Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients
Abstract
:1. Introduction
2. Impact of COPD on the Progression of Cardiovascular Disease
3. Factors Associated with Developing Atrial Fibrillation in COPD Patients
3.1. Decline in Pulmonary Function and Hypoxia
3.2. Persistent Inflammation
3.3. Endothelial Dysfunction
3.4. Myocardial Remodeling
4. Effects of Medications Used to Treat COPD
5. Modern Methods of Early Detection and Prognosis of Atrial Fibrillation in Patients with COPD
5.1. Prediction of Atrial Fibrillation Based on Biomarkers
5.2. Prediction of Atrial Fibrillation Based on Functional Tests
5.3. Application of Multifactorial Clinical Models
5.4. Application of Machine-Learning Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warming, P.E.; Garcia, R.; Hansen, C.J.; Simons, S.O.; Torp-Pedersen, C.; Linz, D.; Tfelt-Hansen, J. Atrial Fibrillation and Chronic Obstructive Pulmonary Disease: Diagnostic Sequence and Mortality Risk. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 9, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Lip, G.Y.H.; De Caterina, R.; Savelieva, I.; Atar, D.; Hohnloser, S.H.; Hindricks, G.; Kirchhof, P.; ESC Committee for Practice Guidelines (CPG). 2012 Focused Update of the ESC Guidelines for the Management of Atrial Fibrillation: An Update of the 2010 ESC Guidelines for the Management of Atrial Fibrillation. Developed with the Special Contribution of the European Heart Rhythm Association. Eur. Heart J. 2012, 33, 2719–2747. [Google Scholar] [CrossRef] [PubMed]
- Nizov, A.A.; Ermachkova, A.N.; Abrosimov, V.N.; Ponomareva, I.B. Complex Assessment of the Degree of Chronic Obstructive Pulmonary Disease Copd Severity on Out-Patient Visit. I.P. Pavlov Russ. Med. Biol. Her. 2019, 27, 59–65. [Google Scholar] [CrossRef]
- Kotlyarov, S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2022, 23, 985. [Google Scholar] [CrossRef] [PubMed]
- Kotlyarov, S. Analysis of Differentially Expressed Genes and Signaling Pathways Involved in Atherosclerosis and Chronic Obstructive Pulmonary Disease. Biomol. Concepts 2022, 13, 34–54. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Magnuson, A.; Bryngelsson, I.-L.; Frøbert, O.; Henriksson, K.M.; Edvardsson, N.; Poçi, D. All-Cause Mortality in 272,186 Patients Hospitalized with Incident Atrial Fibrillation 1995–2008: A Swedish Nationwide Long-Term Case-Control Study. Eur. Heart J. 2013, 34, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Nagorni-Obradovic, L.M.; Vukovic, D.S. The Prevalence of COPD Co-Morbidities in Serbia: Results of a National Survey. NPJ Prim. Care Respir. Med. 2014, 24, 14008. [Google Scholar] [CrossRef] [PubMed]
- Feary, J.R.; Rodrigues, L.C.; Smith, C.J.; Hubbard, R.B.; Gibson, J.E. Prevalence of Major Comorbidities in Subjects with COPD and Incidence of Myocardial Infarction and Stroke: A Comprehensive Analysis Using Data from Primary Care. Thorax 2010, 65, 956–962. [Google Scholar] [CrossRef]
- Huang, B.; Yang, Y.; Zhu, J.; Liang, Y.; Zhang, H.; Tian, L.; Shao, X.; Wang, J. Clinical Characteristics and Prognostic Significance of Chronic Obstructive Pulmonary Disease in Patients with Atrial Fibrillation: Results from a Multicenter Atrial Fibrillation Registry Study. J. Am. Med. Dir. Assoc. 2014, 15, 576–581. [Google Scholar] [CrossRef]
