Association Between Sarcopenia and Acupressure Testing in Older Adults Requiring Long-Term Care
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design and Ethical Considerations
2.2. Participants
2.3. Survey Content
2.3.1. Diagnosis of Sarcopenia
2.3.2. Acupressure Test
2.3.3. Basic Attributes
2.3.4. Other Evaluation Items
2.4. Analysis
2.5. Power Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, R.J.; Hasni, S. Pathogenesis and management of sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Cawthon, P.M.; Arai, H.; Ávila-Funes, J.A.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.K.; et al. The conceptual definition of sarcopenia: Delphi consensus from the global leadership initiative in sarcopenia (GLIS). Age Ageing. 2024, 53, afae052. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Das, C.; Das, P.P.; Kambhampati, S.B. Sarcopenia and osteoporosis. Indian J. Orthop. 2023, 57 (Suppl. S1), 33–41. [Google Scholar] [CrossRef]
- Wang, D.K.; Li, Y.H.; Guo, X.M. Depression and sarcopenia-related traits: A Mendelian randomization study. World J. Psychiatry 2023, 13, 929–936. [Google Scholar] [CrossRef]
- Chen, H.; Huang, X.; Dong, M.; Wen, S.; Zhou, L.; Yuan, X. The association between sarcopenia and diabetes: From pathophysiology mechanism to therapeutic strategy. Diabetes Metab. Syndr. Obes. 2023, 16, 1541–1554. [Google Scholar] [CrossRef]
- Pan, X.; Han, Y.; Zou, T.; Zhu, G.; Xu, K.; Zheng, J.; Zheng, M.; Cheng, X. Sarcopenia contributes to the progression of nonalcoholic fatty liver disease- related fibrosis: A meta-analysis. Dig. Dis. 2018, 36, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.C.; Chang, S.F.; Tsai, H.C. The relationship between sarcopenia and injury events: A systematic review and meta-analysis of 98,754 older adults. J. Clin. Med. 2022, 11, 6474. [Google Scholar] [CrossRef]
- Xu, J.; Wan, C.S.; Ktoris, K.; Reijnierse, E.M.; Maier, A.B. Sarcopenia is associated with mortality in adults: A systematic review and meta-analysis. Gerontology 2022, 68, 361–376. [Google Scholar] [CrossRef]
- Morley, J.E. The new geriatric giants. Clin. Geriatr. Med. 2017, 33, xi–xii. [Google Scholar] [CrossRef] [PubMed]
- Lenchik, L.; Boutin, R.D. Sarcopenia: Beyond muscle atrophy and into the new frontiers of opportunistic imaging, precision medicine, and machine learning. Semin. Musculoskelet. Radiol. 2018, 22, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, Y.; Ishizaka, M.; Kubo, A.; Shiba, T.; Hirose, T.; Onoda, K.; Maruyama, H.; Urano, T. The Asian working group for sarcopenia’s new criteria updated in 2019 causing a change in sarcopenia prevalence in Japanese older adults requiring long-term care/support. J. Phys. Ther. Sci. 2020, 32, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Ishida, Y.; Maeda, K.; Nonogaki, T.; Shimizu, A.; Yamanaka, Y.; Matsuyama, R.; Kato, R.; Mori, N. Impact of edema on length of calf circumference in older adults. Geriatr. Gerontol. Int. 2019, 19, 993–998. [Google Scholar] [CrossRef]
- Bahat, G.; Erdoğan, T.; İlhan, B. SARC-F and other screening tests for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 37–42. [Google Scholar] [CrossRef]
- Sawaya, Y.; Hirose, T.; Ishizaka, M.; Shiba, T.; Sato, R.; Kubo, A.; Urano, T. The inability to open a polyethylene terephthalate bottle cap can predict sarcopenia. Geriatr. Gerontol. Int. 2022, 22, 682–684. [Google Scholar] [CrossRef]
- Sato, R.; Sawaya, Y.; Ishizaka, M.; Shiba, T.; Hirose, T.; Urano, T. Neck circumference may predict sarcopenia in Japanese older adults requiring long-term care. Geriatr. Nurs. 2022, 47, 159–163. [Google Scholar] [CrossRef]
- Vedolin, G.M.; Lobato, V.V.; Conti, P.C.; Lauris, J.R. The impact of stress and anxiety on the pressure pain threshold of myofascial pain patients. J. Oral Rehabil. 2009, 36, 313–321. [Google Scholar] [CrossRef]
