Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression and Purification
2.2. Analytical Size Exclusion Chromatography
2.3. Circular Dichroism
2.4. Effect of pH and Temperature on Protein Activity
2.5. ATP Binding/ATPase Assay
2.6. Fluorimetry
2.7. Phylogenetic Analysis
3. Results
3.1. Recombinant Proteins for Functional Characterization
3.2. Dynamic Equilibrium and Substrate Binding of Transporter Domains
3.3. Dimerization of the ATPase Domains of IrtA (ATPase I) and IrtB (ATPase II) Stimulated by the ATP
3.4. Conformational Changes Accompanying the Complexation Between the Substrate and the Transporter Domains
3.5. pH and Temperature Variation and Its Impact on Transporter Activity
3.6. Evolutionary Origins of Mtb IrtA and IrtB
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goletti, D.; Al-Abri, S.; Migliori, G.B.; Arlehamn, C.L.; Haldar, P.; Sundling, C.; da Costa, C.; To, K.W.; Martineau, A.R.; Petersen, E. World Tuberculosis Day 2024 theme “Yes! We can end TB” can be made a reality through concerted global efforts that advance detection, diagnosis, and treatment of tuberculosis infection and disease. Int. J. Infect. Dis. 2024, 141, 106993. [Google Scholar] [CrossRef] [PubMed]
- Alsayed, S.S.; Gunosewoyo, H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int. J. Mol. Sci. 2023, 24, 5202. [Google Scholar] [CrossRef]
- Dockrell, H.M.; Smith, S.G. What have we learnt about BCG vaccination in the last 20 years? Front. Immunol. 2017, 8, 1134. [Google Scholar] [CrossRef]
- Bilsing, F.L.; Anlauf, M.T.; Hachani, E.; Khosa, S.; Schmitt, L. ABC transporters in bacterial nanomachineries. Int. J. Mol. Sci. 2023, 24, 6227. [Google Scholar] [CrossRef] [PubMed]
- Shea, A.E.; Forsyth, V.S.; Stocki, J.A.; Mitchell, T.J.; Frick-Cheng, A.E.; Smith, S.N.; Hardy, S.L.; Mobley, H.L. Emerging roles for ABC transporters as virulence factors in uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 2024, 121, e2310693121. [Google Scholar] [CrossRef] [PubMed]
- Grubwieser, P.; Hilbe, R.; Gehrer, C.M.; Grander, M.; Brigo, N.; Hoffmann, A.; Seifert, M.; Berger, S.; Theurl, I.; Nairz, M. Klebsiella pneumoniae manipulates human macrophages to acquire iron. Front. Microbiol. 2023, 14, 1223113. [Google Scholar] [CrossRef]
- Soni, D.K.; Dubey, S.K.; Bhatnagar, R. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: Target for drug and vaccine development. Emerg. Microbes Infect. 2020, 9, 207–220. [Google Scholar] [CrossRef]
- Mandal, S.K.; Nayak, S.G.; Kanaujia, S.P. Identification and characterization of metal uptake ABC transporters in Mycobacterium tuberculosis unveil their ligand specificity. Int. J. Biol. Macromol. 2021, 185, 324–337. [Google Scholar] [CrossRef]
- Zhang, L.; Hendrickson, R.C.; Meikle, V.; Lefkowitz, E.J.; Ioerger, T.R.; Niederweis, M. Comprehensive analysis of iron utilization by Mycobacterium tuberculosis. PLoS Pathog. 2020, 16, e1008337. [Google Scholar] [CrossRef]
- Rodriguez, G.M.; Smith, I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 2006, 188, 424–430. [Google Scholar] [CrossRef]
- Kumar, G.; Adhikrao, P.A. Targeting Mycobacterium tuberculosis iron-scavenging tools: A recent update on siderophores inhibitors. RSC Med. Chem. 2023, 14, 1885–1913. [Google Scholar] [CrossRef] [PubMed]
