Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies—A Comprehensive Literature Review
Abstract
:1. Introduction
2. Natural History of Rasmussen’s Encephalitis
3. Risk Factors
4. Pathology and Pathophysiology
5. Neuroimaging
6. Electroencephalography
7. Diagnosis
8. Pharmacological Management
9. Neurosurgical Management
Cognitive Outcomes After Surgery
10. Differential Diagnosis
Differential Diagnosis of Cerebral Hemiatrophy
11. Future Studies
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, J.; Schoene-Bake, J.-C.; Bien, C.G.; Urbach, H.; Elger, C.E.; Weber, B. Automated 3D MRI Volumetry Reveals Regional Atrophy Differences in Rasmussen Encephalitis. Epilepsia 2012, 53, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Blümcke, I.; Gui, Q.; Zhou, W.; Zuo, H.; Lin, J.; Luo, Y. Clinico-Pathological Investigations of Rasmussen Encephalitis Suggest Multifocal Disease Progression and Associated Focal Cortical Dysplasia. Epileptic Disord. 2013, 15, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.; Kleinschmidt-DeMasters, B.K. How Frequent Is Double Pathology in Rasmussen Encephalitis? Clin. Neuropathol. 2020, 39, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Bien, C.G.; Granata, T.; Antozzi, C.; Cross, J.H.; Dulac, O.; Kurthen, M.; Lassmann, H.; Mantegazza, R.; Villemure, J.-G.; Spreafico, R.; et al. Pathogenesis, Diagnosis and Treatment of Rasmussen Encephalitis: A European Consensus Statement. Brain 2005, 128, 454–471. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, M.J.; Rasmussen, T. Role of Encephalitis in Pathogenesis of Epilepsy. Arch. Neurol. 1960, 2, 663–676. [Google Scholar] [CrossRef]
- Rasmussen, T.; Olszewski, J.; Lloydsmith, D. Focal Seizures Due to Chronic Localized Encephalitis. Neurology 1958, 8, 435–445. [Google Scholar] [CrossRef]
- Rasmussen, T.; McCann, W. Clinical Studies of Patients with Focal Epilepsy Due to “Chronic Encephalitis”. Trans. Am. Neurol. Assoc. 1968, 93, 89–94. [Google Scholar]
- Rasmussen, T. Further Observations on the Syndrome of Chronic Encephalitis and Epilepsy. Appl. Neurophysiol. 1978, 41, 1–12. [Google Scholar] [CrossRef]
- Oguni, H. The Natural History of the Syndrome of Chronic Encephalitis and Epilepsy; A Study of the MNI Series of Forty-Eight Cases. In Chronic Encephalitis and Epilepsy: Rasmussen’s Syndrome; Butterworth-Heinemann: Oxford, UK, 1991; pp. 7–35. [Google Scholar]
- Bien, C.G.; Tiemeier, H.; Sassen, R.; Kuczaty, S.; Urbach, H.; von Lehe, M.; Becker, A.J.; Bast, T.; Herkenrath, P.; Karenfort, M.; et al. Rasmussen Encephalitis: Incidence and Course under Randomized Therapy with Tacrolimus or Intravenous Immunoglobulins. Epilepsia 2013, 54, 543–550. [Google Scholar] [CrossRef]
- Cay-Martinez, K.C.; Hickman, R.A.; McKhann Ii, G.M.; Provenzano, F.A.; Sands, T.T. Rasmussen Encephalitis: An Update. Semin. Neurol. 2020, 40, 201–210. [Google Scholar] [CrossRef]
- Granata, T.; Fusco, L.; Gobbi, G.; Freri, E.; Ragona, F.; Broggi, G.; Mantegazza, R.; Giordano, L.; Villani, F.; Capovilla, G.; et al. Experience with Immunomodulatory Treatments in Rasmussen’s Encephalitis. Neurology 2003, 61, 1807–1810. [Google Scholar] [CrossRef] [PubMed]
- Frucht, S. Dystonia, Athetosis, and Epilepsia Partialis Continua in a Patient with Late-Onset Rasmussen’s Encephalitis. Mov. Disord. 2002, 17, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.; Ghunawat, J.R.; Bagaria, A.K.; Khandelwal, D. Uncommon Presentation of Rasmussen’s Encephalitis. Neurol. India 2021, 69, 1010–1013. [Google Scholar] [CrossRef]
- Rajesh, B.; Kesavadas, C.; Ashalatha, R.; Thomas, B. Putaminal Involvement in Rasmussen Encephalitis. Pediatr. Radiol. 2006, 36, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Granata, T.; Gobbi, G.; Spreafico, R.; Vigevano, F.; Capovilla, G.; Ragona, F.; Freri, E.; Chiapparini, L.; Bernasconi, P.; Giordano, L.; et al. Rasmussen’s Encephalitis: Early Characteristics Allow Diagnosis. Neurology 2003, 60, 422–425. [Google Scholar] [CrossRef]
- Longaretti, F.; Dunkley, C.; Varadkar, S.; Vargha-Khadem, F.; Boyd, S.G.; Cross, J.H. Evolution of the EEG in Children with Rasmussen’s Syndrome. Epilepsia 2012, 53, 1539–1545. [Google Scholar] [CrossRef]
- Thomas, J.E.; Reagan, T.J.; Klass, D.W. Epilepsia Partialis Continua. A Review of 32 Cases. Arch. Neurol. 1977, 34, 266–275. [Google Scholar] [CrossRef]
- Rudebeck, S.R.; Shavel-Jessop, S.; Varadkar, S.; Owen, T.; Cross, J.H.; Vargha-Khadem, F.; Baldeweg, T. Pre- and Postsurgical Cognitive Trajectories and Quantitative MRI Changes in Rasmussen Syndrome. Epilepsia 2018, 59, 1210–1219. [Google Scholar] [CrossRef]
- Orsini, A.; Foiadelli, T.; Carli, N.; Costagliola, G.; Masini, B.; Bonuccelli, A.; Savasta, S.; Peroni, D.; Consolini, R.; Striano, P. Rasmussen’s Encephalitis: From Immune Pathogenesis towards Targeted-Therapy. Seizure 2020, 81, 76–83. [Google Scholar] [CrossRef]
- Oguni, H.; Andermann, F.; Rasmussen, T.B. The Syndrome of Chronic Encephalitis and Epilepsy. A Study Based on the MNI Series of 48 Cases. Adv. Neurol. 1992, 57, 419–433. [Google Scholar]
- Fauser, S.; Elger, C.E.; Woermann, F.; Bien, C.G. Rasmussen Encephalitis: Predisposing Factors and Their Potential Role in Unilaterality. Epilepsia 2022, 63, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, R.S.; von Herrath, M.G.; Christen, U.; Whitton, J.L. Molecular Mimicry, Bystander Activation, or Viral Persistence: Infections and Autoimmune Disease. Clin. Microbiol. Rev. 2006, 19, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Oguni, H.; Yanagaki, S.; Fukuyama, Y.; Kogure, M.; Shimizu, H.; Oda, M. Chronic Localized Encephalitis (Rasmussen’s Syndrome) Preceded by Ipsilateral Uveitis: A Case Report. Epilepsia 1994, 35, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, K.; Takeshita, S.; Ito, S.; Nezu, A. Rasmussen Syndrome Combined with IgA Deficiency and Membranous Nephropathy. Pediatr. Neurol. 2009, 40, 468–470. [Google Scholar] [CrossRef]
- Paprocka, J.; Jamroz, E.; Adamek, D.; Marszal, E.; Mandera, M. Difficulties in Differentiation of Parry-Romberg Syndrome, Unilateral Facial Sclerodermia, and Rasmussen Syndrome. Childs. Nerv. Syst. 2006, 22, 409–415. [Google Scholar] [CrossRef]
- Shah, J.R.; Juhász, C.; Kupsky, W.J.; Asano, E.; Sood, S.; Fain, D.; Chugani, H.T. Rasmussen Encephalitis Associated with Parry-Romberg Syndrome. Neurology 2003, 61, 395–397. [Google Scholar] [CrossRef]
- Longo, D.; Paonessa, A.; Specchio, N.; Delfino, L.N.; Claps, D.; Fusco, L.; Randisi, F.; Genovese, E.; Vigevano, F.; Fariello, G. Parry-Romberg Syndrome and Rasmussen Encephalitis: Possible Association. Clinical and Neuroimaging Features. J. Neuroimaging 2011, 21, 188–193. [Google Scholar] [CrossRef]
- Ohmori, I.; Ouchida, M.; Kobayashi, K.; Jitsumori, Y.; Inoue, T.; Shimizu, K.; Matsui, H.; Ohtsuka, Y.; Maegaki, Y. Rasmussen Encephalitis Associated with SCN 1 A Mutation. Epilepsia 2008, 49, 521–526. [Google Scholar] [CrossRef]
- Leitner, D.F.; Lin, Z.; Sawaged, Z.; Kanshin, E.; Friedman, D.; Devore, S.; Ueberheide, B.; Chang, J.W.; Mathern, G.W.; Anink, J.J.; et al. Brain Molecular Mechanisms in Rasmussen Encephalitis. Epilepsia 2023, 64, 218–230. [Google Scholar] [CrossRef]
- Vinters, H.V.; Magaki, S.D.; Owens, G.C. Rasmussen Encephalitis. In Developmental Neuropathology; Wiley Blackwell: Oxford, UK, 2018; pp. 531–536. [Google Scholar]
- Walter, G.F.; Renella, R.R. Epstein-Barr Virus in Brain and Rasmussen’s Encephalitis. Lancet 1989, 1, 279–280. [Google Scholar] [CrossRef]
- Power, C.; Poland, S.D.; Blume, W.T.; Girvin, J.P.; Rice, G.P. Cytomegalovirus and Rasmussen’s Encephalitis. Lancet 1990, 336, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Jay, V.; Becker, L.E.; Otsubo, H.; Cortez, M.; Hwang, P.; Hoffman, H.J.; Zielenska, M. Chronic Encephalitis and Epilepsy (Rasmussen’s Encephalitis): Detection of Cytomegalovirus and Herpes Simplex Virus 1 by the Polymerase Chain Reaction and in Situ Hybridization. Neurology 1995, 45, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.; Ch’ien, L.; Parham, D. Virus in Brain of Child with Hemiplegia, Hemiconvulsions, and Epilepsy. Lancet 1977, 2, 666. [Google Scholar] [CrossRef] [PubMed]
- Varadkar, S.; Bien, C.G.; Kruse, C.A.; Jensen, F.E.; Bauer, J.; Pardo, C.A.; Vincent, A.; Mathern, G.W.; Cross, J.H. Rasmussen’s Encephalitis: Clinical Features, Pathobiology, and Treatment Advances. Lancet Neurol. 2014, 13, 195–205. [Google Scholar] [CrossRef]
- Robitaille, Y. Neuropathologic Aspects of Chronic Encephalitis. In Chronic Encephalitis and Epilepsy: Rasmussen Syndrome; Butterworth-Heinemann: Boston, MA, USA, 1991; pp. 79–110. [Google Scholar]
- Farrell, M.A.; Droogan, O.; Secor, D.L.; Poukens, V.; Quinn, B.; Vinters, H.V. Chronic Encephalitis Associated with Epilepsy: Immunohistochemical and Ultrastructural Studies. Acta Neuropathol. 1995, 89, 313–321. [Google Scholar] [CrossRef]
- Pardo, C.A.; Vining, E.P.G.; Guo, L.; Skolasky, R.L.; Carson, B.S.; Freeman, J.M. The Pathology of Rasmussen Syndrome: Stages of Cortical Involvement and Neuropathological Studies in 45 Hemispherectomies. Epilepsia 2004, 45, 516–526. [Google Scholar] [CrossRef]
- Schwab, N.; Bien, C.G.; Waschbisch, A.; Becker, A.; Vince, G.H.; Dornmair, K.; Wiendl, H. CD8+ T-Cell Clones Dominate Brain Infiltrates in Rasmussen Encephalitis and Persist in the Periphery. Brain 2009, 132, 1236–1246. [Google Scholar] [CrossRef]
- Bernasconi, P.; Cipelletti, B.; Passerini, L.; Granata, T.; Antozzi, C.; Mantegazza, R.; Spreafico, R. Similar Binding to Glutamate Receptors by Rasmussen and Partial Epilepsy Patients’ Sera. Neurology 2002, 59, 1998–2001. [Google Scholar] [CrossRef]