- Gajsar, H.; Titze, C.; Hasenbring, M.I.; Vaegter, H.B. Isometric back exercise has different effect on pressure pain thresholds in healthy men and women. Pain Med. 2017, 18, 917–923. [Google Scholar] [CrossRef]
- Baroni, A.; Severini, G.; Straudi, S.; Buja, S.; Borsato, S.; Basaglia, N. Hyperalgesia and central sensitization in subjects with chronic orofacial pain: Analysis of pain thresholds and EEG biomarkers. Front. Neurosci. 2020, 14, 552650. [Google Scholar] [CrossRef] [PubMed]
- Beynon, A.M.; Hebert, J.J.; Walker, B.F. The interrater reliability of static palpation of the thoracic spine for eliciting tenderness and stiffness to test for a manipulable lesion. Chiropr. Man. Therap. 2018, 26, 49. [Google Scholar] [CrossRef] [PubMed]
- Kosek, E.; Lundberg, L. Segmental and plurisegmental modulation of pressure pain thresholds during static muscle contractions in healthy individuals. Eur. J. Pain 2003, 7, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, R.J.; Battié, M.C. A comparison of pressure pain detection thresholds in people with chronic low back pain and volunteers without pain. Phys. Ther. 2005, 85, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Held, S.M.; Rolke, R.; Treede, R.D.; Schmieder, K.; Karimi, Z.; Sudhaus, S.C.; Hasenbring, M.I. Pain-related endurance, fear-avoidance and somatosensory sensitivity as correlates of clinical status after lumbar disc surgery. TOPAINJ 2013, 6, 165–175. [Google Scholar] [CrossRef]
- Lin, T.; Dai, M.; Xu, P.; Sun, L.; Shu, X.; Xia, X.; Zhao, Y.; Song, Q.; Guo, D.; Deng, C.; et al. Prevalence of sarcopenia in pain patients and correlation between the two conditions: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2022, 23, 902.e1–902.e20. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Xu, Z. Sarcopenia and chronic pain in the elderly: A systematic review and meta-analysis. J. Pain Res. 2023, 16, 3569–3581. [Google Scholar] [CrossRef]
- Imai, R.; Imaoka, M.; Nakao, H.; Hida, M.; Tazaki, F.; Inoue, T.; Orui, J.; Nakamura, M. Association between chronic pain with presarcopenia and central sensitization in Japanese community-dwelling older adults: A cross-sectional study. Medicine 2022, 101, e29998. [Google Scholar] [CrossRef]
- Volcheck, M.M.; Graham, S.M.; Fleming, K.C.; Mohabbat, A.B.; Luedtke, C.A. Central sensitization, chronic pain, and other symptoms: Better understanding, better management. Cleve. Clin. J. Med. 2023, 90, 245–254. [Google Scholar] [CrossRef]
- Tinnirello, A.; Mazzoleni, S.; Santi, C. Chronic pain in the elderly: Mechanisms and distinctive features. Biomolecules 2021, 11, 1256. [Google Scholar] [CrossRef]
- Lima, A.R.; Portes, L.A.; de Oliveira, N.C.; Alfieri, F.M. Pressure pain threshold, lifestyle, muscle strength and functional capacity in elderly women with sarcopenia. Acta Fisiátrica 2016, 23, 73–77. [Google Scholar] [CrossRef]
- Eggermont, L.H.; Shmerling, R.H.; Leveille, S.G. Tender point count, pain, and mobility in the older population: The mobilize Boston study. J. Pain 2010, 11, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.Y.; Wang, Y.; Danneskiold-Samsøe, B.; Graven-Nielsen, T.; Arendt-Nielsen, L. The predetermined sites of examination for tender points in fibromyalgia syndrome are frequently associated with myofascial trigger points. J. Pain 2010, 11, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Ablin, J.N.; Gurevitz, I.; Cohen, H.; Buskila, D. Sexual dysfunction is correlated with tenderness in female fibromyalgia patients. Clin. Exp. Rheumatol. 2011, 29 (Suppl. S69), S44–S48. [Google Scholar] [PubMed]
- Kaltsas, G.; Tsiveriotis, K. Fibromyalgia Endotext. Internet. South Dartmouth (MA); MDText.com. 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279092/ (accessed on 20 June 2024).
