Explainable Model Using Shapley Additive Explanations Approach on Wound Infection after Wide Soft Tissue Sarcoma Resection: “Big Data” Analysis Based on Health Insurance Review and Assessment Service Hub
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Populations and Data Source
2.3. Data Analyses
3. Results
SHAP Values
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, J.; Isler, M.; Barry, J.; Mottard, S. Major wound complication risk factors following soft tissue sarcoma resection. Eur. J. Surg. Oncol. 2014, 40, 1671–1676. [Google Scholar] [CrossRef]
- Lahat, G.; Dhuka, A.R.; Lahat, S.; Lazar, A.J.; Lewis, V.O.; Lin, P.P.; Feig, B.; Cormier, J.N.; Hunt, K.K.; Pisters, P.W.T.; et al. Complete Soft Tissue Sarcoma Resection is a Viable Treatment Option for Select Elderly Patients. Ann. Surg. Oncol. 2009, 16, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Bensaid, S.; Contejean, A.; Morand, P.; Enser, M.; Eyrolle, L.; Charlier, C.; Kernéis, S.; Anract, P.; Biau, D.; Canouï, E. Surgical site infection after pelvic bone and soft tissue sarcoma resection: Risk factors, microbiology, and impact of extended postoperative antibiotic prophylaxis. J. Surg. Oncol. 2023, 128, 344–349. [Google Scholar] [CrossRef]
- Severyns, M.; Briand, S.; Waast, D.; Touchais, S.; Hamel, A.; Gouin, F. Postoperative infections after limb-sparing surgery for primary bone tumors of the pelvis: Incidence, characterization and functional impact. Surg. Oncol. 2017, 26, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Vamvakas, E.C. Possible mechanisms of allogeneic blood transfusion-associated postoperative infection. Transfus. Med. Rev. 2002, 16, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I.; Consortium, P.Q. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.E. The Shapley Value: Essays in Honor of Lloyd S. Shapley; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Lee, K.-S.; Ham, B.-J. Machine learning on early diagnosis of depression. Psychiatry Investig. 2022, 19, 597. [Google Scholar] [CrossRef]
- Lee, K.-S.; Kim, E.S. Explainable Artificial Intelligence in the Early Diagnosis of Gastrointestinal Disease. Diagnostics 2022, 12, 2740. [Google Scholar] [CrossRef] [PubMed]
- Offner, P.J.; Moore, E.E.; Biffl, W.L. Male gender is a risk factor for major infections after surgery. Arch. Surg. 1999, 134, 935–940. [Google Scholar] [CrossRef]
- Lipska, M.A.; Bissett, I.P.; Parry, B.R.; Merrie, A.E. Anastomotic leakage after lower gastrointestinal anastomosis: Men are at a higher risk. ANZ J. Surg. 2006, 76, 579–585. [Google Scholar] [CrossRef]
- Dekker, J.W.; Liefers, G.J.; de Mol van Otterloo, J.C.; Putter, H.; Tollenaar, R.A. Predicting the risk of anastomotic leakage in left-sided colorectal surgery using a colon leakage score. J. Surg. Res. 2011, 166, e27–e34. [Google Scholar] [CrossRef]
- Yang, L.-l.; Xiao, Z.-l.; An, P.-j.; Yan, H.-j.; Li, Q. Association between pressure ulcers and the risk of postoperative infections in male adults with spinal cord injury. Br. J. Neurosurg. 2023, 37, 254–257. [Google Scholar] [CrossRef]
- Coleman, S.; Gorecki, C.; Nelson, E.A.; Closs, S.J.; Defloor, T.; Halfens, R.; Farrin, A.; Brown, J.; Schoonhoven, L.; Nixon, J. Patient risk factors for pressure ulcer development: Systematic review. Int. J. Nurs. Stud. 2013, 50, 974–1003. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, R.M.; Formiga, F.; Alert, P.D.; Sangrà, R.A. Prevalence of malnutrition in Spanish elders: Systematic review. Med. Clin. 2012, 139, 502–508. [Google Scholar]
- Deren, M.E.; Huleatt, J.; Winkler, M.F.; Rubin, L.E.; Salzler, M.J.; Behrens, S.B. Assessment and Treatment of Malnutrition in Orthopaedic Surgery. JBJS Rev. 2014, 2, e1. [Google Scholar] [CrossRef] [PubMed]
- Extermann, M. Measurement and impact of comorbidity in older cancer patients. Crit. Rev. Oncol./Hematol. 2000, 35, 181–200. [Google Scholar] [CrossRef]
- Edelman, L.S. Social and economic factors associated with the risk of burn injury. Burns 2007, 33, 958–965. [Google Scholar] [CrossRef]
- Bakshi, S.C.; Fobare, A.; Benarroch-Gampel, J.; Teodorescu, V.; Rajani, R.R. Lower socioeconomic status is associated with groin wound complications after revascularization for peripheral artery disease. Ann. Vasc. Surg. 2020, 62, 76–82. [Google Scholar] [CrossRef]
- Everson, S.A.; Maty, S.C.; Lynch, J.W.; Kaplan, G.A. Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J. Psychosom. Res. 2002, 53, 891–895. [Google Scholar] [CrossRef]