- Tang, C.; Luan, G.; Li, T. Rasmussen’s Encephalitis: Mechanisms Update and Potential Therapy Target. Ther. Adv. Chronic Dis. 2020, 11, 2040622320971413. [Google Scholar] [CrossRef]
- Owens, G.C.; Chang, J.W.; Huynh, M.N.; Chirwa, T.; Vinters, H.V.; Mathern, G.W. Evidence for Resident Memory T Cells in Rasmussen Encephalitis. Front. Immunol. 2016, 7, 64. [Google Scholar] [CrossRef]
- Khojah, A.; Klein-Gitelman, M. Evidence for Resident Memory T Cells in Rasmussen Encephalitis. Pediatr. Neurol. Briefs 2016, 30, 22. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.; Walsh, J.G.; Sinclair, D.B.; Johnson, E.; Tang-Wai, R.; Wheatley, B.M.; Branton, W.; Maingat, F.; Snyder, T.; Gross, D.W.; et al. Inflammasome Induction in Rasmussen’s Encephalitis: Cortical and Associated White Matter Pathogenesis. J. Neuroinflammation 2013, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Liba, Z.; Vaskova, M.; Zamecnik, J.; Kayserova, J.; Nohejlova, H.; Ebel, M.; Sanda, J.; Ramos-Rivera, G.A.; Brozova, K.; Liby, P.; et al. An Immunotherapy Effect Analysis in Rasmussen Encephalitis. BMC Neurol. 2020, 20, 359. [Google Scholar] [CrossRef] [PubMed]
- Kothur, K.; Wienholt, L.; Mohammad, S.S.; Tantsis, E.M.; Pillai, S.; Britton, P.N.; Jones, C.A.; Angiti, R.R.; Barnes, E.H.; Schlub, T.; et al. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis. PLoS ONE 2016, 11, e0161656. [Google Scholar] [CrossRef]
- Thom, M.; Warner, G.; Williamson, M.; Limb, S.; Sheaff, M.; Patodia, S.; Somani, A.; Kumar, A.; Gaulard, P.; Adle-Biassette, H. Progressive Hemispheric Atrophy in HIV: A Rasmussen’s-like Variant of CD8 Encephalitis? Neuropathol. Appl. Neurobiol. 2022, 48, e12794. [Google Scholar] [CrossRef]
- Pechlivanidou, M.; Vakrakou, A.G.; Karagiorgou, K.; Tüzün, E.; Karachaliou, E.; Chroni, E.; Afrantou, T.; Grigoriadis, N.; Argyropoulou, C.; Paschalidis, N.; et al. Neuronal Nicotinic Acetylcholine Receptor Antibodies in Autoimmune Central Nervous System Disorders. Front. Immunol. 2024, 15, 1388998. [Google Scholar] [CrossRef]
- Spitz, M.-A.; Dubois-Teklali, F.; Vercueil, L.; Sabourdy, C.; Nugues, F.; Vincent, A.; Oliver, V.; Bulteau, C. Voltage-Gated Potassium Channels Autoantibodies in a Child with Rasmussen Encephalitis. Neuropediatrics 2014, 45, 336–340. [Google Scholar] [CrossRef]
- Carrillo Herranz, A.; Sánchez Pérez, I.; Aparicio Meix, J.M.; Lozano Giménez, C.; Roy Ariño, G.; Villar Gimerans, L.M.; Sánchez Muñoz, L. Rasmussen’s syndrome, an autoimmune disease. An. Pediatr. 2003, 59, 187–189. [Google Scholar] [CrossRef]
- Yang, R.; Puranam, R.S.; Butler, L.S.; Qian, W.H.; He, X.P.; Moyer, M.B.; Blackburn, K.; Andrews, P.I.; McNamara, J.O. Autoimmunity to Munc-18 in Rasmussen’s Encephalitis. Neuron 2000, 28, 375–383. [Google Scholar] [CrossRef]
- Tomioka, S.; Shimono, M.; Kato, A.; Takano, K.; Shiota, N.; Takahashi, Y. A 16-year-old boy with meningoencephalitis with auto-antibody against glutamate receptor. No Hattatsu Brain Dev. 2008, 40, 42–46. [Google Scholar]
- Greiner, H.; Leach, J.L.; Lee, K.-H.; Krueger, D.A. Anti-NMDA Receptor Encephalitis Presenting with Imaging Findings and Clinical Features Mimicking Rasmussen Syndrome. Seizure 2011, 20, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Gurcharran, K.; Karkare, S. Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Rasmussen-like Syndrome: An Association? Pediatr. Neurol. 2017, 66, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Cohen, M.L.; Bangert, B.A.; Robinson, S.; Singer, N.G. Rasmussen Syndrome and CNS Granulomatous Disease with NOD2/CARD15 Mutations. Neurology 2007, 69, 640–643. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamazaki, E.; Mine, J.; Kubota, Y.; Imai, K.; Mogami, Y.; Baba, K.; Matsuda, K.; Oguni, H.; Sugai, K.; et al. Immunomodulatory Therapy versus Surgery for Rasmussen Syndrome in Early Childhood. Brain Dev. 2013, 35, 778–785. [Google Scholar] [CrossRef]
- Ai, J.; Wang, Y.; Liu, D.; Fan, D.; Wang, Q.; Li, T.; Luan, G.; Wang, P.; An, J. Genetic Factors in Rasmussen’s Encephalitis Characterized by Whole-Exome Sequencing. Front. Neurosci. 2021, 15, 744429. [Google Scholar] [CrossRef]
- Adam, L.C.; Gilly, L.; Mueller, J.; Wissel, J.; Kivi, A. Longitudinal Imaging for Monitoring Disease Activity in Late-onset Rasmussen’s Encephalitis during Multimodal Rehabilitation and Immune Therapy. Clin. Exper. Neuroimmun. 2024. [Google Scholar] [CrossRef]
- Tessonnier, L.; Thomas, P.; Benisvy, D.; Chanalet, S.; Chaborel, J.P.; Bussière, F.; Darcourt, J. Perfusion SPECT Findings in a Suspected Case of Rasmussen Encephalitis. J. Neuroimaging 2009, 19, 378–380. [Google Scholar] [CrossRef]
- Nakasu, S.; Isozumi, T.; Yamamoto, A.; Okada, K.; Takano, T.; Nakasu, Y. Serial Magnetic Resonance Imaging Findings of Rasmussen’s Encephalitis—Case Report. Neurol. Med. Chir. 1997, 37, 924–928. [Google Scholar] [CrossRef]
- Bien, C.G.; Widman, G.; Urbach, H.; Sassen, R.; Kuczaty, S.; Wiestler, O.D.; Schramm, J.; Elger, C.E. The Natural History of Rasmussen’s Encephalitis. Brain 2002, 125, 1751–1759. [Google Scholar] [CrossRef]
- Chiapparini, L.; Granata, T.; Farina, L.; Ciceri, E.; Erbetta, A.; Ragona, F.; Freri, E.; Fusco, L.; Gobbi, G.; Capovilla, G.; et al. Diagnostic Imaging in 13 Cases of Rasmussen’s Encephalitis: Can Early MRI Suggest the Diagnosis? Neuroradiology 2003, 45, 171–183. [Google Scholar] [CrossRef]
- Bhatjiwale, M.G.; Polkey, C.; Cox, T.C.; Dean, A.; Deasy, N. Rasmussen’s Encephalitis: Neuroimaging Findings in 21 Patients with a Closer Look at the Basal Ganglia. Pediatr. Neurosurg. 1998, 29, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Paladin, F.; Capovilla, G.; Bonazza, A.; Mameli, R. Utility of Tc 99m HMPAO SPECT in the Early Diagnosis of Rasmussen’s Syndrome. Ital. J. Neurol. Sci. 1998, 19, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Juhász, C.; Kaddurah, A.K.; Chugani, H.T. Patterns of Cerebral Glucose Metabolism in Early and Late Stages of Rasmussen’s Syndrome. J. Child. Neurol. 2001, 16, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Peariso, K.; Standridge, S.M.; Hallinan, B.E.; Leach, J.L.; Miles, L.; Mangano, F.T.; Greiner, H.M. Presentation, Diagnosis and Treatment of Bilateral Rasmussen’s Encephalitis in a 12-Year-Old Female. Epileptic Disord. 2013, 15, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.I.; Krishnan, B.; Shattuck, D.W.; Leahy, R.M.; Moosa, A.N.V.; Wyllie, E.; Burgess, R.C.; Al-Sharif, N.B.; Joshi, A.A.; Alexopoulos, A.V.; et al. Automated MRI Volumetric Analysis in Patients with Rasmussen Syndrome. AJNR Am. J. Neuroradiol. 2016, 37, 2348–2355. [Google Scholar] [CrossRef]
- Larionov, S.; König, R.; Urbach, H.; Sassen, R.; Elger, C.E.; Bien, C.G. MRI Brain Volumetry in Rasmussen Encephalitis: The Fate of Affected and “Unaffected” Hemispheres. Neurology 2005, 64, 885–887. [Google Scholar] [CrossRef]
- David, B.; Prillwitz, C.C.; Hoppe, C.; Sassen, R.; Hörsch, S.; Weber, B.; Hattingen, E.; Elger, C.E.; Rüber, T. Morphometric MRI Findings Challenge the Concept of the “Unaffected” Hemisphere in Rasmussen Encephalitis. Epilepsia 2019, 60, e40–e46. [Google Scholar] [CrossRef]
- Bauer, T.; Reiter, J.T.; Enders, S.; Keil, V.C.W.; Radbruch, A.; Helmstaedter, C.; Surges, R.; Rüber, T. Subcortical Grey Matter Volume and Asymmetry in the Long-Term Course of Rasmussen’s Encephalitis. Brain Commun. 2023, 5, fcad324. [Google Scholar] [CrossRef]
- Olson, H.E.; Lechpammer, M.; Prabhu, S.P.; Ciarlini, P.D.S.C.; Poduri, A.; Gooty, V.D.; Anjum, M.W.; Gorman, M.P.; Loddenkemper, T. Clinical Application and Evaluation of the Bien Diagnostic Criteria for Rasmussen Encephalitis. Epilepsia 2013, 54, 1753–1760. [Google Scholar] [CrossRef]
- Korn-Lubetzki, I.; Bien, C.G.; Bauer, J.; Gomori, M.; Wiendl, H.; Trajo, L.; Ovadia, H.; Wilken, B.; Hans, V.H.; Elger, C.E.; et al. Rasmussen Encephalitis with Active Inflammation and Delayed Seizures Onset. Neurology 2004, 62, 984–986. [Google Scholar] [CrossRef]
- Dulac, O.; Robain, O.; Chiron, C.; Plouin, P.; Pinel, J.; Vigevano, F. High-Dose Steroid Treatment of Epilepsia Partialis Continua Due to Chronic Focal Encephalitis. In Chronic Encephalitis and Epilepsy: Rasmussen’s Syndrome; Butterworth-Heinemann: Boston, MA, USA, 1991; pp. 193–199. [Google Scholar]
- Chinchilla, D.; Dulac, O.; Robain, O.; Plouin, P.; Ponsot, G.; Pinel, J.F.; Graber, D. Reappraisal of Rasmussen’s Syndrome with Special Emphasis on Treatment with High Doses of Steroids. J. Neurol. Neurosurg. Psychiatry 1994, 57, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Hart, Y.M.; Cortez, M.; Andermann, F.; Hwang, P.; Fish, D.R.; Dulac, O.; Silver, K.; Fejerman, N.; Cross, H.; Sherwin, A. Medical Treatment of Rasmussen’s Syndrome (Chronic Encephalitis and Epilepsy): Effect of High-Dose Steroids or Immunoglobulins in 19 Patients. Neurology 1994, 44, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Krauss, G.L.; Campbell, M.L.; Roche, K.W.; Huganir, R.L.; Niedermeyer, E. Chronic Steroid-Responsive Encephalitis without Autoantibodies to Glutamate Receptor GluR. Neurology 1996, 46, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Bahi-Buisson, N.; Villanueva, V.; Bulteau, C.; Delalande, O.; Dulac, O.; Chiron, C.; Nabbout, R. Long Term Response to Steroid Therapy in Rasmussen Encephalitis. Seizure 2007, 16, 485–492. [Google Scholar] [CrossRef]