- Cott, A.; Parkinson, W.; Bell, M.J.; Adachi, J.; Bédard, M.; Cividino, A.; Bensen, W. Interrater reliability of the tender point criterion for fibromyalgia. J. Rheumatol. 1992, 19, 1955–1959. [Google Scholar]
- Hubka, M.J.; Phelan, S.P. Interexaminer reliability of palpation for cervical spine tenderness. J. Manipulative Physiol. Ther. 1994, 17, 591–595. [Google Scholar]
- Jacobs, J.W.; Geenen, R.; Van der Heide, A.; Rasker, J.J.; Bijlsma, J.W. Are tender point scores assessed by manual palpation in fibromyalgia reliable? An investigation into the variance of tender point scores. Scand. J. Rheumatol. 1995, 24, 243–247. [Google Scholar] [PubMed]
- Yamada, M.; Arai, H. Long-term care system in Japan. Ann. Geriatr. Med. Res. 2020, 24, 174–180. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Calvo Lobo, C.; Romero Morales, C.; Rodríguez Sanz, D.; Sanz Corbalán, I.; Sánchez Romero, E.A.; Fernández Carnero, J.; López López, D. Comparison of hand grip strength and upper limb pressure pain threshold between older adults with or without non-specific shoulder pain. PeerJ 2017, 5, e2995. [Google Scholar] [CrossRef] [PubMed]
- Hooten, W.M.; Rosenberg, C.J.; Eldrige, J.S.; Qu, W. Knee extensor strength is associated with pressure pain thresholds in adults with fibromyalgia. PLoS ONE 2013, 8, e59930. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Lack, S.; Taborda, B.; Pazzinatto, M.F.; de Azevedo, F.M.; De Oliveira Silva, D.D. Body fat and skeletal muscle mass, but not body mass index, are associated with pressure hyperalgesia in young adults with patellofemoral pain. Braz. J. Phys. Ther. 2022, 26, 100430. [Google Scholar] [CrossRef] [PubMed]
- Goubert, D.; Meeus, M.; Willems, T.; De Pauw, R.; Coppieters, I.; Crombez, G.; Danneels, L. The association between back muscle characteristics and pressure pain sensitivity in low back pain patients. Scand. J. Pain 2018, 18, 281–293. [Google Scholar] [CrossRef]
- de Goeij, M.; van Eijk, L.T.; Vanelderen, P.; Wilder-Smith, O.H.; Vissers, K.C.; van der Hoeven, J.G.; Kox, M.; Scheffer, G.J.; Pickkers, P. Systemic inflammation decreases pain threshold in humans in vivo. PLoS ONE 2013, 8, e84159. [Google Scholar] [CrossRef]
- Rong, Y.D.; Bian, A.L.; Hu, H.Y.; Ma, Y.; Zhou, X.Z. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. B.M.C. Geriatr. 2018, 18, 308. [Google Scholar] [CrossRef]
- Benz, E.; Pinel, A.; Guillet, C.; Capel, F.; Pereira, B.; De Antonio, M.; Pouget, M.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinkova, E.; et al. Sarcopenia and sarcopenic obesity and mortality among older people. JAMA Netw. Open 2024, 7, e243604. [Google Scholar] [CrossRef]
Sarcopenia (n = 68) | Nonsarcopenia (n = 52) | p | |
---|---|---|---|
Age (years) | 79.9 ± 8.6 | 75.4 ± 9.9 | 0.009 * |
Female, n (%) | 22 (32.4) | 23 (44.2) | 0.183 |
Height (cm) | 158.1 ± 8.3 | 161.1 ± 9.3 | 0.066 |
Weight (kg) | 54.4 ± 7.4 | 62.6 ± 11.9 | <0.001 * |
BMI (kg/m2) | 21.8 ± 2.8 | 24.1 ± 4.1 | <0.001 * |
Care levels (1–7) † | 3.0 (2.0–4.0) | 2.0 (1.0–3.0) | 0.026 * |
