Continuous Risk Assessment of Late and Term Preeclampsia Throughout Pregnancy: A Retrospective Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Procedures
2.3. Clinical Definitions and Outcomes
2.4. Statistical Analysis
2.4.1. Descriptive Statistics
2.4.2. Model Development
2.5. Model Validation
2.6. Software
3. Results
3.1. Study Population
3.2. Joint Model Development
3.3. Predictive Accuracy in the Validation Dataset
3.4. Evolution of AUROC Troughout Pregnancy
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Studies
4.3. Strengths and Limitations
4.4. Clinical and Research Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Mean | SD | 95% Credible Interval | |
---|---|---|---|
Survival Outcome | |||
Maternal Age | 1.154 | 1.254 | −1.265 to 3.62 |
Conception | |||
Spontaneous | Reference | ||
Assisted | 0.955 | 0.339 | 0.283 to 1.619 |
Diabetes mellitus | 1.766 | 1.268 | −1.222 to 3.753 |
Chronic hypertension | 2.825 | 0.907 | 0.758 to 4.35 |
Previous preeclampsia | |||
Multiparous—no preeclampsia | Reference | ||
Nulliparous | −0.090 | 0.351 | −0.76 to 0.617 |
Multiparous—preeclampsia | 1.788 | 0.722 | 0.253 to 3.095 |
Placental growth factor (UI/mL) | −0.910 | 0.33 | −1.562 to −0.264 |
Body Mass Index (Kg/m2) | 2.809 | 0.598 | 1.628 to 3.959 |
Aspirin intake | 0.583 | 0.346 | −0.092 to 1.256 |
Interaction chronic hypertension and aspirin | −2.500 | 1.073 | −4.444 to −0.197 |
Mean arterial pressure (mmHg) (area) | 0.081 | 0.041 | 0.003 to 0.165 |
Uterine Artery Pulsatility Index (value) | 2.495 | 0.987 | 0.578 to 4.436 |
Longitudinal process for Mean arterial pressure | |||
(Intercept) | 3.798 | 0.218 | 3.356 to 4.228 |
Gestational age | −0.024 | 0.001 | −0.027 to −0.022 |
sigma | 7.992 | 0.063 | 7.871 to 8.117 |
Longitudinal process for Uterine Artery Pulsatility Index | |||
(Intercept) | 0.837 | 0.008 | 0.822 to 0.851 |
Gestational age | −0.005 | 0.000 | −0.006 to −0.005 |
sigma | 0.227 | 0.002 | 0.223 to 0.231 |
References
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.-B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global Causes of Maternal Death: A WHO Systematic Analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on Pre-Eclampsia: A Pragmatic Guide for First-Trimester Screening and Prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Witlin, A.G.; Saade, G.R.; Mattar, F.; Sibai, B.M. Predictors of Neonatal Outcome in Women with Severe Preeclampsia or Eclampsia between 24 and 33 Weeks’ Gestation. Am. J. Obstet. Gynecol. 2000, 182, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G. Clinical Risk Factors for Pre-Eclampsia Determined in Early Pregnancy: Systematic Review and Meta-Analysis of Large Cohort Studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, D.; Rolle, V.; de Paco Matallana, K.; Valiño, N.; Revello, R.; Adiego, B.; Mendoza, M.; Santacruz, B.; del Mar Gil, M. Risk Factors for Preeclampsia: Results from a Cohort of over 5000 Pregnancies in Spain. Matern.-Fetal Med. 2021, 3, 100–106. [Google Scholar] [CrossRef]
- Martin-Alonso, R.; Prieto, P.; Fernández-Buhigas, I.; German-Fernandez, C.; Aramburu, C.; Piqueras, V.; Cuenca-Gomez, D.; Ferrer, E.; Rolle, V.; Santacruz, B.; et al. Association between Perinatal Outcomes and Maternal Risk Factors: A Cohort Study. Medicina 2024, 60, 1071. [Google Scholar] [CrossRef]
- Tan, M.Y.; Syngelaki, A.; Poon, L.C.; Rolnik, D.L.; O’Gorman, N.; Delgado, J.L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; et al. Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 11–13 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2018, 52, 186–195. [Google Scholar] [CrossRef]
- Crovetto, F.; Figueras, F.; Triunfo, S.; Crispi, F.; Rodriguez-Sureda, V.; Dominguez, C.; Llurba, E.; Gratacós, E. First Trimester Screening for Early and Late Preeclampsia Based on Maternal Characteristics, Biophysical Parameters, and Angiogenic Factors. Prenat. Diagn. 2015, 35, 183–191. [Google Scholar] [CrossRef]
