant. 2011, 17, 70–82. [Google Scholar] [CrossRef]
- Abu-Amara, M.; Yang, S.Y.; Quaglia, A.; Rowley, P.; de Mel, A.; Tapuria, N.; Seifalian, A.; Davidson, B.; Fuller, B. Nitric oxide is an essential mediator of the protective effects of remote ischaemic preconditioning in a mouse model of liver ischaemia/reperfusion injury. Clin. Sci. 2011, 121, 257–266. [Google Scholar] [CrossRef]
- Zarbock, A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Martens, S.; Zahn, P.K.; Wolf, B.; Goebel, U.; Schwer, C.I.; Rosenberger, P.; et al. Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: A randomized clinical trial. JAMA 2015, 313, 2133–2141. [Google Scholar] [CrossRef]
- Yang, J.; Rao, Z.; Hong, F.; Agopian, V.; Nguyen-Lee, J.; Steadman, R.H.; Wray, C.; Xia, V.W. Takotsubo syndrome after liver transplantation: An association with intraoperatively administered epinephrine and fentanyl. Clin. Transplant. 2021, 35, e14463. [Google Scholar] [CrossRef]
- Horné, F.; Drefs, M.; Schirren, M.J.; Koch, D.T.; Cepele, G.; Jacobi, S.J.; Payani, E.; Börner, N.; Werner, J.; Guba, M.O.; et al. Hypothermic Oxygenated Machine Perfusion (HOPE) Prior to Liver Transplantation Mitigates Post-Reperfusion Syndrome and Perioperative Electrolyte Shifts. J. Clin. Med. 2022, 11, 7381. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Nie, Y.; Li, J.; Xie, H.; Zhou, L.; Yu, J.; Zheng, S.S. A Systematic Review and Meta-Analysis of Machine Perfusion vs. Static Cold Storage of Liver Allografts on Liver Transplantation Outcomes: The Future Direction of Graft Preservation. Front. Med. 2020, 7, 135. [Google Scholar] [CrossRef]
Before Propensity Score Matching | After Propensity Score Matching | |||||||
---|---|---|---|---|---|---|---|---|
Group | Non-RIPC | Paired RIPC | p | SD | Non-RIPC | Paired RIPC | p | SD |
n | 338 | 338 | 332 | 332 | ||||
Recipient variables | ||||||||
Age (years) | 53.0 (47.0–60.0) | 54.0 (48.0–59.3) | 0.412 | 0.053 | 53.0 (47.0–60.0) | 54.0 (48.0–59.0) | 0.505 | 0.040 |
Sex (female) | 98 (29.0%) | 96 (28.4%) | 0.865 | −0.013 | 97 (29.2%) | 93 (28.0%) | 0.731 | −0.027 |
Body mass index (kg/m2) | 24.2 (22.0–26.6) | 24.2 (22.0–26.6) | 0.984 | 0.004 | 24.2 (22.0–26.6) | 24.2 (22.1–26.6) | 0.978 | −0.003 |
Comorbidities | ||||||||
Hypertension | 69 (20.4%) | 68 (20.1%) | 0.924 | −0.007 | 67 (20.2%) | 67 (20.2%) | >0.999 | 0.000 |
Diabetes mellitus | 83 (24.6%) | 98 (29.0%) | 0.193 | 0.098 | 83 (25.0%) | 96 (28.9%) | 0.256 | 0.086 |
Cirrhotic complications | ||||||||
MELD score (points) | 14.5 (6.5–24.5) | 13.6 (7.1–23.0) | 0.938 | −0.023 | 14.4 (6.6–24.2) | 13.6 (7.1–23.0) | 0.825 | −0.009 |
Encephalopathy (West Haven criteria I or II) | 119 (35.2%) | 130 (38.5%) | 0.38 | 0.067 | 117 (35.2%) | 129 (38.9%) | 0.335 | 0.074 |
Varix | 80 (23.7%) | 88 (26.0%) | 0.476 | 0.054 | 79 (23.8%) | 86 (25.9%) | 0.53 | 0.048 |
