Refractory IgA Nephropathy: A Challenge for Future Nephrologists
Abstract
:1. Introduction
2. The Paradox of Corticosteroid Therapy
3. New Drugs for IgAN
3.1. Supportive Therapy
3.2. Modulation of Mucosal Immunity
3.3. Modulation of Gd-IgA1 and Immune Complex Production
3.4. Inhibitors of Complement Cascades
3.5. Fecal Microbiota Transplantation
3.6. A Promising Experimental Treatment: Imoxin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stamellou, E.; Seikrit, C.; Tang, S.C.W.; Boor, P.; Tesar, V.; Floege, J.; Barratt, J.; Kramann, R. IgA nephropathy. Nat. Rev. Dis. Primers 2023, 9, 67. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, T.; Liu, C.; Zhu, T.; Guo, C.; Li, S.; Rao, X.; Li, J. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics 2023, 13, 303. [Google Scholar] [CrossRef]
- Gleeson, P.J.; O’Shaughnessy, M.M.; Barratt, J. IgA nephropathy in adults—Treatment Standard. Nephrol. Dial. Transplant. 2023, 38, 2464–2473. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Han, X.; Zheng, X.; Wang, Y.; Sun, X.; Xiao, Y.; Tang, Y.; Qin, W. Random forest can accurately predict the development of end-stage renal disease in immunoglobulin a nephropathy patients. Ann. Transl. Med. 2019, 7, 234. [Google Scholar] [CrossRef]
- Zhao, J.; Bai, M.; Yang, X.; Wang, Y.; Li, R.; Sun, S. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: The first case reports. Ren. Fail. 2021, 43, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Manno, C.; Torres, D.D.; Rossini, M.; Pesce, F.; Schena, F.P. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol. Dial. Transplant. 2009, 24, 3694–3701. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Bolasco, P.G.; Fogazzi, G.B.; Andrulli, S.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet 1999, 353, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Rauen, T.; Eitner, F. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N. Engl. J. Med. 2016, 374, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhang, H.; Wong, M.G.; Jardine, M.J.; Hladunewich, M.; Jha, V.; Monaghan, H.; Zhao, M.; Barbour, S.; Reich, H.; et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients With IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA 2017, 318, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Sun, J.; Xu, G.; Wang, C.; Zhou, S.; Nie, S.; Li, Y.; Su, L.; Chen, R.; et al. Immunosuppression versus Supportive Care on Kidney Outcomes in IgA Nephropathy in the Real-World Setting. Clin. J. Am. Soc. Nephrol. CJASN 2023, 18, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R. Treatment of IgA nephropathy: Recent advances and prospects. Nephrol. Ther. 2018, 14 (Suppl. S1), S13–S21. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Novak, J. Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. J. Clin. Med. 2022, 11, 4378. [Google Scholar] [CrossRef] [PubMed]
- Caster, D.J.; Lafayette, R.A. The Treatment of Primary IgA Nephropathy: Change, Change, Change. Am. J. Kidney Dis. 2023, 83, 29–240. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Radhakrishnan, J.; Alpers, C.E.; Barratt, J.; Bieler, S.; Diva, U.; Inrig, J.; Komers, R.; Mercer, A.; Noronha, I.L.; et al. Sparsentan in patients with IgA nephropathy: A prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. Lancet 2023, 401, 1584–1594. [Google Scholar] [CrossRef]
- Di Leo, V.; Annese, F.; Papadia, F.; Cara, I.; Giliberti, M.; Sallustio, F.; Gesualdo, L. The Landscape of IgA Nephropathy Treatment Strategy: A Pharmacological Overview. Future Pharmacol. 2023, 3, 517–534. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B.; et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 2015, 66, 255–270. [Google Scholar] [CrossRef]
- Scheepers, A.; Joost, H.G.; Schurmann, A. The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. JPEN J. Parenter. Enter. Nutr. 2004, 28, 364–371. [Google Scholar] [CrossRef]
