An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Instruments
2.3. DVB In Silico ADME Profile
2.4. UPLC-MS/MS Analytical Features
2.5. RVB and ENF Working Dilutions
2.6. Establishing of RVB Calibration Standards
2.7. The Recovery of RVB and ENF from the HLMs
2.8. Validation Features of the Established UPLC-MS/MS Approach
2.8.1. Specificity
2.8.2. Linearity and Sensitivity
2.8.3. Accuracy and Precision
2.8.4. Matrix Effect and Extraction Recovery
2.8.5. Stability
2.9. Evaluation of the In Vitro Metabolic Stability of RVB
3. Results and Discussions
3.1. In Silico ADME Profile
3.2. UPLC-MS/MS Method
3.3. Validation Features of the Established UPLC-MS/MS System
3.3.1. Specificity
3.3.2. Sensitivity and Linearity
3.3.3. Precision and Accuracy Validation Features
3.3.4. Matrix Effect and Extraction Recovery
3.3.5. Stability
3.4. Assessment of the UPLC-MS/MS Methodology Greenness Employing In Silico AGREE Software
3.5. In Vitro Metabolic Stability Study of RVB with HLMs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattiuzzi, C.; Lippi, G. Current Cancer Epidemiology. J. Epidemiol. Glob. Health 2019, 9, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Nehra, B.; Kumar, M.; Singh, S.; Chawla, P.A. Olutasidenib: A ray of hope in the treatment of acute myeloid leukaemia. Health Sci. Rev. 2023, 7, 100100. [Google Scholar] [CrossRef]
- Lin, X.; Wang, J.; Huang, X.; Wang, H.; Li, F.; Ye, W.; Huang, S.; Pan, J.; Ling, Q.; Wei, W. Global, regional, and national burdens of leukemia from 1990 to 2017: A systematic analysis of the global burden of disease 2017 study. Aging 2021, 13, 10468. [Google Scholar] [CrossRef]
- Bispo, J.A.B.; Pinheiro, P.S.; Kobetz, E.K. Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb. Perspect. Med. 2020, 10, a034819. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Hu, C.; Lu, P.; Que, Y.; Zhu, X.; Li, D. Trends in disease burden of chronic myeloid leukemia at the global, regional, and national levels: A population-based epidemiologic study. Exp. Hematol. Oncol. 2020, 9, 29. [Google Scholar] [CrossRef]
- Isidori, A.; Ferrara, F. The changing landscape for patients with relapsed/refractory acute myeloid leukaemia. Curr. Opin. Oncol. 2021, 33, 635–641. [Google Scholar] [CrossRef]
- Bosch, F.; Dalla-Favera, R. Chronic lymphocytic leukaemia: From genetics to treatment. Nat. Rev. Clin. Oncol. 2019, 16, 684–701. [Google Scholar] [CrossRef]
- Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef]
- Min, H.-Y.; Lee, H.-Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med. 2017, 1, 69–75. [Google Scholar] [CrossRef]
- Barinaga, M. From Bench Top to Bedside. Science 1997, 278, 1036–1039. [Google Scholar] [CrossRef]
- Conroy, R. FDA Grants Breakthrough Therapy Designation to Revumenib for Relapsed/Refractory KMT2Ar Acute Leukemia. Cancer Network, 5 December 2022. [Google Scholar]
- Rim, M.H.; Karas, B.L.; Barada, F.; Dean, C.; Levitsky, A.M. Recent and anticipated novel drug approvals (Q2 2024 through Q1 2025). Am. J. Health-Syst. Pharm. 2024, 81, 733–738. [Google Scholar] [CrossRef]
- Liu, M.; Shi, L.; Guo, J.; Gu, Y.; Li, S.; Yi, L.; Ren, D.; Li, B. Determination of organic acids for predicting sourness intensity of tea beverage by liquid chromatography–tandem mass spectrometry and chemometrics methods. J. Sep. Sci. 2024, 47, 2300628. [Google Scholar] [CrossRef]
