Outcomes and Complications of Posterior Fossa Surgery in Sitting Versus Park-Bench Positions
Abstract
:1. Introduction
2. Methods and Patients
2.1. Ethical Considerations
2.2. Study Design and Setting
2.3. Participants
2.4. Inclusion Criteria
3. Variables
3.1. Patient Positioning
3.2. Anesthesia Technique
3.3. Monitoring of Intraoperative Anesthesia
- (a)
- Hemodynamic monitoring included heart rate monitoring, 5-lead Electrocardiogram (ECG) for early detection of arrhythmia, and continuous noninvasive (blood pressure cuff) or invasive (radial artery cannulation on the arm accessible to the anesthesia team) blood pressure monitoring.
- (b)
- Respiratory monitoring included capnography to monitor ventilation and detect early changes in CO2 levels, including early signs of VAE; oxygen saturation (SpO2) and arterial blood gases (occasionally) were also monitored to assess ventilatory and acid-base status.
- (c)
- Central venous pressure monitoring was performed via a central venous catheter inserted in the right subclavian vein or internal jugular vein, which is essential for volemic resuscitation, vasopressor treatment, and, owing to the risk of developing VAE, air aspiration from the right atrium in the case of VAE occurrence.
- (d)
- Neurological monitoring included somatosensory and motor-evoked potentials (SSEPs, MEPs) in patients with cerebellopontine angle tumor formations and brainstem or craniocervical junction tumors.
- (e)
- Body temperature was monitored.
- (f)
- Diuresis monitoring included bladder catheterization.
3.4. Statistical Analyses
4. Results
5. Discussion
6. Limitations of the Study
6.1. Limitations
6.2. Strengths
6.3. Clinical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lubnin, A.Y. Neirokhirurgicheskie vmeshatel’stva v polozhenii sidya: Real’no otsenivaya riski [Sitting position in neurosurgery: Realizing the risks]. Vopr. Neirokhirurgii Im. N. N. Burdenko 2022, 86, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Welch, M.B.; Wahr, J.A.; Crowley, M. Patient Positioning for Surgery and Anesthesia in Adults. UpToDat. 2018. Available online: https://medilib.ir/uptodate/show/94593 (accessed on 6 September 2024).
- Domaingue, C.M. Anaesthesia for neurosurgery in the sitting position: A practical approach. Anaesth. Intensive Care 2005, 33, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Emamimeybodi, M.; Hajikarimloo, B.; Abbasi, F.; Tavanaei, R.; Toudeshki, K.K.; Koohi, N.; Pourhemmati, S.; Amani, H.; Pishgahi, M.; Oraee-Yazdani, S.; et al. Position-dependent hemodynamic changes in neurosurgery patients: A narrative review. Interdiscip. Neurosurg. 2024, 36, 101886. [Google Scholar] [CrossRef]
- Elton, R.J.; Howell, R.S. The sitting position in neurosurgical anaesthesia: A survey of British practice in 1991. Br. J. Anaesth. 1994, 73, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Kida, H.; Nishikawa, N.; Matsunami, K.; Kawahito, M.; Ota, M.; Miyao, S. Sitting position in the neurosurgery: The results of a questionnaire sent to neurosurgeons of medical colleges. Masui 2000, 49, 566–569. (In Japanese) [Google Scholar] [PubMed]
- Macalinao, A.B.; Gavia, L.A. A Comparison of Intraoperative Occurrence of Venous Air Embolism During Posterior Fossa Surgeries in Adult Patients in Sit Up vs Horizontal Position: A Systematic Review and Meta-Analysis Study; Department of Anesthesiology and Pain Medicine, Cardinal Santos Medical Center: Metro Manila, Philippines, 2023. [Google Scholar]