Ascites ≥ 1 L | 156 (46.2%) | 165 (48.8%) | 0.488 | 0.053 | 154 (46.4%) | 162 (48.8%) | 0.534 | 0.048 |
Continuous renal replacement therapy | 54 (16.0%) | 41 (12.1%) | 0.15 | −0.118 | 53 (16.0%) | 41 (12.3%) | 0.182 | −0.111 |
Echocardiographic findings | ||||||||
Ejection fraction (%) | 64.4 (62.0–66.4) | 64.7 (62.0–67.0) | 0.023 | 0.127 | 64.4 (62.0–66.5) | 64.4 (62.0–67.0) | 0.086 | 0.135 |
Diastolic dysfunction (≥grade II) | 53 (15.7%) | 56 (16.6%) | 0.754 | 0.024 | 53 (16.0%) | 54 (16.3%) | 0.916 | 0.008 |
Laboratory findings | ||||||||
White blood cell count (×109/L) | 4.5 (2.9–7.2) | 4.5 (2.9–7.6) | 0.771 | 0.028 | 4.5 (2.9–7.2) | 4.5 (2.9–7.5) | 0.785 | −0.008 |
Neutrophil (%) | 61.8 (52.7–74.7) | 60.9 (50.5–72.8) | 0.098 | −0.150 | 61.6 (52.3–74.6) | 60.7 (50.5–72.9) | 0.143 | −0.136 |
Lymphocyte (%) | 21.0 (11.8–31.2) | 23.2 (13.1–33.4) | 0.132 | 0.129 | 21.2 (11.8–31.6) | 23.2 (13.0–33.5) | 0.183 | 0.117 |
Hematocrit (%) | 29.4 (24.6–35.6) | 29.5 (25.4–34.9) | 0.872 | 0.004 | 29.4 (24.5–35.5) | 29.5 (25.4–34.9) | 0.839 | 0.007 |
Aspartate aminotransferase (IU/L) | 46.0 (32.8–85.0) | 48.0 (33.0–86.8) | 0.783 | −0.024 | 46.0 (32.0–85.0) | 48.0 (33.0–89.8) | 0.681 | −0.024 |
Alanine aminotransferase (IU/L) | 32.0 (21.0–59.0) | 30.0 (21.0–58.0) | 0.587 | −0.022 | 32.5 (21.0–59.8) | 30.0 (21.0–57.8) | 0.59 | −0.022 |
Total bilirubin (mg/dL) | 2.4 (0.9–14.1) | 2.5 (1.0–12.7) | 0.405 | −0.044 | 2.3 (0.9–13.5) | 2.5 (1.0–12.8) | 0.299 | −0.021 |
Sodium (mEq/L) | 139.0 (135.0–142.0) | 139.0 (135.0–141.0) | 0.129 | −0.119 | 139.0 (135.0–142.0) | 139.0 (135.0–141.0) | 0.113 | −0.124 |
Calcium (mg/dL) | 8.4 (8.0–8.8) | 8.3 (7.8–8.8) | 0.116 | −0.065 | 8.4 (8.0–8.8) | 8.3 (7.8–8.8) | 0.144 | −0.058 |
Potassium (mEq/L) | 3.9 (3.6–4.3) | 4.0 (3.7–4.4) | 0.024 | 0.153 | 3.9 (3.6–4.3) | 4.0 (3.7–4.4) | 0.087 | 0.147 |
Albumin (g/dL) | 3.1 (2.7–3.6) | 3.0 (2.7–3.5) | 0.119 | −0.100 | 3.1 (2.7–3.6) | 3.0 (2.7–3.5) | 0.153 | −0.093 |
Ammonia (ug/dL) | 95.0 (64.0–143.3) | 100.5 (68.0–162.0) | 0.104 | 0.124 | 96.0 (65.0–143.8) | 100.0 (68.0–162.0) | 0.153 | 0.116 |
Platelet count (×109/L) | 65.0 (46.0–109.0) | 64.5 (45.8–99.3) | 0.287 | −0.240 | 64.0 (46.0–105.0) | 65.0 (46.0–98.8) | 0.505 | −0.170 |
International normalized ratio | 1.5 (1.2–2.1) | 1.5 (1.3–2.1) | 0.354 | 0.043 | 1.5 (1.2–2.1) | 1.5 (1.3–2.1) | 0.341 | 0.046 |
Donor variables | ||||||||
Age (years) | 35.4 (26.8–43.0) | 35.2 (26.0–41.0) | 0.605 | −0.054 | 35.4 (26.3–43.0) | 35.0 (26.0–41.0) | 0.595 | −0.059 |
Sex (female) | 112 (33.1%) | 107 (31.7%) | 0.681 | −0.032 | 110 (33.1%) | 104 (31.3%) | 0.618 | −0.039 |
Body mass index (kg/m2) | 20.2 (18.4–21.2) | 20.2 (18.3–21.6) | 0.462 | 0.055 | 20.2 (18.3–21.2) | 20.2 (18.3–21.6) | 0.467 | 0.046 |
Graft–recipient weight ratio (%) | 1.2 (1.0–1.5) | 1.2 (1.0–1.6) | 0.694 | −0.018 | 1.2 (1.0–1.5) | 1.2 (1.0–1.6) | 0.792 | −0.012 |