- Pellegrin, S.; Baldeweg, T.; Pujar, S.; D’Arco, F.; Cantalupo, G.; Varadkar, S.; Cross, J.H. Immunomodulation With Azathioprine Therapy in Rasmussen Syndrome: A Multimodal Evaluation. Neurology 2021, 96, e267–e279. [Google Scholar] [CrossRef]
- Walsh, P. Treatment of Rasmussen’s Syndrome with Intravenous Gammaglobulin. In Chronic Encephalitis and Epilepsy: Rasmussen’s Syndrome; Butterworth-Heinemann: Boston, MA, USA, 1991; pp. 201–204. [Google Scholar]
- Wise, M.S.; Rutledge, S.L.; Kuzniecky, R.I. Rasmussen Syndrome and Long-Term Response to Gamma Globulin. Pediatr. Neurol. 1996, 14, 149–152. [Google Scholar] [CrossRef]
- Leach, J.P.; Chadwick, D.W.; Miles, J.B.; Hart, I.K. Improvement in Adult-Onset Rasmussen’s Encephalitis with Long-Term Immunomodulatory Therapy. Neurology 1999, 52, 738–742. [Google Scholar] [CrossRef]
- Vinjamuri, S.; Leach, J.P.; Hart, I.K. Serial Perfusion Brain Tomographic Scans Detect Reversible Focal Ischaemia in Rasmussen’s Encephalitis. Postgrad. Med. J. 2000, 76, 33–35. [Google Scholar] [CrossRef]
- Villani, F.; Spreafico, R.; Farina, L.; Giovagnoli, A.R.; Bernasconi, P.; Granata, T.; Avanzini, G. Positive Response to Immunomodulatory Therapy in an Adult Patient with Rasmussen’s Encephalitis. Neurology 2001, 56, 248–250. [Google Scholar] [CrossRef]
- Arias, M.; Dapena, D.; Arias-Rivas, S.; Sesar, A.; Vázquez, F.; Prieto, A.; Suárez-Peñaranda, J.M. Rasmussen Encephalitis in the Sixth Decade: Magnetic Resonance Image Evolution and Immunoglobulin Response. Eur. Neurol. 2006, 56, 236–239. [Google Scholar] [CrossRef]
- Kupila, L.; Jutila, L.; Immonen, A.; Vanninen, R.; Mervaala, E.; Pateau, A.; Luostarinen, L.; Kälviäinen, R. Late-Onset Rasmussen’s Encephalitis and Long-Term Remission. Epileptic Disord. 2011, 13, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Simon, O.J.; Göbel, K.; Bien, C.G.; Meuth, S.G.; Wiendl, H. Rasmussen Encephalitis Treated with Natalizumab. Neurology 2013, 81, 395–397. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.E.; Ochi, A.; Snead, O.C., 3rd; Widjaja, E.; Hawkins, C.; Tisdal, M.; Rutka, J.T. Rasmussen’s Encephalitis: Advances in Management and Patient Outcomes. Childs Nerv. Syst. 2016, 32, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.F.; Meyer, J.A.; Lado, F.A. A Case Series of Adult-Onset Rasmussen’s Encephalitis: Diagnostic and Therapeutic Challenges. Front. Neurol. 2017, 8, 564. [Google Scholar] [CrossRef]
- Jaafar, F.; Obeid, M.; Beydoun, A. Role of Early Intravenous Immunoglobulins in Halting Clinical and Radiographic Disease Progression in Rasmussen Encephalitis. Pediatr. Neurol. 2023, 145, 30–35. [Google Scholar] [CrossRef]
- Rogers, S.W.; Andrews, P.I.; Gahring, L.C.; Whisenand, T.; Cauley, K.; Crain, B.; Hughes, T.E.; Heinemann, S.F.; McNamara, J.O. Autoantibodies to Glutamate Receptor GluR3 in Rasmussen’s Encephalitis. Science 1994, 265, 648–6105. [Google Scholar] [CrossRef]
- Andrews, P.I.; Dichter, M.A.; Berkovic, S.F.; Newton, M.R.; McNamara, J.O. Plasmapheresis in Rasmussen’s Encephalitis. Neurology 1996, 46, 242–246. [Google Scholar] [CrossRef]
- Palcoux, J.B.; Carla, H.; Tardieu, M.; Carpentier, C.; Sebire, G.; Garcier, J.M.; Loriette, Y.; Meyer, M.; Malpuech, G. Plasma Exchange in Rasmussen’s Encephalitis. Ther. Apher. 1997, 1, 79–82. [Google Scholar] [CrossRef]
- Antozzi, C.; Granata, T.; Aurisano, N.; Zardini, G.; Confalonieri, P.; Airaghi, G.; Mantegazza, R.; Spreafico, R. Long-Term Selective IgG Immuno-Adsorption Improves Rasmussen’s Encephalitis. Neurology 1998, 51, 302–305. [Google Scholar] [CrossRef]
- Thilo, B.; Stingele, R.; Knudsen, K.; Boor, R.; Bien, C.G.; Deuschl, G.; Lang, N. A Case of Rasmussen Encephalitis Treated with Rituximab. Nat. Rev. Neurol. 2009, 5, 458–462. [Google Scholar] [CrossRef]
- Amrom, D.; Kinay, D.; Hart, Y.; Berkovic, S.F.; Laxer, K.; Andermann, F.; Andermann, E.; Bar-Or, A. Rasmussen Encephalitis and Comorbid Autoimmune Diseases: A Window into Disease Mechanism? Neurology 2014, 83, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, C.; Giuliano, L.; Fatuzzo, D.; Sortino, G.; Le Pira, F.; Sofia, V.; Zappia, M. Late Onset Rasmussen Encephalitis: Complete Remission after One Session of Plasmapheresis. Eur. J. Neurol. 2016, 23, e15–e16. [Google Scholar] [CrossRef] [PubMed]
- Timarova, G.; Lisa, I.; Kukumberg, P. Long-Term Effect of Rituximab in a Case with Late-Onset Rasmussen’s Encephalitis with Anti-Ganglioside IgGQ1b and Anti-GAD Antibodies Positivity. Case Report. Neuro Endocrinol. Lett. 2016, 37, 179–183. [Google Scholar] [PubMed]
- Soh, D.; Cordato, D.J.; Bleasel, A.F.; Brimage, P.; Beran, R.G. Can Head Trauma Trigger Adult-Onset Rasmussen’s Encephalitis? Epilepsy Behav. 2017, 74, 119–123. [Google Scholar] [CrossRef]
- Stabile, A.; Deleo, F.; Didato, G.; Pastori, C.; Antozzi, C.; de Curtis, M.; Villani, F. Adult-Onset Rasmussen Encephalitis Treated with Mitoxantrone. Eur. J. Neurol. 2018, 25, e125–e126. [Google Scholar] [CrossRef]
- Sansevere, A.J.; Henderson, L.A.; Stredny, C.M.; Prabhu, S.P.; Shah, A.; Sundel, R.; Madsen, J.; Dufreney, C.; Poduri, A.; Gorman, M.P. Posterior-Onset Rasmussen’s Encephalitis with Ipsilateral Cerebellar Atrophy and Uveitis Resistant to Rituximab. Epilepsy Behav. Rep. 2020, 14, 100360. [Google Scholar] [CrossRef]
- Cantarín-Extremera, V.; Jiménez-Legido, M.; Sebastián-Pérez, E.; Duat-Rodríguez, A.; Ruiz-Falcó Rojas, M.L. Immunoadsorption and plasmapheresis: Possible treatments for Rasmussen’s encephalitis? Rev. Neurol. 2020, 70, 159–160. [Google Scholar] [CrossRef]
- Terra-Bustamante, V.C.; Machado, H.R.; dos Santos Oliveira, R.; Serafini, L.N.; Souza-Oliveira, C.; Escorsi-Rosset, S.; Yacubian, E.M.T.; Naffah-Mazzacoratti, M. da G.; Scorza, C.A.; Cavalheiro, E.A.; et al. Rasmussen Encephalitis: Long-Term Outcome after Surgery. Childs Nerv. Syst. 2009, 25, 583–589. [Google Scholar] [CrossRef]
- Liba, Z.; Sedlacek, P.; Sebronova, V.; Maulisova, A.; Rydenhag, B.; Zamecnik, J.; Kyncl, M.; Krsek, P. Alemtuzumab and Intrathecal Methotrexate Failed in the Therapy of Rasmussen Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e354. [Google Scholar] [CrossRef]
- Fukuoka, M.; Kuki, I.; Hattori, Y.; Tsuji, H.; Horino, A.; Nukui, M.; Inoue, T.; Okazaki, S.; Kawawaki, H.; Kunihiro, N.; et al. A Case of Focal Cortical Dysplasia Type IIa with Pathologically Suspected Bilateral Rasmussen Syndrome. Brain Dev. 2022, 44, 401–404. [Google Scholar] [CrossRef]
- Trapp, N.; Co, D.O.; Rebsamen, S.; Ikonomidou, C.; Ahmed, R.; Knox, A. Bilateral Rasmussen Encephalitis: Good Outcome Following Hemispherotomy. Pediatr. Neurol. 2024, 151, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liba, Z.; Muthaffar, O.; Tang, J.; Minassian, B.; Halliday, W.; Branson, H.; Ann Yeh, E. Rasmussen Encephalitis: Response to Early Immunotherapy in a Case of Immune-Mediated Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e69. [Google Scholar] [CrossRef] [PubMed]
- Garg, D.; Agarwal, A.; Dash, D.; Mahajan, S.; Singh, R.K.; Bhatia, R.; Tripathi, M. Rasmussen’s Encephalitis Presenting as Progressive Parietal Dysfunction sans Seizures. Seizure 2019, 71, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Orsini, A.; Costagliola, G.; Perna, D.; Esposito, M.G.; Bonfiglio, L.; Striano, P.; Peroni, D.; Consolini, R.; Bonuccelli, A. Efficacy and Tolerability of Mycophenolate Mofetil in a Pediatric Rasmussen Syndrome. Epilepsy Behav. Rep. 2020, 13, 100334. [Google Scholar] [CrossRef]
- Muto, A.; Oguni, H.; Takahashi, Y.; Shirasaka, Y.; Sawaishi, Y.; Yano, T.; Hoshida, T.; Osaka, H.; Nakasu, S.; Akasaka, N.; et al. Nationwide Survey (Incidence, Clinical Course, Prognosis) of Rasmussen’s Encephalitis. Brain Dev. 2010, 32, 445–453. [Google Scholar] [CrossRef]
- Lagarde, S.; Villeneuve, N.; Trébuchon, A.; Kaphan, E.; Lepine, A.; McGonigal, A.; Roubertie, A.; Barthez, M.-A.J.; Trommsdorff, V.; Lefranc, J.; et al. Anti-Tumor Necrosis Factor Alpha Therapy (Adalimumab) in Rasmussen’s Encephalitis: An Open Pilot Study. Epilepsia 2016, 57, 956–966. [Google Scholar] [CrossRef]
- Klaa, H.; Ben Younes, T.; Benrhouma, H.; Nagi, S.; Rouissi, A.; Kraoua, I.; Ben Youssef-Turki, I. Rasmussen’s Encephalitis: A Report of a Tunisian Pediatric Case and Literature Review. Case Rep. Neurol. Med. 2020, 2020, 6810237. [Google Scholar] [CrossRef]
- Laxer, K. Pilot Study of Rituximab to Treat Chronic Focal Encephalitis. AES 2008, 2008, 9–10. [Google Scholar]
- El Tawil, S.; Morris, R.; Mullatti, N.; Nashef, L.; Rajakulendran, S. Adult Onset Rasmussen’s Encephalitis Associated with Reflex Language Induced Seizures Responsive to Rituximab Therapy. Seizure 2016, 42, 60–62. [Google Scholar] [CrossRef]
- Schneider-Hohendorf, T.; Mohan, H.; Bien, C.G.; Breuer, J.; Becker, A.; Görlich, D.; Kuhlmann, T.; Widman, G.; Herich, S.; Elpers, C.; et al. CD8(+) T-Cell Pathogenicity in Rasmussen Encephalitis Elucidated by Large-Scale T-Cell Receptor Sequencing. Nat. Commun. 2016, 7, 11153. [Google Scholar] [CrossRef]
- Mochol, M.; Taubøll, E.; Sveberg, L.; Tennøe, B.; Berg Olsen, K.; Heuser, K.; Svalheim, S. Seizure Control after Late Introduction of Anakinra in a Patient with Adult Onset Rasmussen’s Encephalitis. Epilepsy Behav. Rep. 2021, 16, 100462. [Google Scholar] [CrossRef] [PubMed]
- Arcan, A.; Kızılkılıç, E.K.; Gündüz, A.; Unkun, R.; Vezzani, A.; Özkara, Ç. Rasmussen’s Syndrome Treated with Anakinra. J. Neurol. 2024, 271, 723–726. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, R.S.; Girvin, J.P.; Blume, W.T.; Reichman, H. Rasmussen’s Chronic Encephalitis in Adults. Arch. Neurol. 1993, 50, 269–274. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, R.S.; Levin, S.; Blume, W.T. Treatment of Rasmussen’s Syndrome with Ganciclovir. Neurology 1996, 47, 925–928. [Google Scholar] [CrossRef]