- Poulsen, S.B.; Fenton, R.A.; Rieg, T. Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 2015, 24, 463–469. [Google Scholar] [CrossRef]
- Hediger, M.A.; Kanai, Y.; You, G.; Nussberger, S. Mammalian ion-coupled solute transporters. J Physiol 1995, 482, 7S–17S. [Google Scholar] [CrossRef]
- Wright, E.M.; Loo, D.D.; Hirayama, B.A. Biology of human sodium glucose transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, K.; Cherney, D.Z.I.; Bozovic, A.; Nagasu, H.; Satoh, M.; Kanda, E.; Sasaki, T.; Kashihara, N. Evaluation of Glomerular Hemodynamic Function by Empagliflozin in Diabetic Mice Using In Vivo Imaging. Circulation 2019, 140, 303–315. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, L.; Gabbai, F.B.; Garofalo, C.; Conte, G.; Minutolo, R. Nephroprotection by SGLT2 Inhibition: Back to the Future? J. Clin. Med. 2020, 9, 2243. [Google Scholar] [CrossRef] [PubMed]
- Cassis, P.; Locatelli, M.; Cerullo, D.; Corna, D.; Buelli, S.; Zanchi, C.; Villa, S.; Morigi, M.; Remuzzi, G.; Benigni, A.; et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 2018, 3, 98720. [Google Scholar] [CrossRef] [PubMed]
- Hesp, A.C.; Schaub, J.A.; Prasad, P.V.; Vallon, V.; Laverman, G.D.; Bjornstad, P.; van Raalte, D.H. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: A promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney Int. 2020, 98, 579–589. [Google Scholar] [CrossRef]
- Rajasekeran, H.; Cherney, D.Z.; Lovshin, J.A. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease? Curr. Opin. Nephrol. Hypertens. 2017, 26, 358–367. [Google Scholar] [CrossRef]
- Bray, J.J.H.; Foster-Davies, H.; Stephens, J.W. A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res. Clin. Pract. 2020, 168, 108368. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Caturano, A.; Galiero, R.; Di Martino, A.; Albanese, G.; Vetrano, E.; Sardu, C.; Marfella, R.; Rinaldi, L.; Sasso, F.C. Cardiovascular Benefits from Gliflozins: Effects on Endothelial Function. Biomedicines 2021, 9, 1356. [Google Scholar] [CrossRef]
- Wu, R.; Liu, X.; Yin, J.; Wu, H.; Cai, X.; Wang, N.; Qian, Y.; Wang, F. IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice. Metab. Clin. Exp. 2018, 83, 18–24. [Google Scholar] [CrossRef]
- Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS ONE 2013, 8, e54442. [Google Scholar] [CrossRef] [PubMed]
- Das, N.A.; Carpenter, A.J.; Belenchia, A.; Aroor, A.R.; Noda, M.; Siebenlist, U.; Chandrasekar, B.; DeMarco, V.G. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2020, 68, 109506. [Google Scholar] [CrossRef]
- Dou, L.; Jourde-Chiche, N. Endothelial Toxicity of High Glucose and its by-Products in Diabetic Kidney Disease. Toxins 2019, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kitada, M.; Ogura, Y.; Liu, H.; Koya, D. Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Cells 2021, 10, 1457. [Google Scholar] [CrossRef]
- Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 2018, 61, 2108–2117. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefansson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Toto, R.D.; Stefansson, B.V.; Jongs, N.; Chertow, G.M.; Greene, T.; Hou, F.F.; McMurray, J.J.V.; Pecoits-Filho, R.; Correa-Rotter, R.; et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021, 100, 215–224. [Google Scholar] [CrossRef] [PubMed]
- The, E.-K.C.G.; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Herrington, W.G.; Frankel, A.H.; Wonnacott, A.; Webb, D.; Watt, A.; Watson, M.; Roberts, J.; Staplin, N.; Roddick, A.; Riding, A.; et al. UK Kidney Association Clinical Practice Guideline: Sodium-Glucose Co-Transporter-2 (SGLT-2) Inhibition in Adults with Kidney Disease; UK Kidney Association: Bristol, UK, 2021. [Google Scholar]
- Wimbury, D.; Muto, M.; Bhachu, J.S.; Scionti, K.; Brown, J.; Molyneux, K.; Seikrit, C.; Maixnerova, D.; Perez-Alos, L.; Garred, P.; et al. Targeted-release budesonide modifies key pathogenic biomarkers in immunoglobulin A nephropathy: Insights from the NEFIGAN trial. Kidney Int. 2023, 105, 381–388. [Google Scholar] [CrossRef]