- Mahajan, B.; Miniyar, P.; Chodankar, R.; Mahajan, A. Liquid chromatography and liquid chromatography coupled with tandem mass spectrometry studies for the identification and characterization of degradation products of lobeglitazone. Sep. Sci. Plus 2024, 7, e202300223. [Google Scholar] [CrossRef]
- Bosco Ackerman, B.; Martín, S.; Espinosa, M.; Chocrón, M.; Babay, P.A. Development and validation of a liquid chromatography-mass spectrometry method for quantification of octadecylamine in the secondary circuit of a nuclear power plant in the presence of other amines. Sep. Sci. Plus 2024, 7, e202400099. [Google Scholar] [CrossRef]
- Mudrova, B.; Hrabakova, K.; Kozlik, P.; Hobzova, R.; Sirc, J.; Bosakova, Z. A sensitive bioanalytical ultra-high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantitation of lactone and carboxylate forms of topotecan in plasma and vitreous. J. Sep. Sci. 2024, 47, 2400181. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Kadi, A.A.; Attwa, M.W.; AlRabiah, H. Validated LC-MS/MS assay for quantification of the newly approved tyrosine kinase inhibitor, dacomitinib, and application to investigating its metabolic stability. PLoS ONE 2019, 14, e0214598. [Google Scholar] [CrossRef] [PubMed]
- Alrabiah, H.; Kadi, A.A.; Attwa, M.W.; Abdelhameed, A.S. A simple liquid chromatography-tandem mass spectrometry method to accurately determine the novel third-generation EGFR-TKI naquotinib with its applicability to metabolic stability assessment. RSC Adv. 2019, 9, 4862–4869. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Liu, X.; Dong, Y.; Yang, J.; Zhang, J.; He, S.; Yang, F.; Wang, Z.; Dong, Y. A Green HPLC Method for Determination of Nine Sulfonamides in Milk and Beef, and Its Greenness Assessment with Analytical Eco-Scale and Greenness Profile. J. AOAC Int. 2020, 103, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Goldner, D.M.; do Nascimento, F.H.; Masini, J.C. A Green Liquid Chromatography Method for Simultaneous Quantification of Caffeine and its Three Major Metabolites in Urine, Drinks, and Herbal Products. Sep. Sci. Plus 2024, 7, e202400098. [Google Scholar] [CrossRef]
- Marothu Vamsi, K.; Kantamaneni, P.; Gorrepati, M. In vitro Metabolic Stability of Drugs and Applications of LC-MS in Metabolite Profiling. In Drug Metabolism; Katherine, D., Ed.; IntechOpen: Rijeka, Croatia, 2021; Chapter 5. [Google Scholar] [CrossRef]
- Houston, J.B. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 1994, 47, 1469–1479. [Google Scholar] [CrossRef]
- Obach, R.S.; Baxter, J.G.; Liston, T.E.; Silber, B.M.; Jones, B.C.; MacIntyre, F.; Rance, D.J.; Wastall, P. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar]
- Kontostathi, G.; Makridakis, M.; Bitsika, V.; Tsolakos, N.; Vlahou, A.; Zoidakis, J. Development and validation of multiple reaction monitoring (MRM) assays for clinical applications. Proteom. Biomark. Discov. Methods Protoc. 2019, 1959, 205–223. [Google Scholar]
- Busby, W.F., Jr.; Ackermann, J.M.; Crespi, C.L. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450. Drug Metab. Dispos. 1999, 27, 246–249. [Google Scholar]
- Störmer, E.; Roots, I.; Brockmöller, J. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity. Br. J. Clin. Pharmacol. 2000, 50, 553–561. [Google Scholar] [CrossRef]