- Kore, S. A prospective study observing outcome following posterior fossa craniotomy in patients with sitting position. Int. J. Biomed. Adv. Res. 2016, 7, 438–442. [Google Scholar] [CrossRef]
- Saladino, A.; Lamperti, M.; Mangraviti, A.; Legnani, F.G.; Prada, F.U.; Casali, C.; Caputi, L.; Borrelli, P.; DiMeco, F. The semisitting position: Analysis of the risks surgical outcomes in a contemporary series of 425 adult patients undergoing cranial surgery. J. Neurosurg. 2017, 127, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, A.-C.; Niiya, T.; Randell, T.; Romani, R.; Hernesniemi, J.; Niemi, T. Sitting Position for Removal of Pineal Region Lesions: The Helsinki Experience. World Neurosurg. 2010, 74, 505–513. [Google Scholar] [CrossRef]
- Dallier, F.; Di Roio, C. Sitting position for pineal surgery: Some anaesthetic considerations. Neurochirurgie 2015, 61, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Biaggioni, I. Orthostatic Hypotension in the Hypertensive Patient. Am. J. Hypertens. 2018, 31, 1255–1259. [Google Scholar] [CrossRef]
- Joseph, A.; Wanono, R.; Flamant, M.; Vidal-Petiot, E. Orthostatic hypotension: A review. Nephrol. Ther. 2017, 13 (Suppl. S1), 55–67. [Google Scholar] [CrossRef] [PubMed]
- Mar, P.L.; Raj, S.R. Orthostatic hypotension for the cardiologist. Curr. Opin. Cardiol. 2018, 33, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, autonomic nervous system. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ricci, F.; De Caterina, R.; Fedorowski, A. Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J. Am. Coll. Cardiol. 2015, 66, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Allman, K.; Wilson, I. Oxford. Practical Guide to Anesthesia, 4th ed.; Hipocrate: Bucharest, Romania, 2017; ISBN 9789738837263. [Google Scholar]
- Iavarone, I.G.; Rocco, P.R.M.; Silva, P.L.; Taran, S.; Wahlster, S.; Schultz, M.J.; Robba, C. Perioperative Ventilation in Neurosurgical Patients: Considerations and Challenges. Curr. Anesthesiol. Rep. 2024, 14, 512–524. [Google Scholar] [CrossRef]
- Günther, F.; Frank, P.; Nakamura, M.; Hermann, E.J.; Palmaers, T. Venous air embolism in the sitting position in cranial neurosurgery: Incidence and severity according to the used monitoring. Acta Neurochir. 2017, 159, 339–346. [Google Scholar] [CrossRef]
- Prabhakar, H.; Mahajan, C.; Kapoor, I. Manual of Neuroanesthesia. The Essentials; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Dilmen, O.K.; Akcil, E.F.; Tureci, E.; Tunali, Y.; Bahar, M.; Tanriverdi, T.; Aydin, S.; Yentur, E. Neurosurgery in the sitting position: Retrospective analysis of 692 adult and pediatric cases. Turk. Neurosurg. 2011, 21, 634–640. [Google Scholar] [CrossRef]
- Konrad, F.M.; Konrad, F.M.; Mayer, A.S.; Mayer, A.S.; Serna-Higuita, L.M.; Serna-Higuita, L.M.; Hurth, H.; Hurth, H.; Tatagiba, M.; Tatagiba, M.; et al. Occurrence and severity of venous air embolism during neurosurgical procedures: Semisitting versus supine position. World Neurosurg. 2022, 163, e335–e340. [Google Scholar] [CrossRef]
- Vacas, S.; Van de Wiele, B. Designing a pain management protocol for craniotomy: A narrative review and consideration of promis ing practices. Surg. Neurol. Int. 2017, 8, 291. [Google Scholar] [CrossRef]
