Exploring the Connections Between Grip Strength, Nutritional Status, Frailty, Depression, and Cognition as Initial Assessment Tools in Geriatric Rehabilitation—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Instruments
2.3. Data Collecting Procedures
2.4. Data Analysis
3. Results
3.1. Correlations in the Entire Population
3.2. Correlations in Men and Women Groups
3.3. Sex Differences
3.4. Nutritional Status
3.5. Marital Status
3.6. Education
4. Discussion
4.1. Clinical Implications
4.2. Study Limitations
4.3. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO’s Work on the UN Decade of Healthy Ageing (2021–2030). Available online: https://www.who.int/initiatives/decade-of-healthy-ageing (accessed on 30 January 2024).
- Cesari, M.; Gambassi, G.; van Kan, G.A.; Vellas, B. The Frailty Phenotype and the Frailty Index: Different Instruments for Different Purposes. Age Ageing 2014, 43, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Prince, M.; Thiyagarajan, J.A.; De Carvalho, I.A.; Bernabei, R.; Chan, P.; Gutierrez-Robledo, L.M.; Michel, J.-P.; Morley, J.E.; Ong, P.; et al. Frailty: An Emerging Public Health Priority. J. Am. Med. Dir. Assoc. 2016, 17, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Vancea, A.; Iliescu, M.; Aivaz, K.A.; Popescu, M.N.; Beiu, C.; Spiru, L. Improving Functional Capacities and Well-Being in Older Adults: Strategies in Physical Medicine and Rehabilitation. Cureus 2024, 16, e66254. [Google Scholar] [CrossRef]
- Bernabei, R.; Venturiero, V.; Tarsitani, P.; Gambassi, G. The comprehensive geriatric assessment: When, where, how. Crit. Rev. Oncol. 2000, 33, 45–56. [Google Scholar] [CrossRef]
- Erazo, M.; Fors, M.; Mullo, S.; González, P.; Viada, C. Internal Consistency of Yesavage Geriatric Depression Scale (GDS 15-Item Version) in Ecuadorian Older Adults. Inq. J. Heal Care Organ. Provis. Financ. 2020, 57. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Voss, V.B.; Cruz-Oliver, D.M.; Cummings-Vaughn, L.A.; Tumosa, N.; Grossberg, G.T.; Morley, J.E. The Rapid Cognitive Screen (RCS): A Point-of-Care Screening for Dementia and Mild Cognitive Impairment. J. Nutr. Health Aging 2015, 19, 741–744. [Google Scholar] [CrossRef]
- The Edmonton Frail Scale. Assessing Frailty—Quick Efficient Multidimensional. Available online: https://edmontonfrailscale.org/ (accessed on 30 January 2024).
- MNA—Mini Nutritional Assessment. Available online: https://www.cgakit.com/m-3-mna (accessed on 30 January 2024).
- Galvin, J.E.; Tolea, M.I.; Chrisphonte, S. What Older Adults Do with the Results of Dementia Screening Programs. PLoS ONE 2020, 15, e0235534. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Lee, H.; Lee, E.; Jang, I.-Y. Frailty and Comprehensive Geriatric Assessment. J. Korean Med. Sci. 2020, 35, e16. [Google Scholar] [CrossRef] [PubMed]
- Young, H.M.; Bell, J.F. Associated Factors and Health Outcomes of Health Literacy and Physical Frailty Among Older Adults: A Systematic Review. Res. Gerontol. Nurs. 2021, 14, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Fukumori, N.; Yamamoto, Y.; Takegami, M.; Yamazaki, S.; Onishi, Y.; Sekiguchi, M.; Otani, K.; Kikuchi, S.-I.; Fukuhara, S. Association between hand-grip strength and depressive symptoms: Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS). Age Ageing 2015, 44, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Amin, Z.; Gutierrez, G.; True, L. Concurrent validity and test-retest reliability of Squegg™—Smart dynamometer and handgrip trainer in healthy individuals. Hand Ther. 2024, 29, 68–74. [Google Scholar] [CrossRef]
- Shaughnessy, K.A.; Hackney, K.J.; Clark, B.C.; Kraemer, W.J.; Terbizan, D.J.; Bailey, R.R.; McGrath, R. A Narrative Review of Handgrip Strength and Cognitive Functioning: Bringing a New Characteristic to Muscle Memory. J. Alzheimer’s Dis. 2020, 73, 1265–1278. [Google Scholar] [CrossRef]
- Varadarajan, K.; Sharn, A.R.; Kadhe, G.; Shaikh, I.; Sulo, S.; Bhattacharyya, S. Use of a novel bluetooth-connected device to measure handgrip strength: A practical tool to help healthcare professionals identify adults at nutritional risk. Clin. Nutr. Open Sci. 2024, 55, 193–204. [Google Scholar] [CrossRef]
- Stamate, A.; Bertolaccini, J.; Deriaz, M.; Gunjan, S.; Marzan, M.-D.; Spiru, L. Interinstrument Reliability Between the Squegg® Smart Dynamometer and Hand Grip Trainer and the Jamar® Hydraulic Hand Dynamometer: A Pilot Study. Am. J. Occup. Ther. 2023, 77, 7705205150. [Google Scholar] [CrossRef]
- Ciro, C.A.; James, S.A.; McGuire, H.; Lepak, V.; Dresser, S.; Costner-Lark, A.; Robinson, W.; Fritz, T. Natural, longitudinal recovery of adults with COVID-19 using standardized rehabilitation measures. Front. Aging Neurosci. 2022, 14, 958744. [Google Scholar] [CrossRef]
- UCLA Advanced Research Computing Statistical Methods and Data Analytics. G-Power. Available online: https://stats.oarc.ucla.edu/other/gpower/ (accessed on 30 January 2024).
