Circadian Typology and Physical Activity in Young Adults with Gaming Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
ICD-11 GD Criteria
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ko, C.H.; Yen, J.Y.; Chen, C.C.; Chen, S.H.; Yen, C.F. Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J. Nerv. Ment. Dis. 2005, 193, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Yen, J.Y.; Yen, C.F.; Chen, C.C.; Yen, C.N.; Chen, S.H. Screening for Internet addiction: An empirical study on cut-off points for the Chen Internet Addiction Scale. Kaohsiung J. Med. Sci. 2005, 21, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Griffiths, M.D. Internet gaming addiction: A systematic review of empirical research. Int. J. Ment. Health Addict. 2012, 10, 278–296. [Google Scholar] [CrossRef]
- American Psychiatric Association, D.; Association, A.P. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems: Alphabetical Index; World Health Organization: Geneva, Switzerland, 2004; Volume 3. [Google Scholar]
- Ostinelli, E.G.; Zangani, C.; Giordano, B.; Maestri, D.; Gambini, O.; D’Agostino, A.; Furukawa, T.A.; Purgato, M. Depressive symptoms and depression in individuals with internet gaming disorder: A systematic review and meta-analysis. J. Affect. Disord. 2021, 284, 136–142. [Google Scholar] [CrossRef]
- Ropovik, I.; Martoncik, M.; Babincak, P.; Banik, G.; Vargova, L.; Adamkovic, M. Risk and protective factors for (internet) gaming disorder: A meta-analysis of pre-COVID studies. Addict. Behav. 2023, 139, 107590. [Google Scholar] [CrossRef]
- Chen, S.-H.; Weng, L.-J.; Su, Y.-J.; Wu, H.-M.; Yang, P.-F. Development of a Chinese Internet addiction scale and its psychometric study. Chin. J. Psychol. 2003, 45, 279–294. [Google Scholar]
- Fossum, I.N.; Nordnes, L.T.; Storemark, S.S.; Bjorvatn, B.; Pallesen, S. The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behav. Sleep Med. 2014, 12, 343–357. [Google Scholar] [CrossRef]
- Kristensen, J.H.; Pallesen, S.; King, D.L.; Hysing, M.; Erevik, E.K. Problematic Gaming and Sleep: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 675237. [Google Scholar] [CrossRef]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- Sutton, E.L. Insomnia. Ann. Intern. Med. 2021, 174, ITC33–ITC48. [Google Scholar] [CrossRef]
- Alaca, N. The impact of internet addiction on depression, physical activity level and trigger point sensitivity in Turkish university students. J. Back Musculoskelet. Rehabil. 2020, 33, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; Ozer, S.; Sahin, S.; Sonmezgoz, E. Internet use patterns and Internet addiction in children and adolescents with obesity. Pediatr. Obes. 2018, 13, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.; Leung, P.Y.; Poon, K.Y.; Fung, X.C. The effects of internet gaming and social media use on physical activity, sleep, quality of life, and academic performance among university students in Hong Kong: A preliminary study. Asian J. Soc. Health Behav. 2021, 4, 36. [Google Scholar] [CrossRef]
- Li, M.; Deng, Y.; Ren, Y.; Guo, S.; He, X. Obesity status of middle school students in Xiangtan and its relationship with Internet addiction. Obesity 2014, 22, 482–487. [Google Scholar] [CrossRef]
- Fam, J.Y. Prevalence of internet gaming disorder in adolescents: A meta-analysis across three decades. Scand. J. Psychol. 2018, 59, 524–531. [Google Scholar] [CrossRef]
- Paulus, F.W.; Ohmann, S.; Von Gontard, A.; Popow, C. Internet gaming disorder in children and adolescents: A systematic review. Dev. Med. Child Neurol. 2018, 60, 645–659. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (MINI): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59, 22–33. [Google Scholar]
- Ko, C.H.; Lin, H.C.; Lin, P.C.; Yen, J.Y. Validity, functional impairment and complications related to Internet gaming disorder in the DSM-5 and gaming disorder in the ICD-11. Aust. New Zealand J. Psychiatry 2020, 54, 707–718. [Google Scholar] [CrossRef]
- Yen, J.Y.; Higuchi, S.; Lin, P.Y.; Lin, P.C.; Chou, W.P.; Ko, C.H. Functional impairment, insight, and comparison between criteria for gaming disorder in the International Classification of Diseases, 11 Edition and internet gaming disorder in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. J. Behav. Addict 2022, 11, 1012–1023. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Healthy Weight, Nutrition, and Physical Activity. Available online: https://www.cdc.gov/bmi/adult-calculator/bmi-categories.html (accessed on 25 November 2024).