- Ye, J.; Yao, P.; Shi, X.; Yu, X. A Systematic Literature Review and Meta-Analysis on the Impact of COPD on Atrial Fibrillation Patient Outcome. Heart Lung 2022, 51, 67–74. [Google Scholar] [CrossRef]
- Proietti, M.; Laroche, C.; Drozd, M.; Vijgen, J.; Cozma, D.C.; Drozdz, J.; Maggioni, A.P.; Boriani, G.; Lip, G.Y.H.; EORP-AF Investigators. Impact of Chronic Obstructive Pulmonary Disease on Prognosis in Atrial Fibrillation: A Report from the EURObservational Research Programme Pilot Survey on Atrial Fibrillation (EORP-AF) General Registry. Am. Heart J. 2016, 181, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Guo, S.; Liu, X.; Ma, J.; Zhu, W.; Zhou, Y.; Liu, F.; Luo, J. Impact of COPD or Asthma on the Risk of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 872446. [Google Scholar] [CrossRef]
- Shibata, Y.; Watanabe, T.; Osaka, D.; Abe, S.; Inoue, S.; Tokairin, Y.; Igarashi, A.; Yamauchi, K.; Kimura, T.; Kishi, H.; et al. Impairment of Pulmonary Function Is an Independent Risk Factor for Atrial Fibrillation: The Takahata Study. Int. J. Med. Sci. 2011, 8, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Hozawa, A.; Billings, J.L.; Shahar, E.; Ohira, T.; Rosamond, W.D.; Folsom, A.R. Lung Function and Ischemic Stroke Incidence: The Atherosclerosis Risk in Communities Study. Chest 2006, 130, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Bae, B.S.; Kim, J.H.; Jang, H.S.; Lee, B.-R.; Jung, B.-C. The Relationship between Chronic Atrial Fibrillation and Reduced Pulmonary Function in Cases of Preserved Left Ventricular Systolic Function. Korean Circ. J. 2009, 39, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Buch, P.; Friberg, J.; Scharling, H.; Lange, P.; Prescott, E. Reduced Lung Function and Risk of Atrial Fibrillation in the Copenhagen City Heart Study. Eur. Respir. J. 2003, 21, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Leonova, E.I.; Shechyan, G.G.; Zadionchenko, V.S.; Adasheva, T.V.; Deev, A.D.; Fedorova, I.V. Cardiopulmonary Factors Associated with Atrial Fibrillation in Patients with Chronic Obstructive Pulmonary Disease. Ration. Pharmacother. Cardiol. 2016, 12, 26–30. [Google Scholar] [CrossRef]
- Xiao, X.; Han, H.; Wu, C.; He, Q.; Ruan, Y.; Zhai, Y.; Gao, Y.; Zhao, X.; He, J. Prevalence of Atrial Fibrillation in Hospital Encounters With End-Stage COPD on Home Oxygen: National Trends in the United States. Chest 2019, 155, 918–927. [Google Scholar] [CrossRef]
- Lopez, C.M.; House-Fancher, M.A. Management of Atrial Fibrillation in Patients with Chronic Obstructive Pulmonary Disease. J. Cardiovasc. Nurs. 2005, 20, 133–140. [Google Scholar] [CrossRef]
- Arturo, A.T.; Urquieta, L.H.; Islas, D.G.; Vargas, A.F.; Fernández, A.I.; Valentín, A.J.; Ramos, R.D.; López, A.S.H.; Montiel, Y.P.; Santillán, R.S. Hypoxia as a Risk Factor for Arrhythmias in Patients with Chronic Obstructive Pulmonary Disease and Heart Failure. Eur. Respir. J. 2019, 54, PA4440. [Google Scholar] [CrossRef]
- Gramley, F.; Lorenzen, J.; Jedamzik, B.; Gatter, K.; Koellensperger, E.; Munzel, T.; Pezzella, F. Atrial Fibrillation Is Associated with Cardiac Hypoxia. Cardiovasc. Pathol. 2010, 19, 102–111. [Google Scholar] [CrossRef]