- Fouin-Fortunet, H.; Tinel, M.; Descatoire, V.; Letteron, P.; Larrey, D.; Geneve, J.; Pessayre, D. Inactivation of cytochrome P-450 by the drug methoxsalen. J. Pharmacol. Exp. Ther. 1986, 236, 237–247. [Google Scholar]
- Magdy, G.; Al-enna, A.A.; Belal, F.; El-Domany, R.A.; Abdel-Megied, A.M. Quality-by-design optimized RP-HPLC approach for the therapeutic drug monitoring of glibenclamide and fluoxetine in human plasma. Microchem. J. 2024, 201, 110548. [Google Scholar] [CrossRef]
- Smith, G. European Medicines Agency guideline on bioanalytical method validation: What more is there to say? Bioanalysis 2012, 4, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, B.; Xiao, T.; Wang, Y.; Zhao, Z.; Xie, J.A.; Li, W.; Li, R.; Cui, J. Development and validation of a simultaneous quantitative analytical method for two Alternaria toxins and their metabolites in plasma and urine using ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Sep. Sci. 2024, 47, 2400223. [Google Scholar] [CrossRef]
- Attwa, M.W.; Abdelhameed, A.S.; Kadi, A.A. An Ultra-Fast Green UHPLC-MS/MS Method for Assessing the In Vitro Metabolic Stability of Dovitinib: In Silico Study for Absorption, Distribution, Metabolism, Excretion, Metabolic Lability, and DEREK Alerts. Medicina 2024, 60, 1626. [Google Scholar] [CrossRef]
- Alsubi, T.A.; Attwa, M.W.; Bakheit, A.H.; Darwish, H.W.; Abuelizz, H.A.; Kadi, A.A. In silico and in vitro metabolism of ribociclib: A mass spectrometric approach to bioactivation pathway elucidation and metabolite profiling. RSC Adv. 2020, 10, 22668–22683. [Google Scholar] [CrossRef]
- Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M.C. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Shinde, C.P.; Chakraborty, B.S. Influence of ionization source design on matrix effects during LC-ESI-MS/MS analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 893–894, 193–200. [Google Scholar] [CrossRef]
- AlRabiah, H.; Kadi, A.A.; Attwa, M.W.; Mostafa, G.A.E. Development and validation of an HPLC-MS/MS method for the determination of filgotinib, a selective Janus kinase 1 inhibitor: Application to a metabolic stability study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1154, 122195. [Google Scholar] [CrossRef]
- McNaney, C.A.; Drexler, D.M.; Hnatyshyn, S.Y.; Zvyaga, T.A.; Knipe, J.O.; Belcastro, J.V.; Sanders, M. An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev. Technol. 2008, 6, 121–129. [Google Scholar] [CrossRef]
- Słoczyńska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Żelaszczyk, D.; Popiół, J.; Pękala, E. Metabolic stability and its role in the discovery of new chemical entities. Acta Pharm. 2019, 69, 345–361. [Google Scholar] [CrossRef]
- Meesters, R.; Voswinkel, S. Bioanalytical method development and validation: From the USFDA 2001 to the USFDA 2018 guidance for industry. J. Appl. Bioanal. 2018, 4, 67–73. [Google Scholar] [CrossRef]
- Leahy, D.E. Integrating invitro ADMET data through generic physiologically based pharmacokinetic models. Expert Opin. Drug Metab. Toxicol. 2006, 2, 619–628. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Features | Water Solubility | ||
---|---|---|---|
Formula | C32H47FN6O4S | Solubility | 18.15 × 10−4 mg/mL; 1.29 × 10−6 mol/L |