Graft weight (g) | 834.0 (691.5–936.5) | 821.0 (701.5–980.0) | 0.877 | −0.025 | 834.0 (690.5–935.5) | 820.0 (700.5–979.0) | 0.912 | −0.022 |
Graft fatty change (%) | 4.9 (1.0–5.0) | 4.9 (1.0–5.0) | 0.045 | 0.100 | 4.9 (1.0–5.0) | 4.9 (1.0–5.0) | 0.062 | 0.072 |
Graft ischemic time (min) | 93.0 (70.0–128.0) | 94.0 (68.0–128.3) | 0.748 | −0.138 | 92.5 (69.3–127.8) | 94.0 (68.0–127.8) | 0.884 | −0.099 |
Group | Non-RIPC | Paired RIPC | p |
---|---|---|---|
332 | 332 | ||
Incidence of postreperfusion syndrome | 117 (35.2%) | 90 (27.1%) | 0.024 |
In patients with PRS (n = 207) | |||
Rescue epinephrine infusion (mcg) | 40.0 (20.0–50.0) | 20.0 (20.0–30.0) | <0.001 |
β | Odds Ratio | 95% CI | p | |
---|---|---|---|---|
Paired RIPC adjusted for PS | ||||
Postreperfusion syndrome | −0.398 | 0.672 | 0.479–0.953 | 0.021 |
Group | Non-RIPC | Paired RIPC | p |
---|---|---|---|
332 | 332 | ||
Intraoperative finding | |||
Operation time (min) | 500.0 (440.0–570.0) | 490.0 (445.0–555.0) | 0.325 |
Average of vital signs | |||
Systolic blood pressure (mmHg) | 108.0 (98.5–115.8) | 106.0 (97.5–116.3) | 0.424 |
Diastolic blood pressure (mmHg) | 57.8 (52.3–63.3) | 56.7 (51.0–62.3) | 0.076 |
Heart rate (beats/min) | 88.5 (79.5–97.3) | 88.8 (79.8–100.0) | 0.819 |
Hourly fluid infusion (mL/kg/h) | 10.8 (8.1–14.6) | 10.8 (8.2–14.9) | 0.986 |
Hourly urine output (mL/kg/h) | 1.2 (0.6–2.0) | 1.3 (0.6–2.2) | 0.462 |
Blood products transfusion (unit) | |||
Packed red blood cells | 8.0 (4.0–14.8) | 8.0 (4.0–12.0) | 0.395 |
Fresh frozen plasma | 8.0 (4.0–11.0) | 7.0 (5.0–10.0) | 0.662 |
Single donor platelet | 0.0 (0.0–5.0) | 0.0 (0.0–5.0) | 0.485 |
Cryoprecipitate | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.109 |
Postoperative findings | |||
ICU stay (day) | 6.8 (5.0–7.0) | 7.0 (5.0–7.0) | 0.299 |
Hospital stay (day) | 23.0 (21.0–30.0) | 22.0 (21.0–28.5) | 0.287 |
Incidence of acute kidney injury | 84 (25.3%) | 60 (18.1%) | 0.024 |
Incidence of early allograft dysfunction | 50 (15.1%) | 49 (14.8%) | >0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huh, J.; Chae, M.S. Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis. Medicina 2024, 60, 1830. https://doi.org/10.3390/medicina60111830
Huh J, Chae MS. Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis. Medicina. 2024; 60(11):1830. https://doi.org/10.3390/medicina60111830
Chicago/Turabian StyleHuh, Jaewon, and Min Suk Chae. 2024. "Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis" Medicina 60, no. 11: 1830. https://doi.org/10.3390/medicina60111830
APA StyleHuh, J., & Chae, M. S. (2024). Impact of Paired Remote Ischemic Preconditioning on Postreperfusion Syndrome in Living-Donor Liver Transplantation: A Propensity-Score Matching Analysis. Medicina, 60(11), 1830. https://doi.org/10.3390/medicina60111830