- Chen, M.-C.; Chang, J.-P.; Liu, W.-H.; Yang, C.-H.; Chen, Y.-L.; Tsai, T.-H.; Wang, Y.-H.; Pan, K.-L. Increased Inflammatory Cell Infiltration in the Atrial Myocardium of Patients with Atrial Fibrillation. Am. J. Cardiol. 2008, 102, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Wright, J.R. Expression of C-Reactive Protein by Alveolar Macrophages. J. Immunol. 1996, 156, 4815–4820. [Google Scholar] [CrossRef] [PubMed]
- Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; et al. Inflammation as a Risk Factor for Atrial Fibrillation. Circulation 2003, 108, 3006–3010. [Google Scholar] [CrossRef] [PubMed]
- Loricchio, M.L.; Cianfrocca, C.; Pasceri, V.; Bianconi, L.; Auriti, A.; Calo, L.; Lamberti, F.; Castro, A.; Pandozi, C.; Palamara, A.; et al. Relation of C-Reactive Protein to Long-Term Risk of Recurrence of Atrial Fibrillation after Electrical Cardioversion. Am. J. Cardiol. 2007, 99, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Yo, C.-H.; Lee, S.-H.; Chang, S.-S.; Lee, M.C.-H.; Lee, C.-C. Value of High-Sensitivity C-Reactive Protein Assays in Predicting Atrial Fibrillation Recurrence: A Systematic Review and Meta-Analysis. BMJ Open 2014, 4, e004418. [Google Scholar] [CrossRef] [PubMed]
- Alegret, J.M.; Aragonès, G.; Elosua, R.; Beltrán-Debón, R.; Hernández-Aguilera, A.; Romero-Menor, C.; Camps, J.; Joven, J. The Relevance of the Association between Inflammation and Atrial Fibrillation. Eur. J. Clin. Investig. 2013, 43, 324–331. [Google Scholar] [CrossRef]
- Verdejo, H.; Roldan, J.; Garcia, L.; Del Campo, A.; Becerra, E.; Chiong, M.; Mellado, R.; Garcia, A.; Zalaquett, R.; Braun, S.; et al. Systemic Vascular Cell Adhesion Molecule-1 Predicts the Occurrence of Post-Operative Atrial Fibrillation. Int. J. Cardiol. 2011, 150, 270–276. [Google Scholar] [CrossRef]
- Schuetz, P.; Leuppi, J.D.; Bingisser, R.; Bodmer, M.; Briel, M.; Drescher, T.; Duerring, U.; Henzen, C.; Leibbrandt, Y.; Maier, S.; et al. Prospective Analysis of Adrenal Function in Patients with Acute Exacerbations of COPD: The Reduction in the Use of Corticosteroids in Exacerbated COPD (REDUCE) Trial. Eur. J. Endocrinol. 2015, 173, 19–27. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, X.; Xiao, C.; Xiong, G.; Ye, X.; Li, L.; Fang, Y.; Chen, H.; Yang, W.; Du, X. The Role of Lung Macrophages in Chronic Obstructive Pulmonary Disease. Respir. Med. 2022, 205, 107035. [Google Scholar] [CrossRef]
- Finicelli, M.; Digilio, F.A.; Galderisi, U.; Peluso, G. The Emerging Role of Macrophages in Chronic Obstructive Pulmonary Disease: The Potential Impact of Oxidative Stress and Extracellular Vesicle on Macrophage Polarization and Function. Antioxidants 2022, 11, 464. [Google Scholar] [CrossRef]
- Hulsmans, M.; Clauss, S.; Xiao, L.; Aguirre, A.D.; King, K.R.; Hanley, A.; Hucker, W.J.; Wülfers, E.M.; Seemann, G.; Courties, G.; et al. Macrophages Facilitate Electrical Conduction in the Heart. Cell 2017, 169, 510–522.e20. [Google Scholar] [CrossRef]
- Forte, E. Recruited Macrophages Are a Potential Therapeutic Target in Atrial Fibrillation. Nat. Cardiovasc. Res. 2023, 2, 715. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, M.; Liu, D.; Zhao, Q. Immune Remodeling and Atrial Fibrillation. Front. Physiol. 2022, 13, 927221. [Google Scholar] [CrossRef] [PubMed]