- Sateia, M.J. International classification of sleep disorders. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Levandovski, R.; Sasso, E.; Hidalgo, M.P. Chronotype: A review of the advances, limits and applicability of the main instruments used in the literature to assess human phenotype. Trends Psychiatry Psychother. 2013, 35, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Moul, D.; Pilkonis, P.; Miewald, J.; Carey, T.; Buysse, D. Preliminary study of the test-retest reliability and concurrent validities of the Pittsburgh Insomnia Rating Scale (PIRS). Proc. Sleep 2002, 25, A246–A247. [Google Scholar]
- Sateia, M.J.; Buysse, D. Insomnia: Diagnosis and Treatment; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, Y.L.; Gau, S.S. Sleep problems and internet addiction among children and adolescents: A longitudinal study. J. Sleep Res. 2016, 25, 458–465. [Google Scholar] [CrossRef]
- Tahkamo, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.X.; Bonilla, C.; Matijasevich, A.; Martins-Silva, T.; Genro, J.P.; Hutz, M.H.; Rohde, L.A.; Tovo-Rodrigues, L. Sleep-related traits and attention-deficit/hyperactivity disorder comorbidity: Shared genetic risk factors, molecular mechanisms, and causal effects. World J. Biol. Psychiatry 2021, 22, 778–791. [Google Scholar] [CrossRef]
- Snitselaar, M.A.; Smits, M.G.; van der Heijden, K.B.; Spijker, J. Sleep and Circadian Rhythmicity in Adult ADHD and the Effect of Stimulants. J. Atten. Disord. 2017, 21, 14–26. [Google Scholar] [CrossRef]
- Schuch, J.B.; Genro, J.P.; Bastos, C.R.; Ghisleni, G.; Tovo-Rodrigues, L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 181–198. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef]
- Huang, M.C.; Ho, C.W.; Chen, C.H.; Liu, S.C.; Chen, C.C.; Leu, S.J. Reduced expression of circadian clock genes in male alcoholic patients. Alcohol. Clin. Exp. Res. 2010, 34, 1899–1904. [Google Scholar] [CrossRef]
- Kovanen, L.; Saarikoski, S.T.; Haukka, J.; Pirkola, S.; Aromaa, A.; Lonnqvist, J.; Partonen, T. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol. 2010, 45, 303–311. [Google Scholar] [CrossRef]
- Sjoholm, L.K.; Kovanen, L.; Saarikoski, S.T.; Schalling, M.; Lavebratt, C.; Partonen, T. CLOCK is suggested to associate with comorbid alcohol use and depressive disorders. J. Circadian Rhythm. 2010, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Koca, S.B.; Paketci, A.; Buyukyilmaz, G. The Relationship Between Internet Usage Style and Internet Addiction and Food Addiction in Obese Children Compared to Healthy Children. Turk. Arch. Pediatr. 2023, 58, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.K.; Nathan, N.; Le, Q.N.H.; Nguyen, L.H.; Nguyen, H.L.T.; Nguyen, C.T.; Do, H.P.; Nguyen, T.H.T.; Tran, T.T.; Nguyen, T.A. Associations between internet addiction and physical activity among Vietnamese youths and adolescents. Child. Youth Serv. Rev. 2018, 93, 36–40. [Google Scholar] [CrossRef]