- Vancea, A.; Aivaz, K.-A.; Spiru, L. Medical Rehabilitation as a Pillar of Quality of Life: A Bibliometric Mapping of Contemporary Research. BRAIN BROAD Res. Artif. Intell. Neurosci. 2024, 15, 414–426. [Google Scholar] [CrossRef]
- Ignasiak, Z.; Sebastjan, A.; Kaczorowska, A.; Skrzek, A. Estimation of the risk of the frailty syndrome in the independent-living population of older people. Aging Clin. Exp. Res. 2020, 32, 2233–2240. [Google Scholar] [CrossRef]
- McGrath, R.; Vincent, B.M.; Hackney, K.J.; Robinson-Lane, S.G.; Downer, B.; Clark, B.C. The Longitudinal Associations of Handgrip Strength and Cognitive Function in Aging Americans. J. Am. Med. Dir. Assoc. 2020, 21, 634–639.e1. [Google Scholar] [CrossRef] [PubMed]
- McGrath, R.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Clark, B.C. Handgrip Strength Asymmetry and Weakness Are Associated with Lower Cognitive Function: A Panel Study. J. Am. Geriatr. Soc. 2020, 68, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Oh, J.W.; Son, N.-H.; Chung, W. Association between Handgrip Strength and Cognitive Function in Older Adults: Korean Longitudinal Study of Aging (2006–2018). Int. J. Environ. Res. Public Health 2022, 19, 1048. [Google Scholar] [CrossRef]
- Jiang, R.; Westwater, M.L.; Noble, S.; Rosenblatt, M.; Dai, W.; Qi, S.; Sui, J.; Calhoun, V.D.; Scheinost, D. Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank. BMC Med. 2022, 20, 286. [Google Scholar] [CrossRef] [PubMed]
- Marconcin, P.; Peralta, M.; Ferrari, G.; de Matos, M.G.; Espanha, M.; Murawska-Ciałowicz, E.; Marques, A. The Association of Grip Strength with Depressive Symptoms among Middle-Aged and Older Adults with Different Chronic Diseases. Int. J. Environ. Res. Public Health 2020, 17, 6942. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, X.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Zhang, S.; Wang, Y.; Zhang, T.; Wang, X.; et al. Grip strength and depressive symptoms in a large-scale adult population: The TCLSIH cohort study. J. Affect. Disord. 2021, 279, 222–228. [Google Scholar] [CrossRef]
- McDowell, C.P.; Gordon, B.R.; Herring, M.P. Sex-related differences in the association between grip strength and depression: Results from the Irish Longitudinal Study on Ageing. Exp. Gerontol. 2018, 104, 147–152. [Google Scholar] [CrossRef]
- Feng, W.; Chen, Q.; Ma, M.; Xu, J.; Guo, H.; Yuan, W.; Li, R.; Gao, H.; Gu, C.; Ma, Y.; et al. Sex-modified association between grip strength and mild cognitive impairment: A cross-sectional and follow-up study in rural China. BMC Geriatr. 2023, 23, 710. [Google Scholar] [CrossRef]
- Ganipineni, V.D.P.; Idavalapati, A.S.K.K.; Tamalapakula, S.S.; Moparthi, V.; Potru, M.; Owolabi, O.J.; Kumar, I.A.S.K.; Sowrab, T.S.; Vagdevi, M. Depression and Hand-Grip: Unraveling the Association. Cureus 2023, 15, e38632. [Google Scholar] [CrossRef]
- Lim, J.P.; Lim, J.P.; Yew, S.; Yew, S.; Tay, L.; Tay, L.; Chew, J.; Chew, J.; Yeo, A.; Yeo, A.; et al. Grip Strength Criterion Matters: Impact of Average versus Maximum Handgrip Strength on Sarcopenia Prevalence and Predictive Validity for Low Physical Performance. J. Nutr. Health Aging 2020, 24, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.; Tully, M.A.; Barnett, Y.; Lopez-Sanchez, G.F.; Butler, L.; Schuch, F.; López-Bueno, R.; McDermott, D.; Firth, J.; Grabovac, I.; et al. The Relationship between Physical Activity and Mental Health in a Sample of the UK Public: A Cross-Sectional Study during the Implementation of COVID-19 Social Distancing Measures. Ment. Health Phys. Act. 2020, 19, 100345. [Google Scholar] [CrossRef] [PubMed]