- Gomez, S.E.; Parizo, J.; Ermakov, S.; Larson, J.; Wallace, R.; Assimes, T.; Hlatky, M.; Stefanick, M.; Perez, M.V. Evaluation of the Association between Circulating IL-1β and Other Inflammatory Cytokines and Incident Atrial Fibrillation in a Cohort of Postmenopausal Women. Am. Heart J. 2023, 258, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Liu, Z.-Q.; He, P.-Y.; Muhuyati. The Role of IL-6, IL-10, TNF-α and PD-1 Expression on CD4 T Cells in Atrial Fibrillation. Heliyon 2023, 9, e18818. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, R.; Iwasaki, Y.-K.; Miyauchi, Y.; Hirayama, Y.; Kobayashi, Y.; Katoh, T.; Mizuno, K.; Sekiguchi, A.; Yamashita, T. Lipopolysaccharide Induces Atrial Arrhythmogenesis via Down-Regulation of L-Type Ca2+ Channel Genes in Rats. Int. Heart J. 2009, 50, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhou, D.; Xie, X.; Wang, S.; Wang, Z.; Zhao, W.; Xu, H.; Zheng, L. Cross-Talk between Macrophages and Atrial Myocytes in Atrial Fibrillation. Basic Res. Cardiol. 2016, 111, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xiong, H.; Lu, L.; Zhu, T.; Jiang, H. Serum Lipopolysaccharide Is Associated with the Recurrence of Atrial Fibrillation after Radiofrequency Ablation by Increasing Systemic Inflammation and Atrial Fibrosis. Oxid. Med. Cell Longev. 2022, 2022, 2405972. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Duval, S.; Soliman, E.Z.; Ambrose, M.; Eberly, L.E.; Alonso, A. Smoking and Incidence of Atrial Fibrillation: Results from the Atherosclerosis Risk in Communities (ARIC) Study. Heart Rhythm. 2011, 8, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Chang, J.; Kim, K.; Kim, S.M.; Koo, H.-Y.; Cho, M.H.; Cho, I.Y.; Lee, H.; Son, J.S.; Park, S.M.; et al. Association of Smoking Cessation after Atrial Fibrillation Diagnosis on the Risk of Cardiovascular Disease: A Cohort Study of South Korean Men. BMC Public Health 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Heijman, J.; Hiram, R.; Li, N.; Nattel, S. Inflammatory Signalling in Atrial Cardiomyocytes: A Novel Unifying Principle in Atrial Fibrillation Pathophysiology. Nat. Rev. Cardiol. 2023, 20, 145–167. [Google Scholar] [CrossRef] [PubMed]
- Bobryshev, Y.V.; Ivanova, E.A.; Chistiakov, D.A.; Nikiforov, N.G.; Orekhov, A.N. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed. Res. Int. 2016, 2016, 9582430. [Google Scholar] [CrossRef]
- Bezsonov, E.; Khotina, V.; Glanz, V.; Sobenin, I.; Orekhov, A. Lipids and Lipoproteins in Atherosclerosis. Biomedicines 2023, 11, 1424. [Google Scholar] [CrossRef] [PubMed]
- Savransky, V.; Nanayakkara, A.; Li, J.; Bevans, S.; Smith, P.L.; Rodriguez, A.; Polotsky, V.Y. Chronic Intermittent Hypoxia Induces Atherosclerosis. Am. J. Respir. Crit. Care Med. 2007, 175, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Corban, M.T.; Toya, T.; Ahmad, A.; Lerman, L.O.; Lee, H.-C.; Lerman, A. Atrial Fibrillation and Endothelial Dysfunction: A Potential Link? Mayo Clin. Proc. 2021, 96, 1609–1621. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Efird, J.T.; Yeboah, J.; Nazarian, S.; Alonso, A.; Heckbert, S.R.; Soliman, E.Z. Brachial Flow-Mediated Dilation and Incident Atrial Fibrillation: The Multi-Ethnic Study of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2717–2720. [Google Scholar] [CrossRef] [PubMed]