- Lafayette, R.; Kristensen, J.; Stone, A.; Floege, J.; Tesar, V.; Trimarchi, H.; Zhang, H.; Eren, N.; Paliege, A.; Reich, H.N.; et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 2023, 402, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Liu, L.; Hao, C.; Li, G.; Fu, P.; Xing, G.; Zheng, H.; Chen, N.; Wang, C.; Luo, P.; et al. Randomized Phase 2 Trial of Telitacicept in Patients With IgA Nephropathy With Persistent Proteinuria. Kidney Int. Rep. 2023, 8, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Li, X.K. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Maixnerova, D.; El Mehdi, D.; Rizk, D.V.; Zhang, H.; Tesar, V. New Treatment Strategies for IgA Nephropathy: Targeting Plasma Cells as the Main Source of Pathogenic Antibodies. J. Clin. Med. 2022, 11, 2810. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.C.; Suzuki, Y. Are there animal models of IgA nephropathy? Semin. Immunopathol. 2021, 43, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Li, J.; Liu, P.; Wang, M.; Gao, L.; Wan, F.; Lv, J.; Zhang, H.; Jin, J. Chimeric Fusion between Clostridium Ramosum IgA Protease and IgG Fc Provides Long-Lasting Clearance of IgA Deposits in Mouse Models of IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2022, 33, 918–935. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, Q.; Liao, Y.; Yang, Z.; Chen, J.; Fu, J.; Zhang, J.; Kong, Y.; Fu, P.; Lou, T.; et al. Outcomes of tacrolimus therapy in adults with refractory membranous nephrotic syndrome: A prospective, multicenter clinical trial. Am. J. Med. Sci. 2013, 345, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shi, S.F.; Zhu, L.; Lv, J.C.; Liu, L.J.; Chen, Y.Q.; Zhang, H.; Wang, H.Y. Tacrolimus improves the proteinuria remission in patients with refractory IgA nephropathy. Am. J. Nephrol. 2012, 35, 312–320. [Google Scholar] [CrossRef]
- Hu, T.; Liu, Q.; Xu, Q.; Liu, H.; Qiu, W.; Huang, F.; Zhang, S.; Lv, Y. Tacrolimus decreases proteinuria in patients with refractory IgA nephropathy. Medicine 2018, 97, e0610. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Y.; Xu, H.; Leng, W.; Xu, G. Efficacy and safety of tacrolimus-based treatment for non-rapidly progressive IgA nephropathy. Front. Pharmacol. 2023, 14, 1189608. [Google Scholar] [CrossRef]
- Song, Y.H.; Cai, G.Y.; Xiao, Y.F.; Wang, Y.P.; Yuan, B.S.; Xia, Y.Y.; Wang, S.Y.; Chen, P.; Liu, S.W.; Chen, X.M. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: A meta-analysis. BMC Nephrol. 2017, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.H.; Lee, M.J.; Oh, H.J.; Koo, H.M.; Doh, F.M.; Kim, H.R.; Han, J.H.; Park, J.T.; Han, S.H.; Choi, K.H.; et al. Stepwise treatment using corticosteroids alone and in combination with cyclosporine in korean patients with idiopathic membranous nephropathy. Yonsei Med. J. 2013, 54, 973–982. [Google Scholar] [CrossRef]
- Medjeral-Thomas, N.R.; Cook, H.T.; Pickering, M.C. Complement activation in IgA nephropathy. Semin. Immunopathol. 2021, 43, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Rauen, T.; Tang, S.C.W. Current treatment of IgA nephropathy. Semin. Immunopathol. 2021, 43, 717–728. [Google Scholar] [CrossRef]
- Rizk, D.V.; Rovin, B.H.; Zhang, H.; Kashihara, N.; Maes, B.; Trimarchi, H.; Perkovic, V.; Meier, M.; Kollins, D.; Papachristofi, O.; et al. Targeting the Alternative Complement Pathway With Iptacopan to Treat IgA Nephropathy: Design and Rationale of the APPLAUSE-IgAN Study. Kidney Int. Rep. 2023, 8, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.; Dixon, L.A.G.; Huang, L.; Rajan, S.; Ke, C.; Zhang, Y.; Li, L. Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients with C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases. Kidney Int. Rep. 2023, 8, 2284–2293. [Google Scholar] [CrossRef]
- Cheung, C.K.; Rajasekaran, A.; Barratt, J.; Rizk, D.V. An Update on the Current State of Management and Clinical Trials for IgA Nephropathy. J. Clin. Med. 2021, 10, 2493. [Google Scholar] [CrossRef]