Grip strength (kg) | 20.3 ± 6.4 | 26.2 ± 9.2 | <0.001 * |
Gait speed (m/sec) | 0.7 ± 0.3 | 0.9 ± 0.3 | <0.001 * |
SMI (kg/m2) | 5.9 ± 0.7 | 7.2 ± 0.9 | <0.001 * |
MNA-sf (score) † | 11.0 (9.0–13.0) | 13.0 (12.0–14.0) | <0.001 * |
SARC-F (Score) †† | 4.0 (2.0–7.0) | 3.0 (1.0–5.5) | 0.207 |
Total number of tenderness (score) † | 5.0 (2.0–7.0) | 2.0 (0.0–4.0) | 0.001 * |
Occiput, n (%) | 17 (25.0) | 5 (9.6) | 0.031 * |
Low cervical, n (%) | 55 (80.9) | 29 (55.8) | 0.003 * |
Trapezius, n (%) | 20 (29.4) | 11 (21.2) | 0.306 |
Supraspinatus, n (%) | 14 (20.6) | 2 (3.8) | 0.007 * |
Second rib, n (%) | 34 (50.0) | 20 (38.5) | 0.208 |
Lateral epicondyle, n (%) | 4 (5.9) | 1 (1.9) | 0.387 |
Gluteus, n (%) | 30 (44.1) | 17 (32.7) | 0.204 |
Greater trochanter, n (%) | 24 (35.3) | 8 (15.4) | 0.015 * |
Knee, n (%) | 24 (35.3) | 14 (26.9) | 0.329 |
Number of Tender Points | SARC-F † | Grip Strength | Gait Speed | SMI | BMI | MNA-sf | Care Levels | |
---|---|---|---|---|---|---|---|---|
Total number of tender points | - | |||||||
SARC-F † | 0.166 | - | ||||||
Grip strength | −0.536 ** | −0.111 | - | |||||
Gait speed | −0.200 * | −0.461 ** | 0.174 | - | ||||
SMI | −0.394 ** | −0.079 | 0.650 ** | 0.216 * | - | |||
BMI | −0.121 | −0.063 | 0.093 | 0.147 | 0.374 ** | - | ||
MNA-sf | −0.333 ** | −0.274 ** | 0.323 ** | 0.144 | 0.371 ** | 0.375 ** | - | |
Care levels | 0.181 * | 0.165 | −0.148 | −0.325 ** | −0.191 * | −0.195 * | −0.213 * | - |
β | SE | p | OR | 95%CI | |
---|---|---|---|---|---|
Number of tender points | 0.259 | 0.073 | <0.001 * | 1.296 | 1.122–1.497 |
β | SE | p | OR | 95% CI | |
---|---|---|---|---|---|
Occiput | 0.540 | 0.653 | 0.408 | 1.717 | 0.477–6.174 |
Supraspinatus | 1.913 | 0.874 | 0.029 * | 6.773 | 1.221–37.573 |
Greater trochanter | 0.555 | 0.558 | 0.321 | 1.741 | 0.583–5.203 |
Low cervical | 1.015 | 0.493 | 0.039 * | 2.758 | 1.050–7.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiba, T.; Sawaya, Y.; Sato, R.; Hirose, T.; Yin, L.; Shiraki, M.; Ishizaka, M.; Kubo, A.; Urano, T. Association Between Sarcopenia and Acupressure Testing in Older Adults Requiring Long-Term Care. Medicina 2024, 60, 1852. https://doi.org/10.3390/medicina60111852
Shiba T, Sawaya Y, Sato R, Hirose T, Yin L, Shiraki M, Ishizaka M, Kubo A, Urano T. Association Between Sarcopenia and Acupressure Testing in Older Adults Requiring Long-Term Care. Medicina. 2024; 60(11):1852. https://doi.org/10.3390/medicina60111852
Chicago/Turabian StyleShiba, Takahiro, Yohei Sawaya, Ryo Sato, Tamaki Hirose, Lu Yin, Masataka Shiraki, Masahiro Ishizaka, Akira Kubo, and Tomohiko Urano. 2024. "Association Between Sarcopenia and Acupressure Testing in Older Adults Requiring Long-Term Care" Medicina 60, no. 11: 1852. https://doi.org/10.3390/medicina60111852
APA StyleShiba, T., Sawaya, Y., Sato, R., Hirose, T., Yin, L., Shiraki, M., Ishizaka, M., Kubo, A., & Urano, T. (2024). Association Between Sarcopenia and Acupressure Testing in Older Adults Requiring Long-Term Care. Medicina, 60(11), 1852. https://doi.org/10.3390/medicina60111852