- Vadlamudi, L.; Galton, C.J.; Jeavons, S.J.; Tannenberg, A.E.; Boyle, R.S. Rasmussen’s Syndrome in a 54 Year Old Female: More Support for an Adult Variant. J. Clin. Neurosci. 2000, 7, 154–156. [Google Scholar] [CrossRef]
- DeToledo, J.C.; Smith, D.B. Partially Successful Treatment of Rasmussen’s Encephalitis with Zidovudine: Symptomatic Improvement Followed by Involvement of the Contralateral Hemisphere. Epilepsia 1994, 35, 352–355. [Google Scholar] [CrossRef]
- Marjanovic, B.D.; Stojanov, L.M.; Zdravkovic, D.S.; Kravljanac, R.M.; Djordjevic, M.S. Rasmussen Syndrome and Long-Term Response to Thalidomide. Pediatr. Neurol. 2003, 29, 151–156. [Google Scholar] [CrossRef]
- Lagarde, S.; Boucraut, J.; Bartolomei, F. Medical Treatment of Rasmussen’s Encephalitis: A Systematic Review. Rev. Neurol. 2022, 178, 675–691. [Google Scholar] [CrossRef]
- Buenz, E.J.; Howe, C.L. Mechanisms of Action of IVIG in Adult Onset Rasmussen’s Encephalitis. Can. J. Neurol. Sci. 2007, 34, 108–109. [Google Scholar]
- Ramesha, K.N.; Rajesh, B.; Ashalatha, R.; Kesavadas, C.; Abraham, M.; Radhakrishnan, V.V.; Sarma, P.S.; Radhakrishnan, K. Rasmussen’s Encephalitis: Experience from a Developing Country Based on a Group of Medically and Surgically Treated Patients. Seizure 2009, 18, 567–572. [Google Scholar] [CrossRef]
- Caraballo, R.H.; Fortini, S.; Cersósimo, R.; Monges, S.; Pasteris, M.C.; Gomez, M.; Buompadre, M.C.; Monese, E.; Vilte, C.; Bartuluchi, M. Rasmussen Syndrome: An Argentinean Experience in 32 Patients. Seizure 2013, 22, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.Y.; Wong, C.; Bleasel, A.; Varikatt, W.; Ng, T.; Dexter, M.A. Late Onset Rasmussen’s Encephalitis with Triple Pathology. J. Clin. Neurosci. 2009, 16, 1677–1681. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, M.; Wiendl, H.; Körner, E.; Holl, A.; Gruber, L.; Fazekas, F.; Schröttner, O.; Eder, H.; Ott, E. No Effect of Immunomodulatory Therapy in Focal Epilepsy with Positive Glutamate Receptor Type 3—Antibodies. Seizure 2006, 15, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Barontini, F.; Maurri, S.; Amantini, A. “Epilepsia Partialis Continua” Due to Multifocal Encephalitis: Favourable Outcome after Immunoglobulin Treatment. Ital. J. Neurol. Sci. 1994, 15, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Szczepanik, E.; Mierzewska, H.; Antczak-Marach, D.; Figiel-Dabrowska, A.; Terczynska, I.; Tryfon, J.; Krzesniak, N.; Noszczyk, B.H.; Sawicka, E.; Domanska-Janik, K.; et al. Intrathecal Infusion of Autologous Adipose-Derived Regenerative Cells in Autoimmune Refractory Epilepsy: Evaluation of Safety and Efficacy. Stem Cells Int. 2020, 2020, 7104243. [Google Scholar] [CrossRef]
- Maria, B.L.; Ringdahl, D.M.; Mickle, J.P.; Smith, L.J.; Reuman, P.D.; Gilmore, R.L.; Drane, W.E.; Quisling, R.G. Intraventricular Alpha Interferon Therapy for Rasmussen’s Syndrome. Can. J. Neurol. Sci. 1993, 20, 333–336. [Google Scholar]
- Dabbagh, O.; Gascon, G.; Crowell, J.; Bamoggadam, F. Intraventricular Interferon-Alpha Stops Seizures in Rasmussen’s Encephalitis: A Case Report. Epilepsia 1997, 38, 1045–1049. [Google Scholar] [CrossRef]
- Tobias, S.M.; Robitaille, Y.; Hickey, W.F.; Rhodes, C.H.; Nordgren, R.; Andermann, F. Bilateral Rasmussen Encephalitis: Postmortem Documentation in a Five-Year-Old. Epilepsia 2003, 44, 127–130. [Google Scholar] [CrossRef]
- Hennessy, M.J.; Koutroumanidis, M.; Dean, A.F.; Jarosz, J.; Elwes, R.D.; Binnie, C.D.; Polkey, C.E. Chronic Encephalitis and Temporal Lobe Epilepsy: A Variant of Rasmussen’s Syndrome? Neurology 2001, 56, 678–681. [Google Scholar] [CrossRef]
- Bien, C.G.; Schramm, J. Treatment of Rasmussen Encephalitis Half a Century after Its Initial Description: Promising Prospects and a Dilemma. Epilepsy Res. 2009, 86, 101–112. [Google Scholar] [CrossRef]
- Casciato, S.; Di Bonaventura, C.; Giallonardo, A.T.; Fattouch, J.; Quarato, P.P.; Mascia, A.; D’Aniello, A.; Romigi, A.; Esposito, V.; Di Gennaro, G. Epilepsy Surgery in Adult-Onset Rasmussen’s Encephalitis: Case Series and Review of the Literature. Neurosurg. Rev. 2015, 38, 463–470; discussion 470–471. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.E.; Blount, J.P.; Blauwblomme, T.; Chandra, P.S. Technical Descriptions of Four Hemispherectomy Approaches: From the Pediatric Epilepsy Surgery Meeting at Gothenburg. Epilepsia 2017, 58 (Suppl. S1), 46–55. [Google Scholar] [CrossRef] [PubMed]
- Bellamkonda, N.; Phillips, H.W.; Chen, J.-S.; Tucker, A.M.; Maniquis, C.; Mathern, G.W.; Fallah, A. Epilepsy Surgery for Rasmussen Encephalitis: The UCLA Experience. J. Neurosurg. Pediatr. 2020, 26, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Schramm, J.; Delev, D.; Wagner, J.; Elger, C.E.; von Lehe, M. Seizure Outcome, Functional Outcome, and Quality of Life after Hemispherectomy in Adults. Acta Neurochir. 2012, 154, 1603–1612. [Google Scholar] [CrossRef]
- Harris, W.B.; Phillips, H.W.; Chen, J.S.; Weil, A.G.; Ibrahim, G.M.; Fallah, A. Seizure Outcomes in Children with Rasmussen’s Encephalitis Undergoing Resective or Hemispheric Epilepsy Surgery: An Individual Participant Data Meta-Analysis. J. Neurosurg. Pediatr. 2020, 25, 274–283. [Google Scholar] [CrossRef]
- Honavar, M.; Janota, I.; Polkey, C.E. Rasmussen’s Encephalitis in Surgery for Epilepsy. Dev. Med. Child Neurol. 1992, 34, 3–14. [Google Scholar] [CrossRef]
- Villemure, J.G.; Rasmussen, T. Functional Hemispherectomy in Children. Neuropediatrics 1993, 24, 53–55. [Google Scholar] [CrossRef]
- Döring, S.; Cross, H.; Boyd, S.; Harkness, W.; Neville, B. The Significance of Bilateral EEG Abnormalities before and after Hemispherectomy in Children with Unilateral Major Hemisphere Lesions. Epilepsy Res. 1999, 34, 65–73. [Google Scholar] [CrossRef]
- Topçu, M.; Turanli, G.; Aynaci, F.M.; Yalnizoglu, D.; Saatçi, I.; Yigit, A.; Genç, D.; Söylemezoglu, F.; Bertan, V.; Akalin, N. Rasmussen Encephalitis in Childhood. Childs Nerv. Syst. 1999, 15, 395–402; discussion 403. [Google Scholar] [CrossRef]
- Sinclair, D.B.; Aronyk, K.; Snyder, T.; McKean, J.D.S.; Wheatley, M.; Gross, D.; Bastos, A.; Ahmed, S.N.; Hao, C.; Colmers, W. Extratemporal Resection for Childhood Epilepsy. Pediatr. Neurol. 2004, 30, 177–185. [Google Scholar] [CrossRef]
- Korkman, M.; Granström, M.-L.; Kantola-Sorsa, E.; Gaily, E.; Paetau, R.; Liukkonen, E.; Boman, P.-A.; Blomstedt, G. Two-Year Follow-up of Intelligence after Pediatric Epilepsy Surgery. Pediatr. Neurol. 2005, 33, 173–178. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Nimjee, S.M.; Oakes, W.J. Long-Term Follow-up in Children with Functional Hemispherectomy for Rasmussen’s Encephalitis. Childs Nerv. Syst. 2005, 21, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, D.; Chieffo, D.; Lettori, D.; Perrino, F.; Di Rocco, C.; Guzzetta, F. Cognitive Assessment in Epilepsy Surgery of Children. Childs Nerv. Syst. 2006, 22, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Delalande, O.; Bulteau, C.; Dellatolas, G.; Fohlen, M.; Jalin, C.; Buret, V.; Viguier, D.; Dorfmüller, G.; Jambaqué, I. Vertical Parasagittal Hemispherotomy: Surgical Procedures and Clinical Long-Term Outcomes in a Population of 83 Children. Neurosurgery 2007, 60, ONS19–ONS32; discussion ONS32. [Google Scholar] [CrossRef]
- Liu, S.; An, N.; Yang, H.; Yang, M.; Hou, Z.; Liu, L.; Liu, Y. Pediatric Intractable Epilepsy Syndromes: Reason for Early Surgical Intervention. Brain Dev. 2007, 29, 69–78. [Google Scholar] [CrossRef]
- Chandra, P.S.; Padma, V.M.; Shailesh, G.; Chandreshekar, B.; Sarkar, C.; Tripathi, M. Hemispherotomy for Intractable Epilepsy. Neurol. India 2008, 56, 127–132. [Google Scholar]
- Caraballo, R.; Bartuluchi, M.; Cersósimo, R.; Soraru, A.; Pomata, H. Hemispherectomy in Pediatric Patients with Epilepsy: A Study of 45 Cases with Special Emphasis on Epileptic Syndromes. Childs Nerv. Syst. 2011, 27, 2131–2136. [Google Scholar] [CrossRef]
- van Schooneveld, M.M.J.; Jennekens-Schinkel, A.; van Rijen, P.C.; Braun, K.P.J.; van Nieuwenhuizen, O. Hemispherectomy: A Basis for Mental Development in Children with Epilepsy. Epileptic Disord. 2011, 13, 47–55. [CrossRef]
- Hamad, A.P.; Caboclo, L.O.; Centeno, R.; Costa, L.V.; Ladeia-Frota, C.; Junior, H.C.; Gomez, N.G.; Marinho, M.; Yacubian, E.M.T.; Sakamoto, A.C. Hemispheric Surgery for Refractory Epilepsy in Children and Adolescents: Outcome Regarding Seizures, Motor Skills and Adaptive Function. Seizure 2013, 22, 752–756. [Google Scholar] [CrossRef]
- Villarejo-Ortega, F.; García-Fernández, M.; Fournier-Del Castillo, C.; Fabregate-Fuente, M.; Álvarez-Linera, J.; De Prada-Vicente, I.; Budke, M.; Ruiz-Falcó, M.-L.; Pérez-Jiménez, M.-Á. Seizure and Developmental Outcomes after Hemispherectomy in Children and Adolescents with Intractable Epilepsy. Childs Nerv. Syst. 2013, 29, 475–488. [Google Scholar] [CrossRef]
- Granata, T.; Matricardi, S.; Ragona, F.; Freri, E.; Casazza, M.; Villani, F.; Deleo, F.; Tringali, G.; Gobbi, G.; Tassi, L.; et al. Hemispherotomy in Rasmussen Encephalitis: Long-Term Outcome in an Italian Series of 16 Patients. Epilepsy Res. 2014, 108, 1106–1119. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, J.; Luan, G.; Liu, X. Surgical Treatment of Patients with Rasmussen Encephalitis. Stereotact. Funct. Neurosurg. 2014, 92, 86–93. [Google Scholar] [CrossRef]