- Kelley, E.; Moy, E.; Stryer, D.; Burstin, H.; Clancy, C. The national healthcare quality and disparities reports: An overview. Med. Care 2005, 43, I3–I8. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, S.; Schmitz, F.; Meschede, J.; Sedaghat, M. Systematic analysis of post-treatment soft-tissue edema and seroma on MRI in 177 sarcoma patients. Surg. Oncol. 2020, 35, 218–223. [Google Scholar] [CrossRef]
- Lyu, H.G.; Haider, A.H.; Landman, A.B.; Raut, C.P. The opportunities and shortcomings of using big data and national databases for sarcoma research. Cancer 2019, 125, 2926–2934. [Google Scholar] [CrossRef]
- Lawrenz, J.M.; Johnson, S.R.; Hajdu, K.S.; Chi, A.; Bendfeldt, G.A.; Kang, H.; Halpern, J.L.; Holt, G.E.; Schwartz, H.S. Is the number of national database research studies in musculoskeletal sarcoma increasing, and are these studies reliable? Clin. Orthop. Relat. Res. 2023, 481, 491–508. [Google Scholar] [CrossRef]
- Nohara, Y.; Matsumoto, K.; Soejima, H.; Nakashima, N. Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Comput. Methods Programs Biomed. 2022, 214, 106584. [Google Scholar] [CrossRef]
- Nosrati, H.; Nosrati, M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics 2023, 8, 442. [Google Scholar] [CrossRef]
Total (n = 10,969) | Infection (n = 886) | No-Infection (n = 10,083) | p-Value | ||||
---|---|---|---|---|---|---|---|
n | per | n | per | n | per | ||
Age (years) | 55.95 | 58.63 | 55.71 | p < 0.05 | |||
Transfusion | 2267 | 20.7% | 323 | 36.5% | 1944 | 19.3% | p < 0.05 |
Socioeconomic Status | 130,648 | 11.91 | 10,209 | 11.52 | 120,439 | 11.94 | |
Female | 4946 | 45.1% | 322 | 36.3% | 4624 | 45.9% | p < 0.05 |
Liver Disease | 3586 | 32.7% | 351 | 39.6% | 3235 | 32.1% | p < 0.05 |
Iron | 805 | 7.3% | 103 | 11.6% | 702 | 7.0% | p < 0.05 |
Diabetes Mellitus | 3051 | 27.8% | 309 | 34.9% | 2742 | 27.2% | p < 0.05 |
Peripheral Vascular Disease | 3097 | 28.2% | 239 | 27.0% | 2858 | 28.3% | |
Hypertension | 4443 | 40.5% | 419 | 47.3% | 4024 | 39.9% | p < 0.05 |
Antithrombotic | 7837 | 71.4% | 703 | 79.3% | 7134 | 70.8% | p < 0.05 |
Anemia | 2385 | 21.7% | 215 | 24.3% | 2170 | 21.5% | |
COPD | 1896 | 17.3% | 165 | 18.6% | 1731 | 17.2% | |
Cardiovascular Disease | 955 | 8.7% | 78 | 8.8% | 877 | 8.7% | |
Congestive Heart Failure | 587 | 5.4% | 56 | 6.3% | 531 | 5.3% | |
Peptic Ulcer Disease | 1123 | 10.2% | 93 | 10.5% | 1030 | 10.2% | |
Dementia | 694 | 6.3% | 68 | 7.7% | 626 | 6.2% | |
Myocardial Infraction | 547 | 5.0% | 61 | 6.9% | 486 | 4.8% | p < 0.05 |
Tranexamic Acid | 501 | 4.6% | 51 | 5.8% | 450 | 4.5% | |
Hypothyroidism | 626 | 5.7% | 52 | 5.9% | 574 | 5.7% | |
Thrombocytopenia | 279 | 2.5% | 31 | 3.5% | 248 | 2.5% | |
Chronic Kidney Disease | 257 | 2.3% | 24 | 2.7% | 233 | 2.3% | |
Leukemia | 70 | 0.6% | 8 | 0.9% | 62 | 0.6% | |
Thyrotoxicosis Hyperthyroidism | 202 | 1.8% | 12 | 1.4% | 190 | 1.9% | |
Hemiplegia | 109 | 1.0% | 9 | 1.0% | 100 | 1.0% | |
Solid Tumor | 10,790 | 98.4% | 878 | 99.1% | 9912 | 98.3% | |
Lymphoma | 156 | 1.4% | 7 | 0.8% | 149 | 1.5% | |
Connective Tissue Disease | 111 | 1.0% | 6 | 0.7% | 105 | 1.0% | |
AIDS | 20 | 0.2% | 2 | 0.2% | 18 | 0.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H.; Choi, Y.; Lee, K.-S.; Ahn, K.-H.; Jang, W.Y. Explainable Model Using Shapley Additive Explanations Approach on Wound Infection after Wide Soft Tissue Sarcoma Resection: “Big Data” Analysis Based on Health Insurance Review and Assessment Service Hub. Medicina 2024, 60, 327. https://doi.org/10.3390/medicina60020327
Choi J-H, Choi Y, Lee K-S, Ahn K-H, Jang WY. Explainable Model Using Shapley Additive Explanations Approach on Wound Infection after Wide Soft Tissue Sarcoma Resection: “Big Data” Analysis Based on Health Insurance Review and Assessment Service Hub. Medicina. 2024; 60(2):327. https://doi.org/10.3390/medicina60020327
Chicago/Turabian StyleChoi, Ji-Hye, Yumin Choi, Kwang-Sig Lee, Ki-Hoon Ahn, and Woo Young Jang. 2024. "Explainable Model Using Shapley Additive Explanations Approach on Wound Infection after Wide Soft Tissue Sarcoma Resection: “Big Data” Analysis Based on Health Insurance Review and Assessment Service Hub" Medicina 60, no. 2: 327. https://doi.org/10.3390/medicina60020327
APA StyleChoi, J. -H., Choi, Y., Lee, K. -S., Ahn, K. -H., & Jang, W. Y. (2024). Explainable Model Using Shapley Additive Explanations Approach on Wound Infection after Wide Soft Tissue Sarcoma Resection: “Big Data” Analysis Based on Health Insurance Review and Assessment Service Hub. Medicina, 60(2), 327. https://doi.org/10.3390/medicina60020327