DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subject
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Subjects Characteristics
3.2. The Distribution of DNMT1 rs2228611, rs2228612, DNMT3A rs2276598, and rs752208 in Patients with BC
3.3. Association and Logistic Regression Analysis
3.4. Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Chen, L.; Shen, Q.; Xu, Z.; Ding, X. Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) score for predicting outcomes of Breast cancer: A systematic review and meta-analysis. Pak. J. Med. Sci. 2023, 39, 1535. [Google Scholar] [CrossRef] [PubMed]
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef]
- Man, X.; Li, Q.; Wang, B.; Zhang, H.; Zhang, S.; Li, Z. DNMT3A and DNMT3B in Breast Tumorigenesis and Potential Therapy. Front. Cell Dev. Biol. 2022, 10, 916725. [Google Scholar] [CrossRef]
- Yu, Z.; Xiao, Q.; Zhao, L.; Ren, J.; Bai, X.; Sun, M.; Wu, H.; Liu, X.; Song, Z.; Yan, Y.; et al. DNA methyltransferase 1/3a overexpression in sporadic Breast cancer is associated with reduced expression of estrogen receptor-alpha/Breast cancer susceptibility gene 1 and poor prognosis. Mol. Carcinog. 2015, 54, 707–719. [Google Scholar] [CrossRef]
- Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Liu, T.; Qin, S.; Zhuang, Y.; Liu, D.; Lu, S.W.; Kalari, K.R.; et al. DNA methyltransferase expression in triple-negative Breast cancer predicts sensitivity to decitabine. J. Clin. Investig. 2018, 128, 2376–2388. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Zhou, H.; Fan, H.; Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017, 8, 110635. [Google Scholar] [CrossRef]
- Zhu, X.; Lv, L.; Wang, M.; Fan, C.; Lu, X.; Jin, M.; Li, S.; Wang, F. DNMT1 facilitates growth of Breast cancer by inducing MEG3 hyper-methylation. Cancer Cell Int. 2022, 22, 56. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Cui, W.; Yong, H.; Wang, D.; Zhao, T.; Wang, W.; Shi, M.; Zheng, J.; Bai, J. Tumour-associated macrophages enhance Breast cancer malignancy via inducing ZEB1-mediated DNMT1 transcriptional activation. Cell Biosci. 2022, 12, 176. [Google Scholar] [CrossRef]
- Al-Kharashi, L.A.; Tulbah, A.; Arafah, M.; Eldali, A.M.; Al-Tweigeri, T.; Aboussekhra, A. High DNMT1 Expression in Stromal Fibroblasts Promotes Angiogenesis and Unfavorable Outcome in Locally Advanced Breast cancer Patients. Front. Oncol. 2022, 12, 877219. [Google Scholar] [CrossRef] [PubMed]
- Al-Kharashi, L.A.; Al-Mohanna, F.H.; Tulbah, A.; Aboussekhra, A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget 2017, 9, 2329–2343. [Google Scholar] [CrossRef] [PubMed]
- Mirza, S.; Sharma, G.; Parshad, R.; Gupta, S.D.; Pandya, P.; Ralhan, R. Expression of DNA Methyltransferases in Breast cancer Patients and to Analyze the Effect of Natural Compounds on DNA Methyltransferases and Associated Proteins. J. Breast Cancer 2013, 16, 23. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.W.; Sun, L.P.; Yuan, Y. A Meta-Analysis of the Association between DNMT1 Polymorphisms and Cancer Risk. BioMed Res. Int. 2017, 2017, 3971259. [Google Scholar] [CrossRef] [PubMed]