- Wang, D.D.; Benkli, B.; Auguste, K.I.; Garcia, P.A.; Sullivan, J.; Barkovich, A.J.; Chang, E.F.; Tihan, T. Unilateral Holohemispheric Central Nervous System Lesions Associated with Medically Refractory Epilepsy in the Pediatric Population: A Retrospective Series of Hemimegalencephaly and Rasmussen’s Encephalitis. J. Neurosurg. Pediatr. 2014, 14, 573–584. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, S.; Liu, C.; Du, X.; Zhang, Y.; Chen, S.; Wang, J.; Li, T.; Luan, G. Timing and Type of Hemispherectomy for Rasmussen’s Encephalitis: Analysis of 45 Patients. Epilepsy Res. 2017, 132, 109–115. [Google Scholar] [CrossRef]
- Sundar, S.J.; Lu, E.; Schmidt, E.S.; Kondylis, E.D.; Vegh, D.; Poturalski, M.J.; Bulacio, J.C.; Jehi, L.; Gupta, A.; Wyllie, E.; et al. Seizure Outcomes and Reoperation in Surgical Rasmussen Encephalitis Patients. Neurosurgery 2022, 91, 93–102. [Google Scholar] [CrossRef]
- Thomé, U.; Batista, L.A.; Rocha, R.P.; Terra, V.C.; Hamad, A.P.A.; Sakamoto, A.C.; Santos, A.C.; Santos, M.V.; Machado, H.R. The Important Role of Hemispherotomy for Rasmussen Encephalitis: Clinical and Functional Outcomes. Pediatr. Neurol. 2024, 150, 82–90. [Google Scholar] [CrossRef]
- Borne, A.; Perrone-Bertolotti, M.; Ferrand-Sorbets, S.; Bulteau, C.; Baciu, M. Insights on Cognitive Reorganization after Hemispherectomy in Rasmussen’s Encephalitis. A Narrative Review. Rev. Neurosci. 2024, 35, 747–774. [Google Scholar] [CrossRef]
- Vargha-Khadem, F.; Isaacs, E.B.; Papaleloudi, H.; Polkey, C.E.; Wilson, J. Development of Language in Six Hemispherectomized Patients. Brain 1991, 114 Pt 1B, 473–495. [Google Scholar] [CrossRef]
- Caplan, R.; Curtiss, S.; Chugani, H.T.; Vinters, H.V. Pediatric Rasmussen Encephalitis: Social Communication, Language, PET and Pathology before and after Hemispherectomy. Brain Cogn. 1996, 32, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Vining, E.P.; Freeman, J.M.; Pillas, D.J.; Uematsu, S.; Carson, B.S.; Brandt, J.; Boatman, D.; Pulsifer, M.B.; Zuckerberg, A. Why Would You Remove Half a Brain? The Outcome of 58 Children after Hemispherectomy-the Johns Hopkins Experience: 1968 to Pediatrics 1997, 100, 163–171. [Google Scholar] [CrossRef]
- Stark, R.E.; McGregor, K.K. Follow-up Study of a Right- and a Left-Hemispherectomized Child: Implications for Localization and Impairment of Language in Children. Brain Lang. 1997, 60, 222–242. [Google Scholar] [CrossRef]
- Boatman, D.; Freeman, J.; Vining, E.; Pulsifer, M.; Miglioretti, D.; Minahan, R.; Carson, B.; Brandt, J.; McKhann, G. Language Recovery after Left Hemispherectomy in Children with Late-Onset Seizures. Ann. Neurol. 1999, 46, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, S.; de Bode, S.; Mathern, G.W. Spoken Language Outcomes after Hemispherectomy: Factoring in Etiology. Brain Lang. 2001, 79, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Telfeian, A.E.; Berqvist, C.; Danielak, C.; Simon, S.L.; Duhaime, A.-C. Recovery of Language after Left Hemispherectomy in a Sixteen-Year-Old Girl with Late-Onset Seizures. Pediatr. Neurosurg. 2002, 37, 19–21. [Google Scholar] [CrossRef]
- Hertz-Pannier, L.; Chiron, C.; Jambaqué, I.; Renaux-Kieffer, V.; Van de Moortele, P.-F.; Delalande, O.; Fohlen, M.; Brunelle, F.; Le Bihan, D. Late Plasticity for Language in a Child’s Non-Dominant Hemisphere: A Pre- and Post-Surgery fMRI Study. Brain 2002, 125, 361–372. [Google Scholar] [CrossRef]
- Devlin, A.M.; Cross, J.H.; Harkness, W.; Chong, W.K.; Harding, B.; Vargha-Khadem, F.; Neville, B.G.R. Clinical Outcomes of Hemispherectomy for Epilepsy in Childhood and Adolescence. Brain 2003, 126, 556–566. [Google Scholar] [CrossRef]
- Trudeau, N.; Colozzo, P.; Sylvestre, V.; Ska, B. Language Following Functional Left Hemispherectomy in a Bilingual Teenager. Brain Cog. 2003, 53, 384–388. [Google Scholar] [CrossRef]
- Pulsifer, M.B.; Brandt, J.; Salorio, C.F.; Vining, E.P.G.; Carson, B.S.; Freeman, J.M. The Cognitive Outcome of Hemispherectomy in 71 Children. Epilepsia 2004, 45, 243–254. [Google Scholar] [CrossRef]
- Jonas, R.; Nguyen, S.; Hu, B.; Asarnow, R.F.; LoPresti, C.; Curtiss, S.; de Bode, S.; Yudovin, S.; Shields, W.D.; Vinters, H.V.; et al. Cerebral Hemispherectomy: Hospital Course, Seizure, Developmental, Language, and Motor Outcomes. Neurology 2004, 62, 1712–1721. [Google Scholar] [CrossRef]
- Liégeois, F.; Cross, J.H.; Polkey, C.; Harkness, W.; Vargha-Khadem, F. Language after Hemispherectomy in Childhood: Contributions from Memory and Intelligence. Neuropsychologia 2008, 46, 3101–3107. [Google Scholar] [CrossRef]
- Thomas, S.G.; Daniel, R.T.; Chacko, A.G.; Thomas, M.; Russell, P.S.S. Cognitive Changes Following Surgery in Intractable Hemispheric and Sub-Hemispheric Pediatric Epilepsy. Childs Nerv. Syst. 2010, 26, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Moosa, A.N.V.; Gupta, A.; Jehi, L.; Marashly, A.; Cosmo, G.; Lachhwani, D.; Wyllie, E.; Kotagal, P.; Bingaman, W. Longitudinal Seizure Outcome and Prognostic Predictors after Hemispherectomy in 170 Children. Neurology 2013, 80, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ramantani, G.; Cserpan, D.; Tisdall, M.; Otte, W.M.; Dorfmüller, G.; Cross, J.H.; van Schooneveld, M.; van Eijsden, P.; Nees, F.; Reuner, G. Determinants of Functional Outcome after Pediatric Hemispherotomy. Ann. Neurol. 2024, 95, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Bulteau, C.; Grosmaitre, C.; Save-Pédebos, J.; Leunen, D.; Delalande, O.; Dorfmüller, G.; Dulac, O.; Jambaqué, I. Language Recovery after Left Hemispherotomy for Rasmussen Encephalitis. Epilepsy Behav. 2015, 53, 51–57. [Google Scholar] [CrossRef]
- de Bode, S.; Smets, L.; Mathern, G.W.; Dubinsky, S. Complex Syntax in the Isolated Right Hemisphere: Receptive Grammatical Abilities after Cerebral Hemispherectomy. Epilepsy Behav. 2015, 51, 33–39. [CrossRef]
- Gröppel, G.; Dorfer, C.; Mühlebner-Fahrngruber, A.; Dressler, A.; Porsche, B.; Czech, T.; Feucht, M. Improvement of Language Development after Successful Hemispherotomy. Seizure 2015, 30, 70–75. [Google Scholar] [CrossRef]
- Grosmaitre, C.; Jambaqué, I.; Dorfmuller, G.; Rodrigo, S.; Ville, D.; Delalande, O.; Bulteau, C. Exceptional Verbal Intelligence after Hemispherotomy in a Child with Rasmussen Encephalitis. Neurocase 2015, 21, 144–147. [Google Scholar] [CrossRef]
- Save-Pédebos, J.; Pinabiaux, C.; Dorfmuller, G.; Sorbets, S.F.; Delalande, O.; Jambaqué, I.; Bulteau, C. The Development of Pragmatic Skills in Children after Hemispherotomy: Contribution from Left and Right Hemispheres. Epilepsy Behav. 2016, 55, 139–145. [Google Scholar] [CrossRef]
- van Schooneveld, M.M.J.; Braun, K.P.J.; van Rijen, P.C.; van Nieuwenhuizen, O.; Jennekens-Schinkel, A. The Spectrum of Long-Term Cognitive and Functional Outcome after Hemispherectomy in Childhood. Eur. J. Paediatr. Neurol. 2016, 20, 376–384. [Google Scholar] [CrossRef]
- Bulteau, C.; Jambaqué, I.; Chiron, C.; Rodrigo, S.; Dorfmüller, G.; Dulac, O.; Hertz-Pannier, L.; Noulhiane, M. Language Plasticity after Hemispherotomy of the Dominant Hemisphere in 3 Patients: Implication of Non-Linguistic Networks. Epilepsy Behav. 2017, 69, 86–94. [Google Scholar] [CrossRef]
- Wilson, R.; Marion, S.; Asarnow, R.; Mathern, G. Verbal and Nonverbal Memory in Hemispherectomy: Lateralization Effects. J. Ped. Epil. 2017, 6, 141–148. [Google Scholar]
- Kliemann, D.; Adolphs, R.; Tyszka, J.M.; Fischl, B.; Yeo, B.T.T.; Nair, R.; Dubois, J.; Paul, L.K. Intrinsic Functional Connectivity of the Brain in Adults with a Single Cerebral Hemisphere. Cell Rep. 2019, 29, 2398–2407.e4. [Google Scholar] [CrossRef] [PubMed]
- Nahum, A.S.; Liégeois, F.J. Language after Childhood Hemispherectomy: A Systematic Review. Neurology 2020, 95, 1043–1056. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Sakamoto, A.C.; Thomé, Ú.; Escorsi-Rosset, S.; Santos, M.V.; Machado, H.R.; Santos, A.C.; Hamad, A.P. Left Hemispherectomy in Older Children and Adolescents: Outcome of Cognitive Abilities. Childs Nerv. Syst. 2020, 36, 1275–1282. [Google Scholar] [CrossRef]
- Tavares, T.P.; Kerr, E.N.; Smith, M.L. Memory Outcomes Following Hemispherectomy in Children. Epilepsy Behav. 2020, 112, 107360. [Google Scholar] [CrossRef]
- Kliemann, D.; Adolphs, R.; Paul, L.K.; Tyszka, J.M.; Tranel, D. Reorganization of the Social Brain in Individuals with Only One Intact Cerebral Hemisphere. Brain Sci. 2021, 11, 965. [Google Scholar] [CrossRef]
- Shurtleff, H.A.; Roberts, E.A.; Young, C.C.; Barry, D.; Warner, M.H.; Saneto, R.P.; Buckley, R.; Firman, T.; Poliakov, A.V.; Ellenbogen, R.G.; et al. Pediatric Hemispherectomy Outcome: Adaptive Functioning, Intelligence, and Memory. Epilepsy Behav. 2021, 124, 108298. [Google Scholar] [CrossRef]
- Sousa, N.M.F.; Ribeiro, A.M.; Nunes, D.L. de M. Neurological Rehabilitation for a Patient with Chronic Rasmussen Encephalitis: A Case Report. Dement. Neuropsychol. 2021, 15, 413–418. [Google Scholar] [CrossRef]
- Borne, A.; Perrone-Bertolotti, M.; Jambaqué, I.; Castaignède, C.; Dorfmüller, G.; Ferrand-Sorbets, S.; Baciu, M.; Bulteau, C. Cognitive Outcome after Left Functional Hemispherectomy on Dominant Hemisphere in Patients with Rasmussen Encephalitis: Beyond the Myth of Aphasia. Patient Series. J. Neurosurg. Case Lessons 2022, 4, CASE22410. [Google Scholar] [CrossRef]
- Liu, D.; Guan, Y.; Zhou, J.; Zhai, F.; Chen, L.; Li, T.; Wang, M.; Luan, G. The Influencing Factors and Changes of Cognitive Function within 40 Rasmussen Encephalitis Patients That Received a Hemispherectomy. Neurol. Res. 2022, 44, 700–707. [Google Scholar] [CrossRef]