- Duchowny, K.A.; Peters, K.E.; Cummings, S.R.; Orwoll, E.S.; Hoffman, A.R.; Ensrud, K.E.; Cauley, J.A.; Evans, W.J.; Cawthon, P.M.; for the Osteoporotic Fractures in Men (MrOS) Study Research Group. Association of Change in Muscle Mass Assessed by D3-Creatine Dilution with Changes in Grip Strength and Walking Speed. J. Cachex Sarcopenia Muscle 2020, 11, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Bairapareddy, K.C.; Khaleel, A.; Akbar, S.; Maherban, H.; Mehdiyeva, F.; Rasti, F.; Tamim, M.; Abdelbasset, W.K.; Ezzat, W.; Reddy, R.S.; et al. Validity and reliability of Squegg device in measuring isometric handgrip strength. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 10247–10254. [Google Scholar] [CrossRef] [PubMed]
- Turcu, D.; Roman, A.-I.; Hospital, O.G.C.C.; Teodorescu, M.; Popescu, M.; Ploesteanu, R.; Hospital, B.P.C.; Ghilencea, L.; Gica, N.; Hospital, B.F.C.; et al. Correlations between hand grip strength and NYHA class II-III heart failure. Romanian J. Med. Pr. 2022, 17, 47–51. [Google Scholar] [CrossRef]
- Shyam, S.; Lee, K.X.; Tan, A.S.W.; Khoo, T.A.; Harikrishnan, S.; Lalani, S.A.; Ramadas, A. Effect of Personalized Nutrition on Dietary, Physical Activity, and Health Outcomes: A Systematic Review of Randomized Trials. Nutrients 2022, 14, 4104. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Vellas, B. Nutritional Assessment in Older Adults: MNA® 25 years of a Screening Tool & a Reference Standard for Care and Research; What Next? J. Nutr. Health Aging 2021, 25, 528–583. [Google Scholar] [CrossRef]
- da Silva, A.B.; de Souza, I.Q.; Da Silva, I.K.; da Silva, M.B.L.T.; Dos Santos, A.C.O. Factors Associated with Frailty Syndrome in Older Adults. J. Nutr. Health Aging 2020, 24, 218–222. [Google Scholar] [CrossRef]
- Fink, J.d.S.; de Mello, P.D.; de Mello, E.D. Subjective global assessment of nutritional status—A systematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–549. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; Woolhead, C.; O’donovan, C.B.; Moschonis, G.; Manios, Y.; Traczyk, I.; et al. Personalised Nutrition Advice Reduces Intake of Discretionary Foods and Beverages: Findings from the Food4Me Ran-domised Controlled Trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 70. [Google Scholar] [CrossRef]
- Morciano, L.; Cerone, G.; Cerutti, F.; Di Gaspare, F.; Alessandroni, C.; Lucaroni, F.; Ambrosone, C.; Messinese, M.; Paradiso, F.; Gilardi, F.; et al. Physical activity and nutritional supplementation to reduce frailty in community-dwelling older adults, searching for evidence: A systematic review of randomized controlled trials. Biomed. Prev. Issues 2017, 2, 120–130. [Google Scholar] [CrossRef]
- Kojima, G.; Walters, K.; Iliffe, S.; Taniguchi, Y.; Tamiya, N. Marital Status and Risk of Physical Frailty: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhu, X.; Hu, Y.; Chen, Y.; Dai, R.; Li, J.; Zhuang, J.; Lin, Y.; Zeng, Y.; You, L.; et al. A study on the impact of marital status on the survival status of prostate cancer patients based on propensity score matching. Sci. Rep. 2024, 14, 6162. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, G.; Zhang, G.; Yin, H.; Jia, Y.; Wang, S.; Shang, B.; Wang, C.; Chen, L. Effects of dance intervention on frailty among older adults. Arch. Gerontol. Geriatr. 2020, 88, 104001. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, A.; Zieger, A.; Staiger, R.; Egli, A.; Freystätter, G.; Bischoff-Ferrari, H.; Chocano-Bedoya, P. Association of depression with malnutrition, grip strength and impaired cognitive function among senior trauma patients. J. Affect. Disord. 2019, 247, 175–182. [Google Scholar] [CrossRef]
- Wong, Y.G.; Hang, J.-A.; Francis-Coad, J.; Hill, A.-M. Using comprehensive geriatric assessment for older adults undertaking a facility-based transition care program to evaluate functional outcomes: A feasibility study. BMC Geriatr. 2022, 22, 598. [Google Scholar] [CrossRef]
- Available online: https://www.bgs.org.uk/sites/default/files/content/resources/files/2019-02-08/BGS%20Toolkit%20-%20FINAL%20FOR%20WEB_0.pdf (accessed on 30 January 2024).