- Kullmann, K.; Deryal, M.; Ong, M.F.; Schmidt, W.; Mahlknecht, U. DNMT1 genetic polymorphisms affect Breast cancer risk in the central European Caucasian population. Clin. Epigenet. 2013, 5, 7. [Google Scholar] [CrossRef]
- Puccini, A.; Loupakis, F.; Stintzing, S.; Cao, S.; Battaglin, F.; Togunaka, R.; Naseem, M.; Berger, M.D.; Soni, S.; Zhang, W.; et al. Impact of polymorphisms within genes involved in regulating DNA methylation in patients with metastatic colorectal cancer enrolled in three independent, randomised, open-label clinical trials: A meta-analysis from TRIBE, MAVERICC and FIRE-3. Eur. J. Cancer 2019, 111, 138–147. [Google Scholar] [CrossRef]
- Yuan, X.Q.; Zhang, D.Y.; Yan, H.; Yang, Y.L.; Zhu, K.W.; Chen, Y.H.; Li, X.; Yin, J.Y.; Li, X.L.; Zeng, H.; et al. Evaluation of DNMT3A genetic polymorphisms as outcome predictors in AML patients. Oncotarget 2016, 7, 60555–60574. [Google Scholar] [CrossRef]
- Vargas-Alarcón, G.; Avilés-Jiménez, F.; Mejía-Sánchez, F.; Pérez-Hernández, N.; Cardoso-Saldaña, G.; Posadas-Sánchez, R. Helicobacter pylori infection and DNMT3a polymorphism are associated with the presence of premature coronary artery disease and subclinical atherosclerosis. Data from the GEA Mexican Study. Microb. Pathog. 2022, 170, 105719. [Google Scholar] [CrossRef] [PubMed]
- Şeker Yıldız, K.; Durmuş, K.; Dönmez, G.; Arslan, S.; Altuntaş, E.E. Studying the Association between Sudden Hearing Loss and DNA N-Methyltransferase 1 (DNMT1) Genetic Polymorphism. J. Int. Adv. Otol. 2017, 13, 313–317. [Google Scholar] [CrossRef]
- Arakawa, Y.; Watanabe, M.; Inoue, N.; Sarumaru, M.; Hidaka, Y.; Iwatani, Y. Association of polymorphisms in DNMT1, DNMT3A, DNMT3B, MTHFR and MTRR genes with global DNA methylation levels and prognosis of autoimmune thyroid disease. Clin. Exp. Immunol. 2012, 170, 194–201. [Google Scholar] [CrossRef]
- Xiang, G.; Zhenkun, F.; Shuang, C.; Jie, Z.; Hua, Z.; Wei, J.; Da, P.; Dianjun, L. Association of DNMT1 gene polymorphisms in exons with sporadic infiltrating ductal breast carcinoma among Chinese Han women in the Heilongjiang Province. Clin. Breast Cancer 2010, 10, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Mostowska, A.; Sajdak, S.; Pawlik, P.; Lianeri, M.; Jagodzinski, P.P. DNMT1, DNMT3A and DNMT3B gene variants in relation to ovarian cancer risk in the Polish population. Mol. Biol. Rep. 2013, 40, 4893–4899. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.Y.; Yang, X.X.; Xu, W.W.; Yao, G.Y.; Pan, H.Z.; Li, M. Association of DNMT1 and DNMT3B polymorphisms with Breast cancer risk in Han Chinese women from South China. Genet. Mol. Res. 2012, 11, 4330–4341. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Chang, P.Y.; Butler, B.; Goldstein, B.Y.; Mu, L.; Cai, L.; You, N.C.; Baecker, A.; Yu, S.Z.; Heber, D.; et al. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS ONE 2014, 9, e109235. [Google Scholar] [CrossRef]