- Tesar, V.; Radhakrishnan, J.; Charu, V.; Barratt, J. Challenges in IgA Nephropathy Management: An Era of Complement Inhibition. Kidney Int. Rep. 2023, 8, 1730–1740. [Google Scholar] [CrossRef]
- Noor, S.M.; Abuazzam, F.; Mathew, R.; Zhang, Z.; Abdipour, A.; Norouzi, S. IgA nephropathy: A review of existing and emerging therapies. Front. Nephrol. 2023, 3, 1175088. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Sun, L.; Zhou, W.; Zhi, W.; Qing, J.; Abdi Saed, Y.; Dong, L.; Zhang, X.; Li, Y. Gut Microbes in Immunoglobulin A Nephropathy and Their Potential Therapeutic Applications. Front. Med. 2022, 9, 823267. [Google Scholar] [CrossRef]
- Sallustio, F.; Curci, C.; Di Leo, V.; Gallone, A.; Pesce, F.; Gesualdo, L. A New Vision of IgA Nephropathy: The Missing Link. Int. J. Mol. Sci. 2019, 21, 189. [Google Scholar] [CrossRef]
- Caggiano, G.; Cosola, C.; Di Leo, V.; Gesualdo, M.; Gesualdo, L. Microbiome modulation to correct uremic toxins and to preserve kidney functions. Curr. Opin. Nephrol. Hypertens. 2020, 29, 49–56. [Google Scholar] [CrossRef]
- Bibbo, S.; Settanni, C.R.; Porcari, S.; Bocchino, E.; Ianiro, G.; Cammarota, G.; Gasbarrini, A. Fecal Microbiota Transplantation: Screening and Selection to Choose the Optimal Donor. J. Clin. Med. 2020, 9, 1757. [Google Scholar] [CrossRef]
- Di Leo, V.; Gleeson, P.J.; Sallustio, F.; Bounaix, C.; Da Silva, J.; Loreto, G.; Ben Mkaddem, S.; Monteiro, R.C. Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. J. Pers. Med. 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, F.; Picerno, A.; Montenegro, F.; Cimmarusti, M.T.; Di Leo, V.; Gesualdo, L. The Human Virome and Its Crosslink with Glomerulonephritis and IgA Nephropathy. Int. J. Mol. Sci. 2023, 24, 3897. [Google Scholar] [CrossRef]
- Wang, J.W.; Kuo, C.H.; Kuo, F.C.; Wang, Y.K.; Hsu, W.H.; Yu, F.J.; Hu, H.M.; Hsu, P.I.; Wang, J.Y.; Wu, D.C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. Taiwan Yi Zhi 2019, 118 (Suppl. S1), S23–S31. [Google Scholar] [CrossRef]
- Gesualdo, L.; Di Leo, V.; Coppo, R. The mucosal immune system and IgA nephropathy. Semin. Immunopathol. 2021, 43, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Lauriero, G.; Abbad, L.; Vacca, M.; Celano, G.; Chemouny, J.M.; Calasso, M.; Berthelot, L.; Gesualdo, L.; De Angelis, M.; Monteiro, R.C. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front. Immunol. 2021, 12, 694787. [Google Scholar] [CrossRef]
- Zhi, W.; Song, W.; Abdi Saed, Y.; Wang, Y.; Li, Y. Fecal Capsule as a Therapeutic Strategy in IgA Nephropathy: A Brief Report. Front. Med. 2022, 9, 914250. [Google Scholar] [CrossRef] [PubMed]
- Naka, T.; Narazaki, M.; Hirata, M.; Matsumoto, T.; Minamoto, S.; Aono, A.; Nishimoto, N.; Kajita, T.; Taga, T.; Yoshizaki, K.; et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997, 387, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Takagi, N.; Takeda, Y.; Ohsugi, Y. IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice. Clin. Exp. Immunol. 1998, 112, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Kitaba, S.; Murota, H.; Terao, M.; Azukizawa, H.; Terabe, F.; Shima, Y.; Fujimoto, M.; Tanaka, T.; Naka, T.; Kishimoto, T.; et al. Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am. J. Pathol. 2012, 180, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, F.; Serino, G.; Cox, S.N.; Dalla Gassa, A.; Curci, C.; De Palma, G.; Banelli, B.; Zaza, G.; Romani, M.; Schena, F.P. Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin. Sci. 2016, 130, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, F.; Picerno, A.; Cimmarusti, M.T.; Montenegro, F.; Curci, C.; De Palma, G.; Sivo, C.; Annese, F.; Fonto, G.; Stasi, A.; et al. Elevated levels of IL-6 in IgA nephropathy patients are induced by an epigenetically driven mechanism modulated by viral and bacterial RNA. Eur. J. Intern. Med. 2023, 118, 108–117. [Google Scholar] [CrossRef]