- Ercan, S.; Acar, H.T.; Arslan, E.; Canbulut, A.; Oğul, A.; Çetin, C. Effect of Internet Addiction on Sleep Quality, Physical Activity and Cognitive Status Among University Students. J. Turk. Sleep Med. 2021, 8, 49–56. [Google Scholar] [CrossRef]
- Wei, Z.; Zheng, Z.; Zhang, Y.; Song, R.; Zhu, J.; Wan, G.; Peng, Z. The relationship between Internet addiction and internalizing problems in overweight/obese adolescents: A moderated mediation model. N. Am. J. Med. Sci. 2017, 10, 139–147. [Google Scholar]
- Sivertsen, B.; Harvey, A.G.; Gradisar, M.; Pallesen, S.; Hysing, M. Delayed sleep-wake phase disorder in young adults: Prevalence and correlates from a national survey of Norwegian university students. Sleep Med. 2021, 77, 184–191. [Google Scholar] [CrossRef]
GD Group (n = 60) | Control Group (n = 120) | p Value | |
---|---|---|---|
Demographic characteristics | |||
Male (%) | 46 (76.7%) | 92 (76.7%) | >0.999 |
Age (SD) | 26.42 (4.54) | 27.18 (4.56) | 0.294 |
Years of Education (SD) | 15.80 (1.36) | 16.02 (1.68) | 0.388 |
Physical characteristics | |||
BMI (SD) | 24.26 (5.07) | 24.73 (7.98) | 0.865 |
BMI < 25 | 37 (61.6%) | 73 (60.8%) | 0.100 |
Overweight | 13 (21.7%) | 38 (31.7%) | |
Obese | 10 (16.7%) | 9 (7.5%) | |
Body fat percentage (SD) | 23.35 (7.78) | 23.80 (5.77) | 0.610 |
SBP, mmHg (SD) | 114.15 (12.23) | 112.47 (18.99) | 0.476 |
DBP, mmHg (SD) | 76.03 (10.23) | 73.69 (10.23) | 0.134 |
HDL, mg/dL (SD) | 50.41 (11.58) | 52.29 (13.27) | 0.352 |
LDL, mg/dL (SD) | 111.62 (32.02) | 113.35 (35.45) | 0.750 |
Total cholesterol, mg/dL (SD) | 181.83 (30.77) | 187.28 (35.61) | 0.317 |
TG, mg/dL (SD) | 143.29 (165.68) | 116.24 (77.28) | 0.313 |
Psychiatric characteristics | |||
CIAS (SD) | 79.48 (11.62) | 40.22 (14.70) | <0.001 |
CSM (SD) | 25.22 (6.56) | 34.91 (6.67) | <0.001 |
DSPS (%) | 32 (53.33%) | 11 (9.17%) | <0.001 |
Chronotype (%) | <0.001 | ||
Morningness | 0 (0%) | 14 (11.7%) | |
Intermediate | 38 (63.3%) | 101 (84.2%) | |
Eveningness | 22 (36.7%) | 5 (4.2%) | |
PIRS (SD) | 28.85 (10.88) | 14.88 (9.48) | <0.001 |
Insomnia (%) | 17 (28.33%) | 8 (7.14%) | <0.001 |
GD Group (n = 34) | Control Group (n = 39) | p Value | |
---|---|---|---|
Daily calorie expenditure, kcal (SD) | 305.94 (150.54) | 469.69 (159.02) | <0.001 |
Daily steps (SD) | 5865.74 (2892.53) | 8865.00 (2904.64) | <0.001 |
Daily walking distance, km (SD) | 4.64 (2.30) | 7.15 (2.45) | <0.001 |