Reagent | Volume for 1 Sample (μL) |
---|---|
Distilled water (dH2O) | 16.91 |
10× DreamTaq Buffer | 2.5 |
Forward primer (20 pmol/μL) | 0.38 |
Reverse primer (20 pmol/μL) | 0.38 |
DreamTaq DNA polymerase (5 U/μL) | 0.13 |
dNTP mix (25 mM) | 0.2 |
MgCl2 (25 mM) | 2.5 |
Gene, SNP | Primers Sequences | Annealing Temperature (°C) | Cycles of PCR | Size of PCR Product |
---|---|---|---|---|
DNMT1 rs2228611 1 | 63 | 35 | 235 bp | |
forward primer: reverse primer: | 5′-GTACTGTAAGCACGGTCACCTG-3′ 5′-TATGTTGTCCAGGCTCGTCTC-3′ | |||
DNMT1 rs2228612 2 | 52 | 35 | 219 bp | |
forward primer: reverse primer: | 5′-AGAACCTGAAAAAGTAAATCCACCG-3′ 5′-CATGTGATTCACCCGCTTCAG-3′ | |||
DNMT3A rs2276598 3 | 57.6 | 40 | 246 bp | |
forward primer: reverse primer: | 5′-TAGCCAACCAACAGAGAGCA-3′, 5′- CATGATTGAATGGGCCCTGG-3′ | |||
DNMT3A rs752208 4 | 57.6 | 40 | 208 bp | |
forward primer: reverse primer: | 5′-TCTTGAGTCGGGTGTGTCAG-3′, 5′-CCCTTCCTACTACTGACGCC-3′ |
Reagent | Volume for 1 Sample (μL) |
---|---|
Distilled water (dH2O) | 2.75 |
10× Buffer Tango | 1.5 |
Restriction Enzymes (10 U/μL) 1 | 0.75 |
Gene | SNP | Genotype or Allele | Feature | OR | 95% CI | p |
---|---|---|---|---|---|---|
DNMT1 | rs2228612 | AG versus AA (ref.) | >50 years at the time of diagnosis | 2.593 | 1.009–6.665 | 0.048 |
AG versus AA (ref.) | Positive lymph node involvement | 0.301 | 0.098–0.926 | 0.036 | ||
rs2228611 | AG+GG versus AA | >50 years at the time of diagnosis | 0.455 | 0.234–0.886 | 0.021 | |
DNMT3A | rs752208 | CT versus CC (ref.) | G3–G4 group | 0.251 | 0.073–0.860 | 0.028 |
rs752208 | CT+TT versus CC | G3–G4 group | 0.293 | 0.098–0.869 | 0.027 |
Dependent | Gene, SNP | Covariates | Odds | Cl 95% | p (sig.) | Odds | Cl 95% | p (sig.) | Odds | Cl 95% | p (sig.) |
---|---|---|---|---|---|---|---|---|---|---|---|
Age at diagnosis | DNMT1 rs2228612 | AG genotype vs. AA genotype | 2.962 | 1.110–7.906 | 0.030 | 2.431 | 0.900–6.567 | 0.080 | |||
ER+ vs. ER− | 2.535 | 1.110–7.906 | 0.032 | 2.987 | 1.205–7.407 | 0.0018 | |||||
PR+ vs. PR− | 1.245 | 0.563–2.751 | 0.588 | 0.908 | 0.379–2.177 | 0.829 | |||||
HER2+ vs. HER2− | 1.154 | 0.544–2.452 | 0.709 | 1.097 | 0.495–2.431 | 0.820 | |||||
T3–T4 vs. T1–T2 | 1.426 | 0.721–2.821 | 0.308 | ||||||||
N1 vs. N0 | 0.370 | 0.187–0.731 | 0.004 | ||||||||
G3–G4 vs. G1–G2 | 0.370 | 0.228–1.243 | 0.145 | ||||||||
DNMT1 rs2228611 | AG+GG versus AA | 0.454 | 0.229–0.900 | 0.024 | 0.413 | 0.201–0.848 | 0.016 | ||||
ER+ vs. ER− | 2.450 | 1.049–5.722 | 0.038 | 3.044 | 1.227–7.552 | 0.016 | |||||
PR+ vs. PR− | 1.196 | 0.541–2.644 | 0.659 | 0.833 | 0.344–2.016 | 0.686 | |||||
HER2+ vs. HER2− | 1.068 | 0.500–2.284 | 0.865 | 1.039 | 0.466–2.317 | 0.926 | |||||
T3–T4 vs. T1–T2 | 1.337 | 0.674–2.652 | 0.406 | ||||||||
N1 vs. N0 | 0.329 | 0.166–0.650 | 0.001 | ||||||||