- Fritz, H.; Cutchin, M.P.; Gharib, J.; Haryadi, N.; Patel, M.; Patel, N. Neighborhood Characteristics and Frailty: A Scoping Review. Gerontol. 2020, 60, e270–e285. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle Interventions to Prevent Cognitive Impairment, Dementia and Alzheimer Disease. Nat. Rev. Neurol. 2018, 14, 653–666. [Google Scholar] [CrossRef]
- Laskou, F.; Fuggle, N.R.; Patel, H.P.; Jameson, K.; Cooper, C.; Dennison, E. Associations of osteoporosis and sarcopenia with frailty and multimorbidity among participants of the Hertfordshire Cohort Study. J. Cachex Sarcopenia Muscle 2022, 13, 220–229. [Google Scholar] [CrossRef]
- Greco, E.A.; Pietschmann, P.; Migliaccio, S. Osteoporosis and Sarcopenia Increase Frailty Syndrome in the Elderly. Front. Endocrinol. 2019, 10, 255. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Ly, T.T.; Nguyen, T.N. A Pilot Study of the Clinical Frailty Scale to Predict Frailty Transition and Readmission in Older Patients in Vietnam. Int. J. Environ. Res. Public Health 2020, 17, 1582. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Chang, J.-C.; Chen, Y.-M.; Li, C.-M.; Huang, L.-H. Health Related Quality of Life Among Frail and Pre-Frail Older Adults in Taiwan. Int. J. Gerontol. 2017, 11, 249–252. [Google Scholar] [CrossRef]
- Chen, J.-H.; Shih, H.-S.; Tu, J.; Chiou, J.-M.; Chang, S.-H.; Hsu, W.-L.; Lai, L.-C.; Chen, T.-F.; Chen, Y.-C. A Longitudinal Study on the Association of Interrelated Factors Among Frailty Dimensions, Cognitive Domains, Cognitive Frailty, and All-Cause Mortality. J. Alzheimer’s Dis. 2021, 84, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Villanueva, D.; Gómez-Cabello, A.; Marín-Puyalto, J.; Moreno, L.A.; Vicente-Rodríguez, G.; Casajús, J.A. Frailty and Physical Fitness in Elderly People: A Systematic Review and Meta-analysis. Sports Med. 2021, 51, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Iliescu, M.G.; Stanciu, L.-E.; Uzun, A.-B.; Cristea, A.-E.; Motoască, I.; Irsay, L.; Iliescu, D.M.; Vari, T.; Ciubean, A.D.; Caraban, B.M.; et al. Assessment of Integrative Therapeutic Methods for Improving the Quality of Life and Functioning in Cancer Patients—A Systematic Review. J. Clin. Med. 2024, 13, 1190. [Google Scholar] [CrossRef]
- Aivaz, K.-A.; Petre, I.C. Systematic Investigation of the Influence of Religion on Business Management: A Bibliometric Approach. Stud. Bus. Econ. 2024, 19, 5–22. [Google Scholar] [CrossRef]
- Marinescu, M.; Bartolome, I.; Marzan, M.; Mashayekhi, K.; Spiru, L. Pre-fall prognostics, prevention and management of frailty in geriatrics: A personalized intelligent system approach (ALL-FrAAgile) Implementation of person-centered care. Alzheimer’s Dement. 2020, 16, e043449. [Google Scholar] [CrossRef]
Item | Variable | N | % |
---|---|---|---|
Gender | Male | 49 | 61.3 |
Female | 31 | 38.8 | |
Age (Yrs) | 65–69 | 25 | 31.3 |
70–75 | 36 | 45.0 | |
76–80+ | 19 | 23.8 | |
Level of education | High education—high school | 50 | 62.5 |