- Pinabiaux, C.; Save-Pédebos, J.; Dorfmüller, G.; Jambaqué, I.; Bulteau, C. The Hidden Face of Hemispherectomy: Visuo-Spatial and Visuo-Perceptive Processing after Left or Right Functional Hemispherectomy in 40 Children. Epilepsy Behav. 2022, 134, 108821. [Google Scholar] [CrossRef] [PubMed]
- Derry, C.; Dale, R.C.; Thom, M.; Miller, D.H.; Giovannoni, G. Unihemispheric Cerebral Vasculitis Mimicking Rasmussen’s Encephalitis. Neurology 2002, 58, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Narain, N.P.; Kumar, R.; Narain, B. Dyke-Davidoff-Masson Syndrome. Indian Pediatr. 2008, 45, 927–928. [Google Scholar] [PubMed]
- Sharifi, M.; Namdari, M. Encephalocraniocutaneous Lipomatosis (Fishman Syndrome): A Rare Neurocutaneous Syndrome. J. Curr. Ophthalmol. 2016, 28, 155–158. [Google Scholar] [CrossRef]
- Legius, E.; Messiaen, L.; Wolkenstein, P.; Pancza, P.; Avery, R.A.; Berman, Y.; Blakeley, J.; Babovic-Vuksanovic, D.; Cunha, K.S.; Ferner, R.; et al. Revised Diagnostic Criteria for Neurofibromatosis Type 1 and Legius Syndrome: An International Consensus Recommendation. Genet. Med. 2021, 23, 1506–1513. [Google Scholar] [CrossRef]
- Sánchez-Espino, L.F.; Ivars, M.; Antoñanzas, J.; Baselga, E. Sturge-Weber Syndrome: A Review of Pathophysiology, Genetics, Clinical Features, and Current Management Approache. Appl. Clin. Genet. 2023, 16, 63–81. [Google Scholar] [CrossRef]
- Leonardi, R.; Licciardello, L.; Zanghì, A.; La Cognata, D.; Maniaci, A.; Vecchio, M.; Polizzi, A.; Falsaperla, R.; Praticò, A.D. Megalencephaly: Classification, Genetic Causes, and Related Syndromes. J. Pediatr. Neurol. 2024, 22, 149–157. [Google Scholar] [CrossRef]
Group | Description I |
---|---|
Group 1 | Inflammation with numerous microglial nodules, with or without neuronophagia, perivascular round cells, and glial scarring. |
Group 2 | Several microglial nodules, cuffs of perivascular round cells, and at least one gyral segment of complete necrosis |
Group 3 | Neuronal loss and gliosis with moderately abundant perivascular round cells and few microglial nodules. |
Group 4 | Few microglial nodules, neuronal loss, and mild perivascular inflammation, combined with various degrees of gliosis and glial scarring |
Stage | T2/FLAIR I | Brain Volume I |
---|---|---|
0 | No abnormality | No abnormality |
1 | Hyperintense | Swelling |
2 | Hyperintense | Normal |
3 | Hyperintense signal | Atrophy |
4 | Normal signal | Atrophy (usually progressive) |
Part A (All 3 Criteria Need to Be Marked) I | |
---|---|
1. Clinical | Focal seizures (±epilepsia partialis continua) AND unilateral cortical deficit(s) |
2. EEG | Unihemispheric slowing ± epileptiform activity AND unilateral focal seizure onset |
3. MRI | Grey or white matter T2/FLAIR hyperintense signal or atrophy of ipsilateral caudate head |
Part B (2 of 3 Criteria Need to Be Marked) I | |
1. Clinical | EPC or progressive II unilateral cortical deficit(s) |
2. MRI | Progressive II unihemispheric focal cortical atrophy |
3. Histopathology | T-cell dominated encephalitis with activated microglial cells (cerebral biopsy) and reactive astrogliosis III |
False-Negative Cases | ||
---|---|---|
Criteria Achieved | Criteria Lacking | Missing or Atypical Feature |
A1, A2, B3 | A3, B1, B2 | Normal MRI; lack of EPC or progressive cortical deficits |
A1, A2, B3 | A3, B1, B2 | Bilateral EEG slowing and epileptiform activity, and bilateral seizure onsets; lack of progressive atrophy, progressive cortical deficits, or EPC |
A1, A2, B3 | A3, B1, B2 | Mild atrophy on MRI but not meeting A3 criteria and without progression; lack of progressive cortical deficit or EPC |
B3 | A1, A2, A3, B1, B2 | Lack of cortical atrophy, lack of focal cortical deficit, lack of unilateral slowing on EEG, lack of EPC |
Atypical features in cases of RE satisfying the Bien clinical criteria and with consistent biopsies | ||
A1, A2, A3, B1, B2, B3 | None | Hemi-choreoathetosis |
A1, A2, A3, B1, B2, B3 | None | Slowly progressive course |
A1, A2, B1, B3 | A3, B2 | MRI with signal change without atrophy |
A1, A2, A3, B1, B2, B3 | None | MRI with ipsilateral or contralateral cerebellar atrophy |
A1, A3, B1, B2, B3 | A2 | EEG with bilateral slowing and epileptiform activity |
A3, B2, B3 | A1, A2, B1 | EEG with generalized epileptiform activity and generalized seizures |
A1, A2, A3, B1, B2 | B3 | Dual pathology with cortical dysplasia and RE |
A3, B2, B3 | A1, A2, B1 | Seizure semiology with generalized seizure |
A3, B2, B3 | A1, A2, B1 | No seizures observed |
Reference | N I | AAO II | Protocol | Seizure Efficacy III | Neurologic Symptoms Efficacy IV | Note |
---|---|---|---|---|---|---|
Corticosteroids | ||||||
Dulac et al. (1991) [74] | 5 | NA | IV MTP 400 mg/m2; PO PDN 2 mg/kg | 3/5 (60%) IMP | 1/5 (20%) motor IMP | NA |
Chinchilla et al. (1994) [75] | 8 | 5 | IV MTP 400 mg/m2; PO PDN 2 mg/kg | 5/8 (62%) EPC ceased; 3/8 (37%) seizure IMP | 5/8 (62%) hemiparesis resolved | AE: Cushing syndrome, infection, hypertension, and osteoporosis |
Hart et al. (1994) [76] | 10 | 5.5 | IV MTP 400 mg/m2; PO PDN 2 mg/kg | 5/10 (50%) seizure IMP | NA | NA |
Krauss et al. (1996) [77] | 1 | 15 | PO PDN 50 mg/d | IMP | Cognitive IMP | NA |
Granata (B) et al. (2003) [12] | 14 | 4.9 | IV MTP 20 mg/kg/d; PO PDN 1 mg/kg/d; ACTH | 11/14 (78%) IMP | 2/14 (14%) neurological IMP | NA |
Bahi-Buisson et al. (2007) [78] | 11 | 6 | IV MTP 400 mg/m2; PO PDN 2 mg/kg | At 3 months: 9/11 (81%) IMP; After 6 months: 11/11 (100%) had seizure recurrence and 7/11 (63%) needed HS | At 3 months: 5/11 (45%) partial IMP; 2/11 (18%) complete IMP; After 6 months: 2/11 (18%) partial IMP | NA |
Takahashi et al. (2013) [57] | 21 | 8.2 | MTP 30 mg/kg/d (children) to 1 g/d (adults) for 3 days | 1/21 (5%) seizure-free; 17/21 (81%) seizure IMP | 16/21 (76%) cognitive stabilization; 2/21 (9%) motor IMP; 2/21 (9%) motor worsening | 13/21 (62%) discontinued regular pulse therapy |
Pellegrin et al. (2021) [79] | 40 | 6.5 | PO PDL 2 mg/kg/d to a maximum of 60 mg/d | 33/40 (70%) seizure IMP | NA | The study total number of participants was 53, but only 40 were in CTC therapy. |
Intravenous Immunoglobulins | ||||||
Walsh et al. (1991) [80] | 2 | 9 | 0.2 mg/kg/d | IMP | Neurological IMP | NA |
Klivity et al. (1994) [81] | 1 | NA | 0.2 mg/kg/d | IMP | Neurological IMP | NA |
Krauss et al. (1996) [77] | 1 | 15 | 0.4 mg/kg/d | No effect | No effect | NA |
Wise et al. (1996) [81] | 1 | 14 | 0.4 mg/kg/d | IMP | Motor and cognitive stabilization | NA |
Leach et al. (1999) [82] | 2 | 36 | 0.4 mg/kg/d | IMP | Motor and cognitive stabilization | NA |
Vinjamuri et al. (2000) [83] | 1 | 39 | 0.4 mg/kg/d | IMP | Motor and cognitive stabilization | NA |
Villani et al. (2001) [84] | 1 | 18 | 0.4 mg/kg/d | IMP | Slight Motor and cognitive IMP | NA |
Granata et al. (2003) [12] | 11 | 5.8 | 2 g/kg | 3/11 (27%) seizure IMP | 1/11 (9%) major IMP; 2/11 (18%) minor IMP | NA |
Arias et al. (2006) [85] | 1 | 51 | 0.4 mg/kg/d | IMP | Neurological (motor and language) IMP | |
Kupila et al. (2011) [86] | 1 | 41 | 0.4 mg/kg/d | EPC ceased | Neurological IMP | NA |
Bien et al. (2013) [87] | 7 | 5.3 | 0.4 mg/kg/d | 1/7 (14%) worsening | Motor and cognitive stabilization | NA |
Takahashi et al. (2013) [57] | 13 | 13.6 | 0.4 mg/kg/d | 0/13 (0%) seizure-free; 3/13 (23%) seizure IMP | 6/13 (46%) cognitive stabilization; 2/13 (15%) motor IMP; 8/13 (62%) motor worsening | NA |
Hoffman et al. (2016) [88] | 8 | NA | NA | 3/8 (37%) transient IMP | NA | NA |
Castellano et al. (2017) [89] | 3 | 47 | NA | 1/3 (33%) IMP | 1/3 (33%) cognitive IMP | NA |
Pellegrin et al. (2021) [79] | 35 | NA | 2 g/kg over 2 to 5 days monthly | 14/35 (40%) seizure IMP | NA | NA |
Jaafar et al. (2023) [90] | 7 | 9 | 2 g/kg over 2 to 5 days monthly | 3/7 (43%) seizure-free 2/7 (29%) IMP | 1/7 (14%) cognitive IMP; 4/7 (57%) stable motor function; 1/7 (14%) IMP in motor function | NA |
Plasmapheresis/Immunoadsorption | ||||||
Rogers et al. (1994) [91] | 1 | 9 | NA | IMP with short-term recurrence | IMP with short-term recurrence | Anti-GluR3(+) |
Andrews et al. (1996) [92] | 4 | 7 | NA | 3/4 (75%) IMP with rapid recurrence between sessions | 2/4 (50%) IMP with rapid recurrence between sessions | 3/4 (75%) anti-GluR3(+). AE: 1/4 (25%) infection and thrombosis. |
Palcoux et al. (1997) [93] | 1 | 4 | NA | Transitory IMP | Transitory IMP | Anti-GluR3(+). AE: infection. |
Antozzi et al. (1998) [94] | 1 | 11 | NA | IMP | Cognitive and motor IMP | Anti-GluR3(+) |
Granata et al. (2003) [12] | 8 | 6.3 | NA | 1/5 (20%) EPC ceased with PLEX; 1/3 (33%) seizure IMP with adsorption | 0/5 (0%) PLEX; 1/3 (33%) adsorption | 5 PLEX + 3 adsorption. 2/8 (25%) anti-GluR3(+). All patients with improvement were anti-GluR3(+) |
Thilo et al. (2009) [95] | 1 | 13 | NA | Seizure IMP with short-term recurrence | NA | Anti-GluR3(−) |
Amrom et al. (2014) [96] | 1 | 8 | NA | No effect | No effect | Lupus-associated |
Sanfilippo et al. (2016) [97] | 1 | 30 | NA | Seizure-free after 1 session | Stabilization of brain atrophy and IMP of hypersignal after 1 session | Anti-GluR3(−) |
Timarova et al. (2016) [98] | 1 | 17 | NA | No effect | NA | Anti-ganglioside GQ1b(+) and GAD(+) |
Castellano et al. (2017) [89] | 1 | 53 | NA | No effect | No effect | Adult-onset |
Soh et al. (2017) [99] | 1 | 36 | NA | No effect | No effect | Adult-onset |
Stabile et al. (2018) [100] | 2 | 19.5 | NA | No effect | No effect | Adult-onset |
Sansevere et al. (2020) [101] | 1 | 6 | NA | No effect (HS) | No effect | Psoriasis and uveitis |
Cantarín-Extremera et al. (2020) [102] | 1 | 17 | NA | Transitory effect (recurrence at 1 month) | NA | Anti-GluR3(−) |