- Serra, B.; Mendoza, M.; Scazzocchio, E.; Meler, E.; Nolla, M.; Sabrià, E.; Rodríguez, I.; Carreras, E. A New Model for Screening for Early-Onset Preeclampsia. Am. J. Obstet. Gynecol. 2020, 222, 608.e1–608.e18. [Google Scholar] [CrossRef]
- Magee, L.A.; Nicolaides, K.H.; Von Dadelszen, P. Preeclampsia. Obstet. Gynecol. Surv. 2022, 77, 641–643. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Syngelaki, A.; Akolekar, R.; Wright, A.; Poon, L.C.; Nicolaides, K.H. Competing Risks Model in Screening for Preeclampsia by Maternal Factors and Biomarkers at 11–13 Weeks Gestation. Am. J. Obstet. Gynecol. 2016, 214, 103.e1–103.e12. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-Gómez, D.; De Paco Matallana, C.; Rolle, V.; Valiño, N.; Revello, R.; Adiego, B.; Mendoza, M.; Molina, F.S.; Carrillo, M.P.; Delgado, J.L.; et al. Performance of First-trimester Combined Screening for Preterm Pre-eclampsia: Findings from Cohort of 10 110 Pregnancies in Spain. Ultrasound Obstet. Gynecol. 2023, 62, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Gallo, D.M.; Wright, D.; Casanova, C.; Campanero, M.; Nicolaides, K.H. Competing Risks Model in Screening for Preeclampsia by Maternal Factors and Biomarkers at 19–24 Weeks’ Gestation. Am. J. Obstet. Gynecol. 2016, 214, 619.e1–619.e17. [Google Scholar] [CrossRef] [PubMed]
- Tarca, A.L.; Taran, A.; Romero, R.; Jung, E.; Paredes, C.; Bhatti, G.; Ghita, C.; Chaiworapongsa, T.; Than, N.G.; Hsu, C.-D. Prediction of Preeclampsia throughout Gestation with Maternal Characteristics and Biophysical and Biochemical Markers: A Longitudinal Study. Am. J. Obstet. Gynecol. 2022, 226, 126.e1–126.e22. [Google Scholar] [CrossRef] [PubMed]
- Andrietti, S.; Silva, M.; Wright, A.; Wright, D.; Nicolaides, K.H. Competing-Risks Model in Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 35–37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2016, 48, 72–79. [Google Scholar] [CrossRef]
- Panaitescu, A.; Ciobanu, A.; Syngelaki, A.; Wright, A.; Wright, D.; Nicolaides, K.H. Screening for Pre-Eclampsia at 35–37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2018, 52, 501–506. [Google Scholar] [CrossRef]
- Ciobanu, A.; Wright, A.; Panaitescu, A.; Syngelaki, A.; Wright, D.; Nicolaides, K.H. Prediction of Imminent Preeclampsia at 35–37 Weeks Gestation. Am. J. Obstet. Gynecol. 2019, 220, 584.e1–584.e11. [Google Scholar] [CrossRef]
- Döbert, M.; Wright, A.; Varouxaki, A.N.; Mu, A.C.; Syngelaki, A.; Rehal, A.; Delgado, J.L.; Akolekar, R.; Muscettola, G.; Janga, D.; et al. STATIN Trial: Predictive Performance of Competing-Risks Model in Screening for Pre-Eclampsia at 35–37 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2022, 59, 69–75. [Google Scholar] [CrossRef]
- Robinson, H.P.; Fleming, J.E. A Critical Evaluation of Sonar “Crown-Rump Length” Measurements. Br. J. Obstet. Gynaecol. 1975, 82, 702–710. [Google Scholar] [CrossRef]
- Hypertension in Pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar] [CrossRef]
- Cuenca-Gómez, D.; De Paco Matallana, C.; Rolle, V.; Mendoza, M.; Valiño, N.; Revello, R.; Adiego, B.; Casanova, M.C.; Molina, F.S.; Delgado, J.L.; et al. Comparison of Different Methods of First-Trimester Screening for Preterm Pre-Eclampsia: Cohort Study. Ultrasound Obstet. Gynecol. 2024, 64, 57–64. [Google Scholar] [CrossRef]
- Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data, 1st ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-36357-6. [Google Scholar]
- Rizopoulos, D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-7287-1. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Rizopoulos, D.; Papageorgiou, G.; Afonso, P.M. JMbayes2: Extended Joint Models for Longitudinal and Time-to-Event Data 2023. Available online: https://cran.r-project.org/web/packages/JMbayes2/JMbayes2.pdf (accessed on 10 November 2024).