Higher education—university studies | 30 | 37.5 | |
Marital Status | Married | 58 | 72.5 |
Not married | 22 | 27.5 | |
History of heart disease | No heart disease | 36 | 45.0 |
Arterial fibrillation (AFib) | 2 | 2.5 | |
High blood pressure | 42 | 52.5 | |
History of diabetes mellitus | No | 64 | 80.0 |
Type II Diabetes | 16 | 20.0 | |
Dyslipidemia | No | 58 | 73.4 |
Yes | 22 | 27.6 | |
Decreased bone density | No | 70 | 87.5 |
Osteopenia | 2 | 2.5 | |
Osteoporosis | 8 | 10.0 |
Gender | N | Mean | Std. Deviation | |
---|---|---|---|---|
F | Age | 31 | 73.03 | 5.37 |
Level of education | 31 | 1.29 | 0.46 | |
Marital status | 31 | 1.84 | 0.37 | |
MNA | 31 | 25.48 | 2.47 | |
GDS | 31 | 3.87 | 2.55 | |
EDMONTON (EFS) | 31 | 3.45 | 2.56 | |
RCT | 31 | 7.19 | 1.95 | |
HGS | 31 | 30.82 | 7.33 | |
M | Age | 49 | 71.67 | 4.29 |
Level of education | 49 | 1.43 | 0.50 | |
Marital status | 49 | 1.65 | 0.48 | |
MNA | 49 | 24.63 | 2.38 | |
GDS | 49 | 3.82 | 2.78 | |
EDMONTON (EFS) | 49 | 4.08 | 2.61 | |
RCT | 49 | 7.45 | 1.52 | |
HGS | 49 | 22.70 | 6.29 |
Variable | Skewness | Kurtosis | p | ||||
---|---|---|---|---|---|---|---|
Value | SE | Z | Value | SE | Z | Shapiro–Wilk Test | |
MNA | −0.536 | 0.269 | −1.99 | 0.269 | 0.3 | 0.896 | 0.11 |
GDS | 0.847 | 0.269 | 3.14 | 0.145 | 0.532 | 0.272 | <0.001 |
EFS | 0.459 | 0.269 | 1.7 | −0.571 | 0.532 | −1.07 | 0.002 |
RCT | −0.696 | 0.269 | −2.58 | 0.427 | 0.532 | 0.802 | <0.001 |
HGS | 0.228 | 0.269 | 0.847 | −0.066 | 0.532 | −0.124 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vancea Nemirschi, A.T.; Lupu, A.A.; Aivaz, K.-A.; Iliescu, M.G.; Deriaz, M.; Marzan, M.; Spiru, L. Exploring the Connections Between Grip Strength, Nutritional Status, Frailty, Depression, and Cognition as Initial Assessment Tools in Geriatric Rehabilitation—A Pilot Study. Medicina 2024, 60, 1916. https://doi.org/10.3390/medicina60121916
Vancea Nemirschi AT, Lupu AA, Aivaz K-A, Iliescu MG, Deriaz M, Marzan M, Spiru L. Exploring the Connections Between Grip Strength, Nutritional Status, Frailty, Depression, and Cognition as Initial Assessment Tools in Geriatric Rehabilitation—A Pilot Study. Medicina. 2024; 60(12):1916. https://doi.org/10.3390/medicina60121916
Chicago/Turabian StyleVancea Nemirschi, Amalia Teodora, Andreea Alexandra Lupu, Kamer-Ainur Aivaz, Mădălina Gabriela Iliescu, Michel Deriaz, Mircea Marzan, and Luiza Spiru. 2024. "Exploring the Connections Between Grip Strength, Nutritional Status, Frailty, Depression, and Cognition as Initial Assessment Tools in Geriatric Rehabilitation—A Pilot Study" Medicina 60, no. 12: 1916. https://doi.org/10.3390/medicina60121916
APA StyleVancea Nemirschi, A. T., Lupu, A. A., Aivaz, K. -A., Iliescu, M. G., Deriaz, M., Marzan, M., & Spiru, L. (2024). Exploring the Connections Between Grip Strength, Nutritional Status, Frailty, Depression, and Cognition as Initial Assessment Tools in Geriatric Rehabilitation—A Pilot Study. Medicina, 60(12), 1916. https://doi.org/10.3390/medicina60121916