- Farhana, A.; Kumar, S.; Rathore, S.S.; Ghosh, P.C.; Ehtesham, N.Z.; Tyagi, A.K.; Hasnain, S.E. Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron. PLoS ONE 2008, 3, e2087. [Google Scholar] [CrossRef]
- Banerjee, S.; Farhana, A.; Ehtesham, N.Z.; Hasnain, S.E. Iron acquisition, assimilation and regulation in mycobacteria. Infect. Genet. Evol. 2011, 11, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Farhana, A.; Guidry, L.; Saini, V.; Hondalus, M.; Steyn, A.J. Redox homeostasis in mycobacteria: The key to tuberculosis control? Expert Rev. Mol. Med. 2011, 13, e39. [Google Scholar] [CrossRef]
- Novikova, M.; Metlitskaya, A.; Datsenko, K.; Kazakov, T.; Kazakov, A.; Wanner, B.; Severinov, K. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 2007, 189, 8361–8365. [Google Scholar] [CrossRef]
- Leitner, H.M.; Kachadourian, R.; Day, B.J. Harnessing drug resistance: Using ABC transporter proteins to target cancer cells. Biochem. Pharmacol. 2007, 74, 1677–1685. [Google Scholar] [CrossRef]
- Margolles, A.; Florez, A.B.; Moreno, J.A.; van Sinderen, D.; de los Reyes-Gavilan, C.G. Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology 2006, 152 Pt 12, 3497–3505. [Google Scholar] [CrossRef]
- Conseil, G.; Deeley, R.G.; Cole, S.P. Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters. Pharmacogenet. Genom. 2005, 15, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Sajid, A.; Rahman, H.; Ambudkar, S.V. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat. Rev. Cancer 2023, 23, 762–779. [Google Scholar] [CrossRef]
- Stoeltje, L.; Luc, J.K.; Haddad, T.; Schrankel, C.S. The roles of ABCB1/P-glycoprotein drug transporters in regulating gut microbes and inflammation: Insights from animal models, old and new. Philos. Trans. R. Soc. B 2024, 379, 20230074. [Google Scholar] [CrossRef]
- Thomas, C.; Tampé, R. Structural and mechanistic principles of ABC transporters. Annu. Rev. Biochem. 2020, 89, 605–636. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, Y.; Aoki, K.F.; Mamitsuka, H.; Kuma, K.; Kanehisa, M. The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. Mol. Biol. Evol. 2004, 21, 2149–2160. [Google Scholar] [CrossRef] [PubMed]
- Koehn, L.M. ABC transporters: An overview. In The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–10. [Google Scholar]
- Moussatova, A.; Kandt, C.; O’Mara, M.L.; Tieleman, D.P. ATP-binding cassette transporters in Escherichia coli. Biochim. Biophys. Acta Biomembr. 2008, 1778, 1757–1771. [Google Scholar] [CrossRef] [PubMed]
- Tomii, K.; Kanehisa, M. A comparative analysis of ABC transporters in complete microbial genomes. Genome Res. 1998, 8, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Sreekantan, A.P.; Rajan, P.P.; Mini, M.; Kumar, P. Multidrug efflux pumps in bacteria and efflux pump inhibitors. Adv. Microbiol. 2022, 61, 105–114. [Google Scholar]
- Davies, J.S.; Currie, M.J.; Wright, J.D.; Newton-Vesty, M.C.; North, R.A.; Mace, P.D.; Allison, J.R.; Dobson, R.C. Selective nutrient transport in bacteria: Multicomponent transporter systems reign supreme. Front. Mol. Biosci. 2021, 8, 699222. [Google Scholar] [CrossRef]
- Rismondo, J.; Schulz, L.M. Not just transporters: Alternative functions of ABC transporters in Bacillus subtilis and Listeria monocytogenes. Microorganisms 2021, 9, 163. [Google Scholar] [CrossRef]