- Therneau, T.M.; Lumley, T.; Elizabeth, A.; Cynthia, C. Survival: Survival Analysis 2024. Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 10 November 2024).
- Rich, B. Table1: Tables of Descriptive Statistics in HTML 2023. Available online: https://benjaminrich.r-universe.dev/table1 (accessed on 10 November 2024).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation 2023. Available online: https://dplyr.tidyverse.org/ (accessed on 10 November 2024).
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- O’Gorman, N.; Wright, D.; Poon, L.C.; Rolnik, D.L.; Syngelaki, A.; Wright, A.; Akolekar, R.; Cicero, S.; Janga, D.; Jani, J.; et al. Accuracy of Competing-Risks Model in Screening for Pre-Eclampsia by Maternal Factors and Biomarkers at 11–13 Weeks’ Gestation. Ultrasound Obstet. Gynecol. 2017, 49, 751–755. [Google Scholar] [CrossRef]
- Jhee, J.H.; Lee, S.; Park, Y.; Lee, S.E.; Kim, Y.A.; Kang, S.-W.; Kwon, J.-Y.; Park, J.T. Prediction Model Development of Late-Onset Preeclampsia Using Machine Learning-Based Methods. PLoS ONE 2019, 14, e0221202. [Google Scholar] [CrossRef]
- Khalil, A.; Maiz, N.; Garcia-Mandujano, R.; Penco, J.M.; Nicolaides, K.H. Longitudinal Changes in Maternal Serum Placental Growth Factor and Soluble Fms-like Tyrosine Kinase-1 in Women at Increased Risk of Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2016, 47, 324–331. [Google Scholar] [CrossRef]
- Andrietti, S.; Carlucci, S.; Wright, A.; Wright, D.; Nicolaides, K.H. Repeat Measurements of Uterine Artery Pulsatility Index, Mean Arterial Pressure and Serum Placental Growth Factor at 12, 22 and 32 Weeks in Prediction of Pre-Eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 221–227. [Google Scholar] [CrossRef]
- Ferrazzi, E.; Rigano, S.; Padoan, A.; Boito, S.; Pennati, G.; Galan, H.L. Uterine Artery Blood Flow Volume in Pregnant Women with an Abnormal Pulsatility Index of the Uterine Arteries Delivering Normal or Intrauterine Growth Restricted Newborns. Placenta 2011, 32, 487–492. [Google Scholar] [CrossRef]
- La Verde, M.; Torella, M.; Ronsini, C.; Riemma, G.; Cobellis, L.; Marrapodi, M.M.; Capristo, C.; Rapisarda, A.M.C.; Morlando, M.; De Franciscis, P. The Association between Fetal Doppler and Uterine Artery Blood Volume Flow in Term Pregnancies: A Pilot Study. Ultraschall Med. 2024, 45, 184–189. [Google Scholar] [CrossRef]
Maternal and Pregnancy Characteristics | Training Set n = 4056 | Validation Set n = 944 |
---|---|---|
Maternal age (years) | 31.2 (5.05) | 32.7 (5.13) * |
Ethnicity | * | |
White | 4050 (99.9%) | 933 (98.8%) |
Other | 6 (0.1%) | 11 (1.2%) |
Conception | * | |
Spontaneous | 3291 (81.1%) | 854 (90.5%) |
Assisted | 765 (18.9%) | 90 (9.5%) |
Diabetes mellitus | 15 (0.4%) | 4 (0.4%) |
Chronic hypertension | 69 (1.7%) | 4 (0.4%) * |
Previous preeclampsia | ||
Nulliparous | 2916 (71.9%) | 437 (46.3%) * |