Heavy atoms | 44 | Log S (ESOL) | −5.89 |
Molecular weight | 630.82 g/mol | Class | Moderately soluble |
Arom. heavy atoms | 12 | Solubility | 2.05× 10−4 mg/mL; 3.25× 10−7 mol/L |
Rotatable bonds | 12 | Log S (Ali) | −6.49 |
Fraction Csp3 | 0.66 | Class | Poorly soluble |
Solubility | 1.19 × 10−5 mg/mL; 1.88 × 10−8 mol/L | ||
H-bond donors | 1 | Log S (SILICOS-IT) | −7.72 |
H-bond acceptors | 9 | Class | Poorly soluble |
TPSA | 116.35 Å2 | Medicinal Chemistry | |
Molar refractivity | 177.24 | PAINS | 0 alert |
Lipophilicity | Leadlikeness | No; 3 violations: MW > 350, Rotors > 7, XLOGP3 > 3.5 | |
Log Po/w (XLOGP3) | 4.33 | Brenk | 0 alert |
Log Po/w (iLOGP) | 4.75 | Synthetic accessibility | 5.97 |
Log Po/w (MLOGP) | 2.63 | Pharmacokinetics | |
Log Po/w (WLOGP) | 5.42 | GI absorption | Low |
Log Po/w (SILICOS-IT) | 3.32 | Permeant to BBB | No |
Consensus log Po/w | 4.09 | P-gp substrate | Yes |
Drug likeness | Inhibiton of CYP2D6 | No | |
Lipinski | Yes; 1 violation: MW > 500 | Inhibiton of CYP1A2 | No |
Ghose | No; 3 violations: MW > 480, MR > 130, #atoms > 70 | Inhibiton of CYP3A4 | Yes |
Egan | Yes | Inhibiton of CYP2C9 | No |
Muegge | No; 1 violation: MW > 600 | Inhibiton of CYP2C19 | No |
Veber | No; 1 violation: Rotors > 10 | Skin permeation (Log Kp) | −7.07 cm/s |
Bioavailability score | 0.55 |
Analytes | Mobile Phase System | Extraction Recovery Yield | Type of Stationary System | |||
---|---|---|---|---|---|---|
Methanol | ACN | Solid Phase Extraction | Protein Precipitation Using ACN | C18 Column | C8 Column | |
RVB | 0.79 min | 0.36 min | Low (81.83%) | High (103.53 ± 4.46%) | 0.84 min | 0.36 min |
Tailed and broad | Good peak | Not precise | Precise (RSD < 4.31%) | Tailing of peaks | Good shape | |
ENF | 1.12 min | 0.66 min | Good (89.89%) | High (101.61 ± 3.23% | 1.86 min | 0.66 min |
Superimposed | Optimum peak shape | Not accurate | Accurate (RSD < 3.18%) | Tailing of peaks | Good shape |
RVB (ng/mL) | Average | SD | Precision (%RSD) | Accuracy (%E) | % Recovery |
---|---|---|---|---|---|
1 | 1.11 | 0.02 | 1.87 | 11.33 | 111.33 |
15 | 16.23 | 0.39 | 2.39 | 8.18 | 108.18 |
50 | 52.96 | 1.60 | 3.01 | 5.91 | 105.91 |
150 | 152.99 | 4.54 | 2.96 | 2.00 | 102.00 |
300 | 292.86 | 4.34 | 1.48 | −2.38 | 97.62 |
400 | 415.41 | 8.60 | 2.07 | 3.85 | 103.85 |
500 | 489.94 | 3.70 | 0.76 | −2.01 | 97.99 |
1500 | 1530.01 | 20.80 | 1.36 | 2.00 | 102.00 |
3000 | 3086.33 | 32.63 | 1.06 | 2.88 | 102.88 |
% Recovery | 103.53 ± 4.46 |
RVB (ng/mL) | Intra-Day (12 Groups in the Same Day) | Inter-Day (6 Groups on 3 Consecutive Days) | ||||||
---|---|---|---|---|---|---|---|---|
QCs | 1 | 3 | 900 | 2400 | 1 | 3 | 900 | 2400 |
Mean | 1.11 | 3.22 | 916.03 | 2394.47 | 1.12 | 3.16 | 918.18 | 2378.88 |
SD | 0.02 | 0.04 | 8.26 | 8.65 | 0.03 | 0.06 | 9.69 | 12.26 |
Precision (%RSD) | 1.87 | 1.35 | 0.90 | 0.36 | 2.88 | 1.98 | 1.06 | 0.52 |
% Accuracy | 11.33 | 7.33 | 1.78 | −0.23 | 11.67 | 5.33 | 2.02 | −0.88 |
Recovery (%) | 111.33 | 107.33 | 101.78 | 99.77 | 111.67 | 105.33 | 102.02 | 99.12 |
Stability Parameters | 3 | 2400 | 3 | 2400 | 3 | 2400 | 3 | 2400 |
---|---|---|---|---|---|---|---|---|
Mean | SD | RSD (%) | Accuracy (%) | |||||
Long-Term Stability (28 d at −80 °C) | 2.95 | 2356.31 | 0.07 | 10.59 | 2.20 | 0.45 | −1.56 | −1.82 |