- Connor, C.W. A forensic disassembly of the BIS monitor. Anesth. Analg. 2020, 131, 1923–1933. [Google Scholar] [CrossRef]
- Himes, B.T.; Mallory, G.W.; Abcejo, A.S.; Pasternak, J.; Atkinson, J.L.D.; Meyer, F.B.; Marsh, W.R.; Link, M.J.; Clarke, M.J.; Perkins, W.; et al. Contemporary analysis of the intraoperative perioperative complications of neurosurgical procedures performed in the sitting position. J. Neurosurg. 2016, 127, 182–188. [Google Scholar] [CrossRef]
- Brull, S.J.; Prielipp, R.C. Vascular air embolism: A silent hazard to patient safety. J. Crit. Care. 2017, 42, 255–263. [Google Scholar] [CrossRef]
- Hanalioglu, D.; Elbir, C.; Sahin, O.S.; Ercandirli, A.K.; Sahin, B.; Turkoglu, M.E.; Kertmen, H.H.; Hanalioglu, S., II. Clinical Significance of Pneumocephalus in Pediatric Mild Traumatic Brain Injury. Pediatr. Emerg. Care 2023, 39, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Choque-Velasquez, J.; Colasanti, R.; Resendiz-Nieves, J.C.; Gonzáles-Echevarría, K.E.; Raj, R.; Jahromi, B.R.; Goehre, F.; Lindroos, A.-C.; Hernesniemi, J. Praying sitting position for pineal region surgery: An efcient variant of a classic position in neurosurgery. World Neurosurg. 2018, 113, e604–e611. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A. Abstract No.: ABS0480: A retrospective study observing outcome following posterior fossa craniotomy in patients with sitting position. Indian J. Anaesth. 2022, 66, S8–S9. [Google Scholar] [CrossRef]
- Moerman, A.; De Hert, S. Cerebral oximetry: The standard monitor of the future? Curr. Opin. Anesthesiol. 2015, 28, 703–709. [Google Scholar] [CrossRef]
- Suarjaya, I.P.P.; Paramartha, B.; Sutawan, I.B.K.J.; Panji, I.P.A.S. Manajemen Anestesi Reseksi Tumor Cerebello-pontine Angle Vestibular Schwannoma dengan Posisi Lateral. J. Neuroanestesi Indones. 2022, 11, 105–112. [Google Scholar] [CrossRef]
- Mavarez-Martinez, A.; Israelyan, L.A.; Soghomonyan, S.; Fiorda-Diaz, J.; Sandhu, G.S.; Shimansky, V.N.; Ammirati, M.; Palettas, M.; Lubnin, A.Y.; Bergese, S.D. The Effects of Patient Positioning on the Outcome During Posterior Cranial Fossa and Pineal Region Surgery. Front. Surg. 2020, 7, 9. [Google Scholar] [CrossRef]
- Barami, K. Cerebral venous overdrainage: An under-recognized complication of cerebrospinal fluid diversion. Neurosurg. Focus 2016, 41, E9. [Google Scholar] [CrossRef]
- Avagliano, L.; Massa, V.; George, T.M.; Qureshy, S.; Bulfamante, G.P.; Finnell, R.H. Overview on neural tube defects: From development to physical characteristics. Birth Defects Res. 2019, 111, 1455–1467. [Google Scholar] [CrossRef]
- Magnaes, B. Movement of cerebrospinal fluid within craniospinal space when sitting up and lying down. Surg. Neurol. 1978, 10, 45–49. [Google Scholar]
- Muzumdar, D.P. Postoperative pneumoventricle following posterior fossa tumor surgery in sitting position: Plugging the aqueduct. J. Pediatr. Neurosci. 2020, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Taki, K.; Ninomiya, K.; Yamamoto, A.; Suematsu, T.; Sasaki, M.; Kishima, H. Communicating hydrocephalus after resection of a meningioma ventral to the foramen magnum. Surg. Neurol. Int. 2024, 15, 231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Motiei-Langroudi, R.; Griessenauer, C.J.; Alturki, A.Y.; Chapman, P.H.; Ogilvy, C.S.; Thomas, A.J. Modified Park Bench Position for Superior Vermian Arteriovenous Malformations and Dural Fistulas. World Neurosurg. 2017, 106, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Koueik, J.; Iskandar, B.J.; Yang, Z.; Kraemer, M.R.; Armstrong, S.A.; Wakim, V.; Broman, A.T.; Medow, J.E.; Luzzio, C.; Hsu, D.A. Ventriculoperitoneal Shunt Drainage Increases with Gravity and Cerebrospinal Fluid Pressure Pulsations: Benchtop Model. Neurosurgery 2021, 89, 1141–1147. [Google Scholar] [CrossRef]