Multiparous—no previous preeclampsia | 1109 (27.3%) | 484 (51.3%) * |
Multiparous—previous preeclampsia | 31 (0.8%) | 23 (2.4%) * |
Aspirin intake | 781 (19.3%) | 46 (4.9%) * |
Body Mass Index (Kg/m2) | 22.8 (4.42) | 25.5 (5.05) * |
Gestational age at delivery (days) | 274 (9.98) | 277 (9.04) * |
Developed preeclampsia | 59 (1.5%) | 23 (2.4%) * |
Maternal and Pregnancy Characteristics | Adjusted Hazard Ratio (95% Credible Interval) |
---|---|
Maternal Age (years) | 3.17 (0.28 to 37.32) |
Conception | |
Spontaneous | Reference |
Assisted | 2.60 (1.33 to 5.05) |
Diabetes mellitus | 5.85 (0.29 to 42.65) |
Chronic hypertension | 16.87 (2.13 to 77.44) |
Previous preeclampsia | |
Multiparous—no previous preeclampsia | Reference |
Nulliparous | 0.92 (0.47 to 1.85) |
Multiparous—previous preeclampsia | 5.98 (1.29 to 22.09) |
Placental growth factor (UI/mL) | 0.40 (0.21 to 0.77) |
Body Mass Index (Kg/m2) | 16.6 (5.09 to 52.39) |
Aspirin intake | 1.79 (0.91 to 3.51) |
Interaction chronic hypertension and aspirin | 0.08 (0.01 to 0.82) |
Mean arterial pressure (mmHg) | 1.08 (1.00 to 1.19) |
Uterine Artery Pulsatility Index | 14.08 (2.04 to 103.86) |
All Preeclampsia | Term Preeclampsia | |||
---|---|---|---|---|
Detection Rate (95% CI) | AUROC (95% CI) | Detection Rate (95% CI) | AUROC (95% CI) | |
10% SPR | 56.5 (34.5 to 76.8) | 0.84 (0.73 to 0.94) | 55.0 (31.5 to 76.9) | 0.80 (0.69 to 0.91) |
15% SPR | 69.6 (471 to 86.8) | 65.0 (40.8 to 84.6) | ||
20% SPR | 73.9 (51.6 to 89.8) | 70.0 (45.7 to 88.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolle, V.; Chaveeva, P.; Diaz-Navarro, A.; Fernández-Buhigas, I.; Cuenca-Gómez, D.; Tilkova, T.; Santacruz, B.; Pérez, T.; Gil, M.M. Continuous Risk Assessment of Late and Term Preeclampsia Throughout Pregnancy: A Retrospective Cohort Study. Medicina 2024, 60, 1909. https://doi.org/10.3390/medicina60121909
Rolle V, Chaveeva P, Diaz-Navarro A, Fernández-Buhigas I, Cuenca-Gómez D, Tilkova T, Santacruz B, Pérez T, Gil MM. Continuous Risk Assessment of Late and Term Preeclampsia Throughout Pregnancy: A Retrospective Cohort Study. Medicina. 2024; 60(12):1909. https://doi.org/10.3390/medicina60121909
Chicago/Turabian StyleRolle, Valeria, Petya Chaveeva, Ander Diaz-Navarro, Irene Fernández-Buhigas, Diana Cuenca-Gómez, Tanya Tilkova, Belén Santacruz, Teresa Pérez, and Maria M. Gil. 2024. "Continuous Risk Assessment of Late and Term Preeclampsia Throughout Pregnancy: A Retrospective Cohort Study" Medicina 60, no. 12: 1909. https://doi.org/10.3390/medicina60121909
APA StyleRolle, V., Chaveeva, P., Diaz-Navarro, A., Fernández-Buhigas, I., Cuenca-Gómez, D., Tilkova, T., Santacruz, B., Pérez, T., & Gil, M. M. (2024). Continuous Risk Assessment of Late and Term Preeclampsia Throughout Pregnancy: A Retrospective Cohort Study. Medicina, 60(12), 1909. https://doi.org/10.3390/medicina60121909