- Alves, C.d.J.M. Multitask NBDs of Bacterial ABC type I Importers. Master’s Thesis, NOVA University of Lisbon, Lisbon, Portugal, 2021. [Google Scholar]
- Stockner, T.; Gradisch, R.; Schmitt, L. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett. 2020, 594, 3815–3838. [Google Scholar] [CrossRef]
- Slotboom, D.J.; Ettema, T.W.; Nijland, M.; Thangaratnarajah, C. Bacterial multi-solute transporters. FEBS Lett. 2020, 594, 3898–3907. [Google Scholar] [CrossRef]
- Tam, R.; Saier, M.H., Jr. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol. Rev. 1993, 57, 320–346. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; Van Veen, H.W.; Pos, K.M.; Piddock, L.J.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Paternotte, I.; Fan, H.J.; Screve, P.; Claesen, M.; Tulkens, P.M.; Sonveaux, E. Syntheses and hydrolysis of basic and dibasic ampicillin esters tailored for intracellular accumulation. Bioorg. Med. Chem. 2001, 9, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Braibant, M.; Lefevre, P.; de Wit, L.; Peirs, P.; Ooms, J.; Huygen, K.; Andersen, A.B.; Content, J. A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene 1996, 176, 171–176. [Google Scholar] [CrossRef] [PubMed]
- van der Wolk, J.P.; Boorsma, A.; Knoche, M.; Schafer, H.J.; Driessen, A.J. The low-affinity ATP binding site of the Escherichia coli SecA dimer is localized at the subunit interface. Biochemistry 1997, 36, 14924–14929. [Google Scholar] [CrossRef] [PubMed]
- Plewniak, F.; Thompson, J.D.; Poch, O. Ballast: Blast post-processing based on locally conserved segments. Bioinformatics 2000, 16, 750–759. [Google Scholar] [CrossRef]
- He, L.; Vandin, F.; Pandurangan, G.; Bailey-Kellogg, C. Ballast: A ball-based algorithm for structural motifs. J. Comput. Biol. 2013, 20, 137–151. [Google Scholar] [CrossRef]
- Thompson, J.D.; Plewniak, F.; Thierry, J.; Poch, O. DbClustal: Rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res. 2000, 28, 2919–2926. [Google Scholar] [CrossRef]
- Thompson, J.D.; Thierry, J.C.; Poch, O. RASCAL: Rapid scanning and correction of multiple sequence alignments. Bioinformatics 2003, 19, 1155–1161. [Google Scholar] [CrossRef]
- Thompson, J.D.; Prigent, V.; Poch, O. LEON: Multiple aLignment Evaluation Of Neighbours. Nucleic Acids Res. 2004, 32, 1298–1307. [Google Scholar] [CrossRef]
- Wicker, N.; Perrin, G.R.; Thierry, J.C.; Poch, O. Secator: A program for inferring protein subfamilies from phylogenetic trees. Mol. Biol. Evol. 2001, 18, 1435–1441. [Google Scholar] [CrossRef]
- Ahmed, N.; Saini, V.; Raghuvanshi, S.; Khurana, J.P.; Tyagi, A.K.; Tyagi, A.K.; Hasnain, S.E. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into mycobacterium evolution. PLoS ONE 2007, 2, e968. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Luing, L.A.; Palacios, Y.; Ruiz, A.; Téllez-Navarrete, N.A.; Chavez-Galan, L. Virulence factors of Mycobacterium tuberculosis as modulators of cell death mechanisms. Pathogens 2023, 12, 839. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; Farhana, A.; Glasgow, J.N.; Steyn, A.J. Iron sulfur cluster proteins and microbial regulation: Implications for understanding tuberculosis. Curr. Opin. Chem. Biol. 2012, 16, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Stelitano, G.; Cocorullo, M.; Mori, M.; Villa, S.; Meneghetti, F.; Chiarelli, L.R. Iron acquisition and metabolism as a promising target for antimicrobials (bottlenecks and opportunities): Where do we stand? Int. J. Mol. Sci. 2023, 24, 6181. [Google Scholar] [CrossRef]