- Charbel, F.T.; Kehrli, P.; Pain, L. The sitting position in neurosurgery: The viewpoint of the surgeon. Ann. Fr. D’Anesth. Reanim. 1998, 17, 160–163. [Google Scholar] [CrossRef]
- Schaffranietz, L.; Günther, L. Die sitzende Position bei Operationen in der Neurochirurgie. Ergebnisse einer Umfrage [The sitting position in neurosurgical operations. Results of a survey]. Anaesthesist 1997, 46, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Gunerhan, G.; Cagil, E.; Daglar, Z.; Aygun, K.; Yigit, M.; Algul, H.; Belen, A.D. Surgical management of foramen magnum meningiomas: Clinical insights and outcomes. Ann. Med. Res. 2024, 31, 216–221. [Google Scholar]
- Bilotta, F.; Sergi, P.G.; Spennati, V. Patient Positioning during Neurosurgery: A Relevant Skill for Neuroanesthesiologist in a Multidisciplinary Team Work. J. Neuroanaesth. Crit. Care 2020, 07, 049–051. [Google Scholar] [CrossRef]
- Khan, Z.H.; Samadi, S.; Zanjani, A.P.; Hatemi, B.M. Air Embolism in Sitting Position during Neurosurgical Operations and It’s Prevention: A Narrative Review. Arch. Anesth. Crit. Care. 2019, 5, 54–61. [Google Scholar] [CrossRef]
- Pinto, V.L.; Tadi, P.; Adeyinka, A. Increased Intracranial Pressure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482119/ (accessed on 1 August 2024).
- Haines, D.E. Chapter 8—A Survey of the Cerebrovascular System. In Fundamental Neuroscience for Basic and Clinical Applications, 5th ed.; Haines, D.E., Mihailoff, G.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 122–137.e1. ISBN 9780323396325. [Google Scholar] [CrossRef]
- Babakhani, B.; Schott, M.; Hosseinitabatabaei, N.; Jantzen, J.P. Unanticipated Disturbance in Somatosensory Evoked Potentials in a Patient in Park-Bench Position. Turk. J. Anaesthesiol. Reanim. 2015, 43, 202–204. [Google Scholar] [CrossRef]
- Yahanda, A.T.; Chicoine, M.R. Paralysis caused by spinal cord injury after posterior fossa surgery: A systematic review. World Neurosurg. 2020, 139, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Cinotti, R.; Bruder, N.; Srairi, M.; Paugam-Burtz, C.; Beloeil, H.; Pottecher, J.; Geeraerts, T.; Atthar, V.; Guéguen, A.; Triglia, T.; et al. Prediction Score for Postoperative Neurologic Complications after Brain Tumor Craniotomy: A Multicenter Observational Study. Anesthesiology 2018, 129, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Liu, D.; Wu, X.; Wang, X.; Zhou, Y.; Li, M.; Lin, Q.; Guo, H.; Tang, J.; Xiao, X.; et al. Outcomes after semisitting and lateral positioning in large vestibular schwannoma surgery: A single-center comparison. Clin. Neurol. Neurosurg. 2021, 207, 106768. [Google Scholar] [CrossRef] [PubMed]
Variables | Sitting Position (n = 231) | Park-Bench Position (n = 83) | p Value |
---|---|---|---|
Age (years), median (IQR) | 55 (43–63) | 62 (45–74) | <0.001 |
Sex (F), no. (%) | 138 (59.74) | 48 (57.83) | 0.761 |