- Corban, M.T.; Godo, S.; Burczak, D.R.; Noseworthy, P.A.; Toya, T.; Lewis, B.R.; Lerman, L.O.; Gulati, R.; Lerman, A. Coronary Endothelial Dysfunction Is Associated with Increased Risk of Incident Atrial Fibrillation. J. Am. Heart Assoc. 2020, 9, e014850. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.Y.; Wang, N.; Yin, X.; Larson, M.G.; Vasan, R.S.; Hamburg, N.M.; Magnani, J.W.; Ellinor, P.T.; Lubitz, S.A.; Mitchell, G.F.; et al. Relations of Arterial Stiffness and Brachial Flow-Mediated Dilation with New-Onset Atrial Fibrillation: The Framingham Heart Study. Hypertension 2016, 68, 590–596. [Google Scholar] [CrossRef]
- Black, N.; Mohammad, F.; Saraf, K.; Morris, G. Endothelial Function and Atrial Fibrillation: A Missing Piece of the Puzzle? J. Cardiovasc. Electrophysiol. 2022, 33, 109–116. [Google Scholar] [CrossRef]
- de Oliveira Caram, L.M.; Ferrari, R.; Naves, C.R.; Tanni, S.E.; Coelho, L.S.; Zanati, S.G.; Minicucci, M.F.; Godoy, I. Association between Left Ventricular Diastolic Dysfunction and Severity of Chronic Obstructive Pulmonary Disease. Clinics 2013, 68, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Tükek, T.; Yildiz, P.; Akkaya, V.; Akif Karan, M.; Atilgan, D.; Yilmaz, V.; Korkut, F. Factors Associated with the Development of Atrial Fibrillation in COPD Patients: The Role of P-Wave Dispersion. Ann. Noninvasive Electrocardiol. 2006, 7, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Shujaat, A.; Minkin, R.; Eden, E. Pulmonary Hypertension and Chronic Cor Pulmonale in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2007, 2, 273–282. [Google Scholar] [PubMed]
- Parikh, R.R.; Norby, F.L.; Wang, W.; Thenappan, T.; Prins, K.W.; Van’t Hof, J.R.; Lutsey, P.L.; Solomon, S.D.; Shah, A.M.; Chen, L.Y. Association of Right Ventricular Afterload with Atrial Fibrillation Risk in Older Adults: The Atherosclerosis Risk in Communities Study. Chest 2022, 162, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Funk, G.-C.; Lang, I.; Schenk, P.; Valipour, A.; Hartl, S.; Burghuber, O.C. Left Ventricular Diastolic Dysfunction in Patients with COPD in the Presence and Absence of Elevated Pulmonary Arterial Pressure. Chest 2008, 133, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.-Y.; Choi, J.-I.; Lee, J.Y.; Kwak, J.-J.; Park, J.-S.; Kim, J.-B.; Lim, H.-E.; Kim, Y.-H. Catheter Ablation of Atrial Fibrillation in Patients with Chronic Lung Disease. Circ. Arrhythm. Electrophysiol. 2011, 4, 815–822. [Google Scholar] [CrossRef]
- Hayashi, T.; Fukamizu, S.; Hojo, R.; Komiyama, K.; Tanabe, Y.; Tejima, T.; Nishizaki, M.; Hiraoka, M.; Ako, J.; Momomura, S.-I.; et al. Prevalence and Electrophysiological Characteristics of Typical Atrial Flutter in Patients with Atrial Fibrillation and Chronic Obstructive Pulmonary Disease. Europace 2013, 15, 1777–1783. [Google Scholar] [CrossRef]
- Salpeter, S.R.; Ormiston, T.M.; Salpeter, E.E. Cardiovascular Effects of Beta-Agonists in Patients with Asthma and COPD: A Meta-Analysis. Chest 2004, 125, 2309–2321. [Google Scholar] [CrossRef]