- Abdalla, A.E.; Ejaz, H.; Mahjoob, M.O.; Alameen, A.A.M.; Abosalif, K.O.A.; Elamir, M.Y.M.; Mousa, M.A. Intelligent mechanisms of macrophage apoptosis subversion by mycobacterium. Pathogens 2020, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Farhana, A.; Pancsa, R.; Arora, S.K.; Srinivasan, A.; Tyagi, A.K.; Babu, M.M.; Ehtesham, N.Z.; Hasnain, S.E. Contrasting function of structured N-terminal and unstructured C-terminal segments of Mycobacterium tuberculosis PPE37 protein. mBio 2018, 9, e01712-17. [Google Scholar] [CrossRef]
- Ferry, J.G. Methanosarcina acetivorans: A model for mechanistic understanding of aceticlastic and reverse methanogenesis. Front. Microbiol. 2020, 11, 1806. [Google Scholar] [CrossRef]
- Almeida, L.; Dhillon-LaBrooy, A.; Sparwasser, T. The evolutionary tug-of-war of macrophage metabolism during bacterial infection. Trends Endocrinol. Metab. 2023, 35, 235–248. [Google Scholar] [CrossRef]
- Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021, 288, 2784–2835. [Google Scholar] [CrossRef]
- Ha, N.; Lee, E.-J. Manganese transporter proteins in Salmonella enterica serovar Typhimurium. J. Microbiol. 2023, 61, 289–296. [Google Scholar] [CrossRef]
- Kotey, S.K.; Tan, X.; Fleming, O.; Kasiraju, R.R.; Dagnell, A.L.; Van Pelt, K.N.; Rogers, J.; Hartson, S.D.; Thadathil, N.; Selvarani, R. Intracellular iron accumulation facilitates mycobacterial infection in old mouse macrophages. GeroScience 2024, 46, 2739–2754. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Rani, A.; Alam, A.; Zarin, S.; Pandey, S.; Singh, H.; Hasnain, S.E.; Ehtesham, N.Z. Macrophage: A cell with many faces and functions in tuberculosis. Front. Immunol. 2022, 13, 747799. [Google Scholar] [CrossRef] [PubMed]
- Ryndak, M.B.; Wang, S.; Smith, I.; Rodriguez, G.M. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J. Bacteriol. 2010, 192, 861–869. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhana, A.; Alsrhani, A.; Ejaz, H.; Alruwaili, M.; Alameen, A.A.M.; Manni, E.; Rasheed, Z.; Khan, Y.S. Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis. Medicina 2024, 60, 1891. https://doi.org/10.3390/medicina60111891
Farhana A, Alsrhani A, Ejaz H, Alruwaili M, Alameen AAM, Manni E, Rasheed Z, Khan YS. Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis. Medicina. 2024; 60(11):1891. https://doi.org/10.3390/medicina60111891
Chicago/Turabian StyleFarhana, Aisha, Abdullah Alsrhani, Hasan Ejaz, Muharib Alruwaili, Ayman A. M. Alameen, Emad Manni, Zafar Rasheed, and Yusuf Saleem Khan. 2024. "Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis" Medicina 60, no. 11: 1891. https://doi.org/10.3390/medicina60111891
APA StyleFarhana, A., Alsrhani, A., Ejaz, H., Alruwaili, M., Alameen, A. A. M., Manni, E., Rasheed, Z., & Khan, Y. S. (2024). Substrate-Induced Structural Dynamics and Evolutionary Linkage of Siderophore-Iron ABC Transporters of Mycobacterium tuberculosis. Medicina, 60(11), 1891. https://doi.org/10.3390/medicina60111891