Surgical approach, detailed, no. (%) | Retrosigmoid: 152 (65.8) Unilateral suboccipital: 48 (20.78) Midline: 18 (7.79) Infratentorial supracerebellar: 13 (5.63) | Unilateral suboccipital: 58 (69.8) Retrosigmoid: 22 (26.51) Midline: 2 (2.41) Infratentorial supracerebellar: 1 (1.2) | <0.001 |
Anesthesia complications, no. (%) | 212 (91.77) | 59 (71.08) | <0.001 |
Hypertension (>140/90 mmHg), no. (%) | 120 (51.95) | 33 (39.76) | 0.057 |
Hypotension (<90/60 mmHg), no. (%) | 143 (61.9) | 14 (16.87) | <0.001 |
Tachycardia (>100 bpm), no. (%) | 32 (13.85) | 18 (21.69) | 0.094 |
Bradycardia (<60 bpm), no. (%) | 88 (38.1) | 13 (15.66) | <0.001 |
Atropine, no. (%) | 58 (25.11) | 7 (8.43) | 0.001 |
Colloid, no. (%) | 59 (25.54) | 35 (42.17) | 0.005 |
Vasoactive, no. (%) | 85 (36.8) | 15 (18.07) | 0.002 |
CO2 decreases by >2 mmHg, no. (%) | 81 (35.06) | 13 (15.66) | <0.001 |
Hypoxia, no. (%) | 4 (1.73) | 7 (8.43) | 0.009 |
Documented VAE, no. (%) | 24 (10.39) | 0 (0) | 0.002 |
Aspirated air (mL), median (IQR) | 0 (0–0)/ 20 (15–30) {10–60} * | 0 (0–0) | 0.003 |
Intraoperative transfusions, no. (%) | 6 (2.6) | 7 (8.43) | 0.047 |
Intraoperative diuresis (mL), median (IQR) | 1628 (1382.5–1901.5) | 1566 (1358.5–1859.5) | 0.408 |
Immediate postoperative extubation, no. (%) | 215 (93.07) | 72 (86.75) | 0.078 |
Anesthesia time (min), median (IQR) | 433 (370–473.5) | 415 (368–446) | 0.057 |
Total surgery time (min), median (IQR) | 348 420 (300–1020) (289–385.5) | 331 (287.5–360) | 0.058 |
Postoperative ventilation, no. (%) | 16 (6.93) | 11 (13.25) | 0.078 |
Postoperative ventilation (min), median (IQR) | 0 (0–0)/ 990 (885–1140) {540–2880} | 0 (0–0)/ 420 (300–1020) {180–5760} | 0.101 |
Postoperative hematoma, no. (%) | 10 (4.33) | 6 (7.23) | 0.6 |
Pneumocephalus, no. (%) | 12 (5.19) | 3 (3.61) | 0.767 |
Hydrocephalus, no. (%) | 7 (3.03) | 4(4.82) | 0.613 |
Cranial nerve paralysis (total facial paralysis) | 7 (3.03) | 0 (0.0) | 0.196 |
Ischemic CVA, no. (%) | 2 (0.87) | 1 (1.2) | 1 |
Death, no. (%) | 3 (1.3) | 5 (6.03) | 0.033 |
Characteristics | OR Adjusted | (95% CI) | p |
---|---|---|---|
Sitting position (sitting vs. park-bench) | 7.25 | (3.77–14.98) | <0.001 |
CO2 decreases by >2 mmHg (sitting vs. park-bench) | 3.37 | (1.77–6.66) | <0.001 |
Hypoxia (sitting vs. park-bench) | 1.23 | (0.28–5.67) | 0.786 |
Documented VAE (sitting vs. park-bench) | 1.08 | (0.36–3.68) | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, O.M.; Balaci, G.M.; Leucuța, D.C.; Moisescu, V.I.; Munteanu, C.; Florian, I.Ș. Outcomes and Complications of Posterior Fossa Surgery in Sitting Versus Park-Bench Positions. Medicina 2024, 60, 1855. https://doi.org/10.3390/medicina60111855
Radu OM, Balaci GM, Leucuța DC, Moisescu VI, Munteanu C, Florian IȘ. Outcomes and Complications of Posterior Fossa Surgery in Sitting Versus Park-Bench Positions. Medicina. 2024; 60(11):1855. https://doi.org/10.3390/medicina60111855
Chicago/Turabian StyleRadu, Oana Maria, Georgeta Magdalena Balaci, Daniel Corneliu Leucuța, Vlad Ioan Moisescu, Cristina Munteanu, and Ioan Ștefan Florian. 2024. "Outcomes and Complications of Posterior Fossa Surgery in Sitting Versus Park-Bench Positions" Medicina 60, no. 11: 1855. https://doi.org/10.3390/medicina60111855
APA StyleRadu, O. M., Balaci, G. M., Leucuța, D. C., Moisescu, V. I., Munteanu, C., & Florian, I. Ș. (2024). Outcomes and Complications of Posterior Fossa Surgery in Sitting Versus Park-Bench Positions. Medicina, 60(11), 1855. https://doi.org/10.3390/medicina60111855