Pellegrin et al. (2021) [79] | 2 | NA | NA | NA | NA | NA |
Tacrolimus | ||||||
Bien et al. (2004) [4] | 7 | 11.6 | 0.2–0.8 mg/kg (serum level 5–15 ng/L) | No effect | 5/7 (71%) stabilization and 1/7 (14%) motor IMP. Slowing of brain MRI atrophy | NA |
Thilo et al. (2009) [95] | 1 | 13 | Up to 16 mg/day | No effect | NA | NA |
Terra-Bustamante et al. (2009) [103] | 1 | NA | NA | No effect | NA | NA |
Takahashi et al. (2013) [57] | 12 | 8.8 | Starting dose 0.1 mg/kg/d (children) or 3 mg/d (adults) with dose escalation based on blood levels | 1/12 (8%) seizure-free; 5/12 (42%) responders | 9/12 (75%) cognitive stabilization; 1/12 (8%) motor IMP | NA |
Bien et al. (2013) [10] | 9 | 5.7 | 12–15 ng/L, serum level achieved | No effect | Motor worsening and brain MRI atrophy less marked than historical cohort | AE: 2 severe infections |
Liba et al. (2017) [104] | 1 | 7 | NA | No effect | No effect | NA |
Vyas et al. (2021) [14] | 2 | 9.5 | 0.2 mg/kg/day | 2/2 (100%) IMP | 2/2 (100%) motor IMP | NA |
Fukuoka et al. (2022) [105] | 1 | 8 | NA | IMP | No effect | NA |
Trapp et al. (2024) [106] | 1 | 4 | NA | IMP and EPC stop | Motor and cognitive stabilization | NA |
Mycophenolate Mofetil | ||||||
Thilo et al. (2009) [95] | 1 | 13 | 2 g/d | No effect | No effect | Anti-GluR3(−) |
Liba et al. (2015) [107] | 1 | 8 | MPM + CTC + cyclophosphamide | Seizure-free | No neurological decline | ANA 1/640 |
Liba et al. (2017) [104] | 1 | 7 | NA | No effect | No effect | RE classical form |
Garg et al. (2019) [108] | 1 | 29 | MPM 3 g per day + CTC | No seizure | No neurological decline | NA |
Orsini et al. (2019) [109] | 1 | 6.5 | 750 mg/m2 | Seizure IMP | Neurological IMP | NA |
Azathioprine | ||||||
Muto et al. (2010) [110] | 1 | 13 | NA | No effect | No effect | Uveitis |
Bittner et al. (2013) [87] | 1 | 8 | NA | No effect | No effect | Typical form of RE |
Lagarde et al. (2016) [111] | 1 | 37 | NA | No effect | No effect | Uveitis |
Klaa et al. (2020) [112] | 1 | 11 | 100 mg | Partial efficacy | Mild IMP in motor function | Typical form of RE |
Pellegrin et al. (2021) [79] | 30 | 6.8 | 1.5 mg/kg/day PO; only children | 25/30 (83%) seizure IMP | No clear effect | A total of 53 patients, of which 30 were in use of azathioprine. Individuals enrolled after CTC therapy. AE: 3 leukopenia (1 stop). |
Rituximab | ||||||
Laxer et al. (2008) [113] | 9 | NA | NA | 3/9 (33%) seizure-free; 5/9 (55%) seizure IMP | 8/9 (89%) motor or cognitive IMP | NA |
Thilo et al. (2009) [95] | 1 | 13 | NA | Seizure-free for six months. After, seizure Recurrence, but it was less severe | No effect | Anti-GluR3(−) |
Bittner et al. (2013) [87] | 1 | 8 | NA | No effect | No effect | NA |
El Tawil et al. (2016) [114] | 1 | 43 | NA | Seizure IMP | Motor and language IMP | NA |
Timarova et al. (2016) [98] | 1 | 17 | NA | Seizure IMP | NA | Anti-ganglioside GQ1b(+) and GAD(+) |
Schneider-Hohendorf et al. (2016) [115] | 1 | 12 | NA | No effect | No effect | NA |
Liba et al. (2017) [104] | 1 | 7 | NA | No effect | No effect | NA |
Castellano et al. (2017) [89] | 2 | NA | NA | No effect | No effect | Adult onset |
Sansevere et al. (2020) [101] | 1 | 6 | NA | No effect (HS) | No effect | Psoriasis and uveitis |
Cantarín-Extremera et al. (2020) [102] | 1 | 17 | NA | No effect | No effect | Anti-GluR3(−) |
Adalimumab | ||||||
Lagarde et al. (2016) [111] | 11 | 6.5 | 24 mg/m2 with a maximum of 40 mg via SC every 14 days | 5/11 (45%) responders (no seizure free) | 3/5 (60%) motor IMP. 3/5 (60%) with cognitive stabilization. | AE: 1 superficial skin infection. |
Anakinra | ||||||
Mochol et al. (2021) [116] | 1 | 17 | SC 100 mg | Seizure-free | NA | AE: pneumonia/ urinary infections. |
Arcan et al. (2024) [117] | 1 | 38 | SC 100 mg | Seizure IMP | Motor IMP | AE: no side effects. |
Cyclophosphamide | ||||||
Krauss et al. (1996) [77] | 1 | 15 | 750 mg/m2 | Transitory effect for 6 months then worsening | Transitory effect for 8–9 months then worsening | NA |
Granata et al. (2003) [12] | 4 | 5.5 | 500 mg/m2 | No effect | No effect | AE: 1/4 (25%) severe leukopenia. |
Amrom et al. (2014) [96] | 1 | 8 | NA | No effect | No effect | Lupus-associated |
Liba et al. (2015) [107] | 1 | 6 | CPP and CTC and MPM | Seizure-free (15 months) | NA | ANA 1/640 |
Timarova et al. (2016) [98] | 1 | 17 | NA | No effect | NA | Anti-ganglioside GQ1b(+) and GAD(+) |
Soh et al. (2017) [99] | 1 | 36 | NA | No effect | No effect | Adult-onset |
Stabile et al. (2018) [100] | 2 | 19.5 | NA | No effect | No effect | Adult-onset |
Mitoxantrone | ||||||
Stabile et al. (2018) [100] | 2 | 19.5 | NA | EPC ceased and seizure IMP | Stabilization | Adult-onset. AE: leukopenia. |
Natalizumab | ||||||
Bittner et al. (2013) [87] | 1 | 8 | Monthly cycles of natalizumab (300 mg) | EPC ceased and seizure IMP | NA | NA |
Soh et al. (2017) [99] | 1 | 36 | NA | No effect | No effect | Adult-onset |
Ganciclovir | ||||||
McLachlan et al. (1993) [118] | 1 | 24 | IV ganciclovir | Seizure IMP | Stabilization | NA |
McLachlan et al. (1996) [119] | 4 | 9.9 | IV ganciclovir 10 mg/kg | 2/4 (50%) seizure IMP; 1/4 (25%) no effect | 1/4 (25%) neurological IMP | NA |
Vadlamudi et al. (2000) [120] | 1 | 54 | IV ganciclovir | Transient IMP | Transient IMP | NA |
Other Therapies | ||||||
DeToledo et al. (1994) [121] | 1 | 14 | PO zidovudine 800 mg/d | Seizure IMP | Stabilization | Side effects prevent reattempt of zidovudine therapy. AE: granulocytopenia. |
Marjanovic et al. (2003) [122] | 1 | 4.5 | Thalidomide 300 mg/d | Seizure IMP | Stabilization | Anti-GluR3(+) |
Reference | N I | Age II | Sex III | ASO IV | Op | Seizure Free | Follow-Up |
---|---|---|---|---|---|---|---|
Honavar et al. (1992) [141] | 19 | 13.2 | 12 | 7.2 | HS, RS | 8/19 (42%) | <1–15 |
Villemure et al. (1993) [142] | 9 | 6.9 | 6 | 3.2 | HS | 7/9 (78%) | 1–17 years |
Döring et al. (1999) [143] | 4 | 8.8 | NA | 4.8 | HS | 4/4 (100%) | <5 years |
Topçu et al. (1999) [144] | 6 | 9.2 | 3 | 7.1 | LB, RS | 1/6 (17%) | 1–5 years |
Sinclair et al. (2004) [145] | 3 | 10.7 | 2 | NA | HS, RS | 2/3 (67%) | 1–10 |
Korkman et al. (2005) [146] | 4 | 6.1 | 3 | NA | HS | 3/4 (75%) | 2 years |
Tubbs et al. (2005) [147] | 5 | 9.8 | NA | 4 | HS | 5/5 (100%) | 13–23 |
Battaglia et al. (2006) [148] | 1 | 4.5 | 1 | 2 | HS | 1/1 (100%) | 6 years |
Bahi-Buisson et al. (2007) [78] | 11 | 9.5 | 6 | 6 | HS | 4/11 (36%) | <1–8 years |
Delalande et al. (2007) [149] | 25 | 12.3 | NA | 5.8 | HS | 16/20 (80%) | 0–10 years |
Liu et al. (2007) [150] | 2 | 9.5 | NA | NA | RS | 1/2 (50%) | 3–8 years |
Chandra et al. (2008) [151] | 8 | 6.1 | 2 | 2.3 | HS | 8/8 (100%) | 1–4 years |
Ramesha et al. (2009) [125] | 10 | 11.6 | 4 | 6.4 | HS, RS | 7/10 (70%) | 1–10 years |
Terra-Bustamante et al. (2009) [103] | 25 | 7.7 | 12 | 5.4 | HS, RS | 11/22 (50%) | 1–13 years |
Caraballo et al. (2011) [152] | 13 | 14.1 | 5 | 7 | HS | NA | 8–14 years |
van Schooneveld et al. (2011) [153] | 4 | 11.6 | 3 | 8 | HS | 2/4 (50%) | 2 years |
Hamad et al. (2013) [154] | 9 | 6.9 | NA | NA | HS | 8/9 (89%) | 1–9 years |
Takahashi et al. (2013) [57] | 17 | NA | NA | NA | HS | 6 (35%) | NA |
Villarejo-Ortega et al. (2013) [155] | 3 | 7.6 | 1 | 5.4 | HS | 3/3 (100%) | 2–5 years |
Granata et al. (2014) [156] | 16 | 11.5 | 8 | 6.1 | HS | 8/11 (73%) | 3–20 years |
Guan et al. (2014) [157] | 20 | 8.9 | 11 | 5.7 | HS | 12/15 (80%) | 3–18 years |
Wang et al. (2014) [158] | 7 | 9 | 3 | NA | HS | 2/2 (100%) | 9–21 years |
Casciato et al. (2015) [136] | 5 | 28.2 | 4 | 23 | RS | 1/5 (20%) | 1–6 years |
Hoffman et al. (2016) [88] | 13 | 10.6 | 7 | NA | HS, RS | 5/7 (71%) | 1–10 years |
Guan et al. (2017) [159] | 45 | 8.0 | 16 | 5.7 | HS | 34/45 (75%) | <1–8 years |
Bellamkonda et al. (2020) [138] | 41 | 8.8 | 18 | 5.9 | HS | 28/41 (68%) | At 1 year follow-up. 48% and 22% of the patients at 5 and 10 years, respectively. |
Sundar et al. (2022) [160] | 30 | 8.6 | 17 | 4.7 | HS, RS | 25/30 (83%) | At 1 year follow-up. 63.6% and 55.6% of the patients at 5 and 10 years, respectively. |
Thomé et al. (2024) [161] | 44 | 9 | 23 | 6 | HS | 28/41 (68%) | 0.2–23 years |
Reference | TP | N I | RH II | Age III | AAO IV | FU V | Specific Comments Regarding Cognition to the Population with RE |
---|---|---|---|---|---|---|---|
Vargha-Khadem et al. (1991) [163] | 6 | 4 | 2 | 12.2 | 8.4 | 4.1 | None. |
Caplan et al. (1996) [164] | 4 | 4 | 4 | 13.3 | 8.4 | 4.1 | Improvement in reasoning, language, and social communication were associated with a short delay between the onset of seizures in RE and the HS. |
Vining et al. (1997) [165] | 58 | 27 | 16 | 9.7 | NA | 6.7 | Recommended early HS in patients with RE. They found that intellectual efficiency can improve after HS. |
Stark et al. (1997) [166] | 2 | 2 | 1 | 3.1 | 1.7 | 2 | L HS does not improve language impairment. RH can improve language function. |
Boatman et al. (1999) [167] | 6 | 6 | 0 | 10.3 | 7.4 | 1 | L HS can sustain language ability. Comprehension was related to the short delay between the seizure onset in RE and the HS. Expressive functions do not change with HS. |
Curtiss et al. (2001) [168] | 43 | 10 | 4 | 8.4 | 5.1 | 6.1 | Late AAO and late age at the surgery positively correlate with language outcome, but only in the cases of RH. |
Telfeian et al. (2002) [169] | 1 | 1 | 0 | 16 | 11 | 2.5 | HS can be associated with favorable language outcomes. |
Hertz-Pannier et al. (2002) [170] | 1 | 1 | 0 | 9.0 | 5.5 | 1.5 | Receptive functions, compared to expressive, have better outcomes. |