G3–G4 vs. G1–G2 | 0.521 | 0.221–1.230 | 0.137 | ||||||||
Lymph node involvement | DNMT1 rs2228612 | AG genotype vs. AA genotype | 0.351 | 0.112–1.097 | 0.072 | 0.365 | 0.116–1.153 | 0.086 | 0.357 | 0.108–1.180 | 0.091 |
Age * | 0.449 | 0.249–0.809 | 0.008 | 0.399 | 0.214–0.746 | 0.004 | 0.375 | 0.191–0.735 | 0.004 | ||
ER+ vs. ER− | 3.187 | 1.274–7.973 | 0.013 | 3.036 | 1.153–7.992 | 0.025 | |||||
PR+ vs. PR− | 0.414 | 0.177–0.965 | 0.041 | 0.637 | 0.254–1.599 | 0.337 | |||||
HER2+ vs. HER2− | 1.465 | 0.677–3.170 | 0.333 | 1.648 | 0.711–3.820 | 0.244 | |||||
T3–T4 vs. T1–T2 | 4.255 | 2.191–8.261 | 0.000 | ||||||||
G3–G4 vs. G1–G2 | 1.765 | 0.737–4.225 | 0.202 | ||||||||
G group | DNMT3A rs752208 | CT genotype vs. CC genotype | 0.248 | 0.071–0.860 | 0.028 | 0.287 | 0.074–1.107 | 0.070 | 0.274 | 0.069 | 0.066 |
Age * | 0.371 | 0.179–0.769 | 0.008 | 0.536 | 0.234–1.227 | 0.140 | 0.665 | 0.273–1.617 | 0.368 | ||
ER+ vs. ER− | 0.661 | 0.235–1.857 | 0.432 | 0.451 | 0.152–1.338 | 0.151 | |||||
PR+ vs. PR− | 0.116 | 0.039–0.344 | 0.000 | 0.140 | 0.047–0.418 | 0.000 | |||||
HER2+ vs. HER2− | 0.212 | 0.069–0.654 | 0.007 | 0.167 | 0.052–0.542 | 0.003 | |||||
T3–T4 vs. T1–T2 | 1.733 | 0.725–4.145 | 0.216 | ||||||||
N1 vs. N0 | 2.081 | 0.834–5.192 | 0.116 | ||||||||
DNMT3A rs752208 | CT+TT versus CC | 0.290 | 0.096–0.871 | 0.027 | 0.283 | 0.085–0.949 | 0.041 | 0.245 | 0.070–0.863 | 0.029 | |
Age * | 0.371 | 0.179–0.769 | 0.008 | 0.536 | 0.234–1.227 | 0.140 | 0.664 | 0.273–1.615 | 0.367 | ||
ER+ vs. ER− | 0.662 | 0.236–1.856 | 0.433 | 0.457 | 0.154–1.355 | 0.158 | |||||
PR+ vs. PR− | 0.117 | 0.039–0.345 | 0.000 | 0.141 | 0.047–0.422 | 0.000 | |||||
HER2+ vs. HER2– | 0.212 | 0.069–0.654 | 0.007 | 0.169 | 0.052–0.547 | 0.003 | |||||
T3–T4 vs. T1–T2 | 1.711 | 0.719–4.075 | 0.225 | ||||||||
N1 vs. N0 | 2.062 | 0.829–5.124 | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaušylaitė, M.M.; Jurevičė, J.; Korobeinikova, E.; Gudaitienė, J.; Juozaitytė, E.; Ugenskienė, R. DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis. Medicina 2024, 60, 1902. https://doi.org/10.3390/medicina60111902
Kaušylaitė MM, Jurevičė J, Korobeinikova E, Gudaitienė J, Juozaitytė E, Ugenskienė R. DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis. Medicina. 2024; 60(11):1902. https://doi.org/10.3390/medicina60111902
Chicago/Turabian StyleKaušylaitė, Meda Marija, Justina Jurevičė, Erika Korobeinikova, Jurgita Gudaitienė, Elona Juozaitytė, and Rasa Ugenskienė. 2024. "DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis" Medicina 60, no. 11: 1902. https://doi.org/10.3390/medicina60111902
APA StyleKaušylaitė, M. M., Jurevičė, J., Korobeinikova, E., Gudaitienė, J., Juozaitytė, E., & Ugenskienė, R. (2024). DNMT1 rs2228611, rs2228612 and DNMT3A rs2276598, rs752208 Polymorphisms and Their Association with Breast Cancer Phenotype and Prognosis. Medicina, 60(11), 1902. https://doi.org/10.3390/medicina60111902