Short-Term Stability (4 hr at room temperature) | 3.10 | 2393.57 | 0.03 | 15.31 | 0.85 | 0.64 | 3.33 | −0.27 |
Auto-Sampler Stability (one day at 15 °C) | 3.12 | 2368.44 | 0.02 | 12.85 | 0.67 | 0.54 | 3.78 | −1.31 |
Freeze–Thaw Stability (3 cycles at −80 °C) | 3.09 | 2370.79 | 0.04 | 8.10 | 1.31 | 0.34 | 3.22 | −1.22 |
Criteria | Score | Weight |
---|---|---|
1. To circumvent the need of sample handling, it is recommended to utilize straight analytical protocols. | 0.3 | 2 |
2. The aims of this study are to attain a negligible quantitative representation and a limited sample size. | 1.0 | 2 |
3. Performance of assessments on-site is highly recommended whenever feasible. | 0.66 | 2 |
4. Empirical research has demonstrated that the integration of analytical techniques and activities yields favorable outcomes in terms of energy conservation and reagent reduction. | 1.0 | 2 |
5. Optimal selection of automated and streamlined procedures is recommended. | 0.75 | 2 |
6. Adopting derivatization techniques should be avoided diligently. | 1.0 | 2 |
7. Lessening the formation of a substantial amount of analytical waste and implementing efficient disposal techniques are of utmost importance. | 0.69 | 2 |
8. In the discipline of the field of analytical chemistry, there is a preference for using multi-analyte or multi-factor methods rather than focusing just on a single study. | 1.0 | 2 |
9. Efforts must be made to decrease energy use. | 0.0 | 2 |
10. Therefore, it is necessary to arrange the use of reagents derived from maintainable sources. | 1.0 | 2 |
11. The imperative to eliminate or substitute hazardous chemicals is really substantial. | 1.0 | 2 |
12. There is a requirement to improve safety ethics for working personnel. | 0.8 | 2 |
Time Intervals (min.) | Average * (ng/mL) | X ** | LN X | Linearity Features |
---|---|---|---|---|
0.00 | 618.73 | 100.00 | 4.61 | Linear regression line equation: y = −0.04643x + 4.657 R2 = 0.9889 Slope: −0.04643 t1/2: 14.93 min Clint: 54.31 mL/min/kg |
2.50 | 572.18 | 92.48 | 4.53 | |
5.00 | 524.64 | 84.79 | 4.44 | |
7.50 | 475.34 | 76.83 | 4.34 | |
15.00 | 357.19 | 57.73 | 4.06 | |
20.00 | 243.18 | 39.30 | 3.67 | |
30.00 | 158.91 | 25.68 | 3.25 | |
40.00 | 152.13 | 24.59 | 3.20 | |
50.00 | 145.85 | 23.57 | 3.16 | |
60.00 | 142.76 | 23.07 | 3.14 | |
70.00 | 135.79 | 21.95 | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attwa, M.W.; Abdelhameed, A.S.; Kadi, A.A. An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation. Medicina 2024, 60, 1914. https://doi.org/10.3390/medicina60121914
Attwa MW, Abdelhameed AS, Kadi AA. An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation. Medicina. 2024; 60(12):1914. https://doi.org/10.3390/medicina60121914
Chicago/Turabian StyleAttwa, Mohamed W., Ali S. Abdelhameed, and Adnan A. Kadi. 2024. "An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation" Medicina 60, no. 12: 1914. https://doi.org/10.3390/medicina60121914
APA StyleAttwa, M. W., Abdelhameed, A. S., & Kadi, A. A. (2024). An Ultra-Fast Validated Green UPLC-MS/MS Approach for Assessing Revumenib in Human Liver Microsomes: In Vitro Absorption, Distribution, Metabolism, and Excretion and Metabolic Stability Evaluation. Medicina, 60(12), 1914. https://doi.org/10.3390/medicina60121914