Devlin et al. (2003) [171] | 33 | 4 | NA | 8.1 | 4.2 | NA | Recommended early surgery in RE, despite complications of cognitive and motor impairments. |
Trudeau et al. (2003) [172] | 1 | 1 | 0 | 17 | 5 | 0.2 | L HS does not affect expressive and receptive domains. It is associated with poor reading and writing abilities. |
Pulsifer et al. (2004) [173] | 71 | 37 | 21 | 9.2 | 6.0 | 5.7 | Language is more impaired after L HS than RH. |
Jonas et al. (2004) [174] | 115 | 21 | 9 | 7.8 | 4.9 | 2 | HS improves development. From 11% (preoperatively) to 29% (postoperatively) achieving good development. |
Delalande et al. (2007) [149] | 83 | 25 | 16 | 12.6 | 5.8 | 4.4 | Favorable seizure and behavioral outcomes are observed after HS. |
Liégeois et al. (2008) [175] | 30 | 8 | 4 | NA | 6.5 | 5.8 | None. |
Terra-Bustamante et al. (2009) [103] | 25 | 23 | 12 | 7.7 | 5.4 | 5.3 | Favorable seizure control. Cognitive decline was observed in more than a third of the patients after HS. Patients with an L RE show persistent language deficits. |
Thomas et al. (2010) [176] | 16 | 9 | NA | NA | NA | NA | No differences in language skills are observed between L HS and RH. |
Moosa et al. (2013) [177] | 115 | 10 | NA | NA | NA | 6.1 | Patients with RE, compared to other etiologies, present better language outcomes. |
Ramantani et al. (2013) [178] | 52 | 6 | NA | 7.0 | 4.2 | 3.3 | Favorable preoperative scores are observed in RE but did not improve after HS. HS should be considered independent of age. |
Villarejo-Ortega et al. (2013) [155] | 17 | 3 | 1 | 7.6 | 5.4 | 3.1 | No cognitive deterioration was observed after HS. Favorable seizure and functional outcomes are related to short-delay HS. |
Granata et al. (2014) [156] | 16 | 16 | 12 | 11.5 | 6.1 | 10 | Favorable seizure and functional outcomes are related to short delay HS. |
Guan et al. (2014) [157] | 20 | 20 | 14 | 8.9 | 5.7 | 5.5 | Favorable seizure and cognitive outcomes are related to short-delay HS. All patients presented normalized language functions after HS. |
Bulteau et al. (2015) [179] | 6 | 6 | 0 | 6.1 | 4.8 | 5.6 | Favorable language outcome after HS. L HS is associated with good lexico-semantic recovery. There is no change in syntactic and phonological scores. |
de Bode et al. (2015) [180] | 10 | 3 | 0 | 6.0 | 4.7 | 6.9 | RH can potentially support grammatical abilities in the case of prenatal insult. |
Gröppel et al. (2015) [181] | 28 | 1 | 1 | 3.5 | 2 | 3.0 | Improvement of language function after HS. |
Grosmaitre et al. (2015) [182] | 1 | 1 | 0 | 6.9 | 5 | 4.1 | L HS improved intellectual and language outcomes. |
Hoffman et al. (2016) [88] | 13 | 13 | 8 | 10.6 | NA | 5.6 | Good seizure control after HS. Long-term benefits were observed for cognitive and language functions. |
Save-Pédebos et al. (2016) [183] | 40 | 13 | 2 | 8.1 | 6.9 | 7.5 | None. |
van Schooneveld et al. (2016) [184] | 31 | 7 | 3 | NA | NA | NA | None. |
Bulteau et al. (2017) [185] | 12 | 8 | 5 | 11.7 | 6.7 | 5.9 | None. |
Guan et al. (2017) [159] | 45 | 45 | 23 | 8.0 | 5.7 | 2.6 | Favoravable seizure outcome after HS. Also, the favorable outcomes are related to short-delay HS. |
Wilson et al. (2017) [186] | 25 | 10 | 3 | NA | NA | 9.0 | None. |
Rudebeck et al. (2018) [19] | 21 | 21 | 12 | NA | 6.3 | 1.5 | Verbal functions are more impaired in L HS than in RH. There is a decrease in verbal and nonverbal functions after HS. A favorable outcome is related to short delay HS. |
Kliemann et al. (2019) [187] | 6 | 3 | 3 | 7.3 | 6.3 | 18.2 | None. |
Nahum et al. (2020) [188] | 205 | 96 | NA | NA | NA | 6.1 | Deficits are more commonly observed in L HS than RH. |
Silva et al. (2020) [189] | 15 | 6 | 2 | 9.3 | 6.8 | 3.1 | None. |
Tavares et al. (2020) [190] | 13 | 4 | NA | 13.8 | 6.7 | 1.1 | None. |
Kliemann et al. (2021) [191] | 4 | 1 | 1 | 20 | 11 | 12.8 | None. |
Shurtleff et al. (2021) [192] | 71 | 6 | NA | NA | NA | NA | Normal brain biopsy is associated with better cognitive functions. |
Sousa et al. (2021) [193] | 1 | 1 | 0 | 17 | 10 | 1.3 | None. |
Borne et al. (2022) [194] | 3 | 3 | 0 | 9.3 | 7.8 | 11.1 | Favorable cognitive recovery is noticed with L HS, especially executive functions. |
Liu et al. (2022) [195] | 40 | 40 | 22 | 8.7 | NA | 2 | A favorable outcome is related to short-delay HS and normal brain biopsy. Cognition is more affected in the L HS than in RH. |
Pinabiaux et al. (2022) [196] | 40 | 13 | 2 | 8.1 | 6.9 | 7.5 | None. |
Differential Diagnosis | Clinical and Laboratory Criteria |
---|---|
Unihemispheric epileptic syndromes | |
Cortical dysplasia, hemimegalencephaly, tuberous sclerosis, Sturge-Weber-syndrome, stroke, tumor Hemiconvulsion-hemiplegia-epilepsy-syndrome | Focal seizures in infancy or early childhood MRI with gadolinium No progression on MRI Usually occurring in infancy, initial (tonic-) clonic unilateral seizures presenting as status epilepticus Early MRI: diffuse cytotoxic edema of the whole hemisphere Hemiparesis, hemiatrophic hemisphere on MRI, and focal epilepsy |
Epilepsia partialis continua (EPC) due to metabolic disorders | |
Diabetes mellitus: ketotic/ non-ketotic hyperglycemia, type I diabetes and anti-GAD-65-antibodies, renal or hepatic encephalopathy | History, blood tests, anti-GAD-65-antibodies |
Metabolic or degenerative progressive neurological diseases | |
MELAS and other mitochondriopathies; Alpers syndrome or polymerase gamma-related disorders | Blood-lactate, mitochondrial DNA genetic testing for mutations, muscle biopsy, progressive illness, EEG: bilateral abnormalities, MRI; T2 hyperintensity in the occipital lobes and thalami, liver impairments. Autosomal recessive mutations in the DNA Polymerase gamma, catalytic subunit (POLG) gene |
Inflammatory/infectious diseases | |
Cerebral vasculitis in systemic connective tissue disease (e.g., lupus erythematosus) | History, other clinical features, blood abnormalities (ANA, ANCA), antiphospholipid antibodies (anticardiolipin antibody, anti-beta-2-glycoprotein-I (aβ2GPI) antibody) anti-Ro/SSA antibody anti-double-stranded DNA (anti-dsDNA) antibodies anti-thyroglobulin, anti-thyroid peroxidase |
Autoimmune encephalitis; Antibodies: autoimmune encephalitis with intracellular antigens; autoimmune encephalitis with cell-surface antigens; paraneoplastic syndrome | History, other clinical features, movement disorders, psychiatric features Autoantibodies (blood and CSF), anti-neuronal antibodies, anti-GQ1b, GD1b, GM1, GM2, anti-HU (a,b) |
Subacute sclerosing panencephalitis and other delayed subacute measles encephalitis with or without immunodeficiency | History, vaccination status, early measles, EEG: periodic discharges, measles-antibodies in CSF |
Multiple sclerosis | History of previous episodes, additional deficits, MRI; CSF: oligoclonal bands |
Infectious diseases | Antibody tests: HIV, HSV1, HSV 2, Syphilis, CMV, EBV, HHV6, mycoplasma, chlamydiae, Borrelia burgdorferi, Bartonella henselae |
Conditions and Reference | Pathophysiology | Clinical Presentation | Neuroimaging Features | ||
---|---|---|---|---|---|
Parenchymal | Ventricular | Calvarial | |||
Dyke-Davidoff-Masson syndrome [198] | Brain damage during fetal life or early childhood | Seizures, contralateral hemiparesis, facial asymmetry, cognitive disabilities | Unilateral cerebral atrophy | Dilated ventricle on the same side | Calvarial thickening on the same side |
Fishman syndrome [199] | Phakomatosis. Mutations in the FGFR1 gene | Lipomas of the cranium, face, and neck, ipsilateral lipodermoids of the eye, and ipsilateral brain anomalies | Unilateral cerebral atrophy | Dilated ventricle on the same side | Usually, absent |
Neurofibromatosis type I [200] | Phakomatosis. Neurofibromin 1 gene | Neurofibromas, optic gliomas, and cafe-au-lait spots | Unilateral cerebral atrophy | Dilated ventricle on the same side | Sphenoid dysplasia |
Rasmussen encephalitis | Chronic encephalitis | Drug-resistant epilepsy, history of viral fever | Unilateral cerebral atrophy | Dilated ventricle on the same side | Absent |
Sturge-Weber syndrome [201] | Phakomatosis associated with anomalous development of cortical veins | Facial port wine stains, seizures, hemiparesis, development delay | Unilateral cerebral atrophy | Dilated ventricle on the same side | Usually calvarial thickening |
Unilateral megalencephaly [202] | Hamartomatous overgrowth of an attire hemisphere related to neuronal proliferation abnormalities | Focal or generalized spasms, development delay, hemiparesis | Unilateral cerebral enlargement | Enlarged ventricle on the same side | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornari Caprara, A.L.; Rissardo, J.P.; Nagele, E.P. Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies—A Comprehensive Literature Review. Medicina 2024, 60, 1858. https://doi.org/10.3390/medicina60111858
Fornari Caprara AL, Rissardo JP, Nagele EP. Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies—A Comprehensive Literature Review. Medicina. 2024; 60(11):1858. https://doi.org/10.3390/medicina60111858
Chicago/Turabian StyleFornari Caprara, Ana Leticia, Jamir Pitton Rissardo, and Eric P. Nagele. 2024. "Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies—A Comprehensive Literature Review" Medicina 60, no. 11: 1858. https://doi.org/10.3390/medicina60111858
APA StyleFornari Caprara, A. L., Rissardo, J. P., & Nagele, E. P. (2024). Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies—A Comprehensive Literature Review. Medicina, 60(11), 1858. https://doi.org/10.3390/medicina60111858