- Kalra, J.; Dasari, D.; Bhat, A.; Mangali, S.; Goyal, S.G.; Jadhav, K.B.; Dhar, A. PKR inhibitor imoxin prevents hypertension, endothelial dysfunction and cardiac and vascular remodelling in L-NAME-treated rats. Life Sci. 2020, 262, 118436. [Google Scholar] [CrossRef]
- Kalra, J.; Dhar, A. Double-stranded RNA-dependent protein kinase signalling and paradigms of cardiometabolic syndrome. Fundam. Clin. Pharmacol. 2017, 31, 265–279. [Google Scholar] [CrossRef]
- Floege, J.; Barbour, S.J.; Cattran, D.C.; Hogan, J.J.; Nachman, P.H.; Tang, S.C.W.; Wetzels, J.F.M.; Cheung, M.; Wheeler, D.C.; Winkelmayer, W.C.; et al. Management and treatment of glomerular diseases (part 1): Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019, 95, 268–280. [Google Scholar] [CrossRef]
- Di Leo, V.; Capaccio, F.; Gesualdo, L. Preeclampsia and Glomerulonephritis: A Bidirectional Association. Curr. Hypertens. Rep. 2020, 22, 36. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Zhang, W.; Zhang, X.H.; He, Q.; Tao, X.J.; Chen, J.H. ACEI/ARB therapy for IgA nephropathy: A meta analysis of randomised controlled trials. Int. J. Clin. Pract. 2009, 63, 880–888. [Google Scholar] [CrossRef] [PubMed]
Drug | Mechanism of Action | Route of Administration | Phase | ClinicalTrials.gov (Accessed on 1 December 2023) ID |
---|---|---|---|---|
Sparsentan | Selective antagonists of the angiotensin II receptor and endothelin A receptor | Oral | III | NCT03762850 (PROTECT) |
Atrasentan | Antagonist of endothelin A receptor | Oral | III | NCT04573478 (ALIGN) |
Hydroxychloroquine | TLR signaling inhibitor | Oral | II | NCT02942381 |
Blisibimod (AMG623) | Inhibits both soluble and membrane BAFF | Subcutaneous | II/III | NCT02062684 |
Sibeprenlimab (VIS649) | Humanized IgG2 monoclonal antibody that inhibits APRIL | Subcutaneous | III | NCT05248646 |
BION-1301 | Monoclonal IgG4 antibody targeting APRIL | Intravenous infusion/subcutaneous | I/II | NCT03945318 |
Atacicept | Inhibits BAFF and APRIL | Subcutaneous | II/III | NCT04716231 (ORIGIN 3) |
Telitacicept | Dual inhibitor of BAFF/APRIL | Subcutaneous | III | NCT05799287 |
Felzartamab (MOR202) | Humanized IgG1 monoclonal antibody against CD38 | Intravenous infusion | II | NCT05065970 (IGNAZ) |
Mezagitamab (TAK-079) | Anti-CD38 human IgG1 monoclonal antibody | Subcutaneous | I | NCT05174221 |
CCX168 | Anti-C5a receptor antagonist | Oral | II | NCT02384317 |
Ravalizumab (ALXN1210) | Long-acting C5-blocking antibody | Intravenous infusion | II | NCT04564339 |
Cemdisiran (ALN-CC5) | Small interfering RNA-targeting C5 | Subcutaneous | II | NCT03841448 |
Iptacopan (LNP023) | Selective C5a receptor inhibitor | Oral | II III | NCT03373461 NCT04578834 (APPLAUSE) |
Pegcetacoplan (APL-2) | Prevents the cleavage and activation of C3 | Subcutaneous | II | NCT03453619 |
Vemircopan (ALXN2050) | Factor D inhibitor | Oral | II | NCT05097989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Leo, V.; Annese, F.; Papadia, F.; Russo, M.S.; Giliberti, M.; Sallustio, F.; Gesualdo, L. Refractory IgA Nephropathy: A Challenge for Future Nephrologists. Medicina 2024, 60, 274. https://doi.org/10.3390/medicina60020274
Di Leo V, Annese F, Papadia F, Russo MS, Giliberti M, Sallustio F, Gesualdo L. Refractory IgA Nephropathy: A Challenge for Future Nephrologists. Medicina. 2024; 60(2):274. https://doi.org/10.3390/medicina60020274
Chicago/Turabian StyleDi Leo, Vincenzo, Francesca Annese, Federica Papadia, Maria Serena Russo, Marica Giliberti, Fabio Sallustio, and Loreto Gesualdo. 2024. "Refractory IgA Nephropathy: A Challenge for Future Nephrologists" Medicina 60, no. 2: 274. https://doi.org/10.3390/medicina60020274
APA StyleDi Leo, V., Annese, F., Papadia, F., Russo, M. S., Giliberti, M., Sallustio, F., & Gesualdo, L. (2024). Refractory IgA Nephropathy: A Challenge for Future Nephrologists. Medicina, 60(2), 274. https://doi.org/10.3390/medicina60020274