Time to fall sleep, min (SD) | 134.09 (70.74) | 65.15 (60.11) | <0.001 |
Total sleep, min (SD) | 446.18 (71.89) | 417.95 (51.84) | 0.057 |
DSPS Group (n = 32) | Non-DSPS Group (n = 28) | p Value | |
---|---|---|---|
Demographic characteristics | |||
Male (%) | 23 (71.9%) | 23 (82.1%) | 0.348 |
Age (SD) | 25.31 (4.02) | 27.68 (4.83) | 0.043 |
Years of education (SD) | 15.81 (1.09) | 15.79 (1.64) | 0.940 |
Physical characteristics | |||
BMI (SD) | 22.33 (4.04) | 26.47 (5.29) | 0.001 |
BMI < 25 | 25 (78.1%) | 12 (42.9%) | 0.013 |
Overweight | 5 (15.6%) | 8 (28.6%) | |
Obese | 2 (6.3%) | 8 (28.6%) | |
Body fat percentage (SD) | 22.03 (7.35) | 24.85 (8.11) | 0.162 |
SBP, mmHg (SD) | 110.36 (10.28) | 118.46 (13.01) | 0.090 |
DBP, mmHg (SD) | 74.22 (8.25) | 78.11 (9.43) | 0.094 |
HDL, mg/dL (SD) | 51.18 (11.67) | 49.53 (11.63) | 0.584 |
LDL, mg/dL (SD) | 104.84 (24.70) | 119.36 (37.73) | 0.079 |
Total cholesterol, mg/dL (SD) | 174.78 (28.32) | 189.89 (31.97) | 0.057 |
TG, mg/dL (SD) | 148.66 (214.68) | 137.14 (83.62) | 0.791 |
Psychiatric characteristics | |||
CIAS (SD) | 80.32 (12.59) | 78.75 (10.85) | 0.605 |
CSM (SD) | 22.06 (4.75) | 28.82 (6.54) | <0.001 |
Chronotype | 0.005 | ||
Intermediate (%) | 15 (46.9%) | 23 (82.1%) | |
Eveningness (%) | 17 (53.1%) | 5 (17.9%) | |
PIRS (SD) | 30.09 (10.47) | 27.43 (11.34) | 0.348 |
Insomnia (%) | 14 (43.8%) | 3(10.7.%) | 0.005 |
DSPS Group (n = 18) | Non-DSPS Group (n = 16) | p Value | |
---|---|---|---|
Daily calorie expenditure, kcal (SD) | 316.8 (153.93) | 293.68 (150.65) | 0.661 |
Daily steps (SD) | 6074.90 (2962.98) | 5630.44 (2888.84) | 0.662 |
Daily walking distance, km (SD) | 4.80 (2.35) | 4.46 (2.30) | 0.665 |
Time to fall sleep, min (SD) | 140.76 (52.02) | 127.41 (86.72) | 0.591 |
Total sleep, min (SD) | 462.59 (72.74) | 429.65 (69.23) | 0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, T.-W.; Yen, J.-Y.; Yeh, W.-C.; Ko, C.-H. Circadian Typology and Physical Activity in Young Adults with Gaming Disorder. Medicina 2024, 60, 1950. https://doi.org/10.3390/medicina60121950
Hsu T-W, Yen J-Y, Yeh W-C, Ko C-H. Circadian Typology and Physical Activity in Young Adults with Gaming Disorder. Medicina. 2024; 60(12):1950. https://doi.org/10.3390/medicina60121950
Chicago/Turabian StyleHsu, Tien-Wei, Ju-Yu Yen, Wei-Chiang Yeh, and Chih-Hung Ko. 2024. "Circadian Typology and Physical Activity in Young Adults with Gaming Disorder" Medicina 60, no. 12: 1950. https://doi.org/10.3390/medicina60121950
APA StyleHsu, T.-W., Yen, J.-Y., Yeh, W.-C., & Ko, C.-H. (2024). Circadian Typology and Physical Activity in Young Adults with Gaming Disorder. Medicina, 60(12), 1950. https://doi.org/10.3390/medicina60121950