- Hanrahan, J.P.; Grogan, D.R.; Baumgartner, R.A.; Wilson, A.; Cheng, H.; Zimetbaum, P.J.; Morganroth, J. Arrhythmias in Patients with Chronic Obstructive Pulmonary Disease (COPD): Occurrence Frequency and the Effect of Treatment with the Inhaled Long-Acting Beta2-Agonists Arformoterol and Salmeterol. Medicine 2008, 87, 319–328. [Google Scholar] [CrossRef]
- Short, P.M.; Lipworth, S.I.W.; Elder, D.H.J.; Schembri, S.; Lipworth, B.J. Effect of Beta Blockers in Treatment of Chronic Obstructive Pulmonary Disease: A Retrospective Cohort Study. BMJ 2011, 342, d2549. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Hernández-Madrid, A.; Matía, R. Non-Antiarrhythmic Drugs to Prevent Atrial Fibrillation. Am. J. Cardiovasc. Drugs 2010, 10, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Alboni, P.; Paparella, N.; Cappato, R.; Pirani, R.; Yiannacopulu, P.; Antonioli, G.E. Long-Term Effects of Theophylline in Atrial Fibrillation with a Slow Ventricular Response. Am. J. Cardiol. 1993, 72, 1142–1145. [Google Scholar] [CrossRef] [PubMed]
- Varriale, P.; Ramaprasad, S. Aminophylline Induced Atrial Fibrillation. Pacing Clin. Electrophysiol. 1993, 16, 1953–1955. [Google Scholar] [CrossRef] [PubMed]
- Hothersall, E.; McSharry, C.; Thomson, N.C. Potential Therapeutic Role for Statins in Respiratory Disease. Thorax 2006, 61, 729–734. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Venkatesh, S.; Broughton, S.T.; Griffin, W.F.; Soliman, E.Z. Biomarkers and the Prediction of Atrial Fibrillation: State of the Art. Vasc. Health Risk Manag. 2016, 12, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Labaki, W.W.; Xia, M.; Murray, S.; Curtis, J.L.; Barr, R.G.; Bhatt, S.P.; Bleecker, E.R.; Hansel, N.N.; Cooper, C.B.; Dransfield, M.T.; et al. NT-proBNP in Stable COPD and Future Exacerbation Risk: Analysis of the SPIROMICS Cohort. Respir. Med. 2018, 140, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Lei, T.; Yu, H.; Zhang, L.; Feng, Z.; Shuai, T.; Guo, H.; Liu, J. NT-proBNP in Different Patient Groups of COPD: A Systematic Review and Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 811–825. [Google Scholar] [CrossRef]
- Stanciu, A.E.; Vatasescu, R.G.; Stanciu, M.M.; Serdarevic, N.; Dorobantu, M. The Role of Pro-Fibrotic Biomarkers in Paroxysmal and Persistent Atrial Fibrillation. Cytokine 2018, 103, 63–68. [Google Scholar] [CrossRef]
- Kasser, I.; Kennedy, J.W. The Relationship of Increased Left Atrial Volume and Pressure to Abnormal P Waves on the Electrocardiogram. Circulation 1969, 39, 339–343. [Google Scholar] [CrossRef]
- Dilaveris, P.E.; Gialafos, E.J.; Andrikopoulos, G.K.; Richter, D.J.; Papanikolaou, V.; Poralis, K.; Gialafos, J.E. Clinical and Electrocardiographic Predictors of Recurrent Atrial Fibrillation. Pacing Clin. Electrophysiol. 2000, 23, 352–358. [Google Scholar] [CrossRef] [PubMed]
- De Vos, C.B.; Weijs, B.; Crijns, H.J.G.M.; Cheriex, E.C.; Palmans, A.; Habets, J.; Prins, M.H.; Pisters, R.; Nieuwlaat, R.; Tieleman, R.G. Atrial Tissue Doppler Imaging for Prediction of New-Onset Atrial Fibrillation. Heart 2009, 95, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.F.; He, Y.M.; Qian, Y.X.; Zhao, X.; Li, X.; Yang, X.J. Left Ventricular Posterior Wall Thickness Is an Independent Risk Factor for Paroxysmal Atrial Fibrillation. West Indian Med. J. 2011, 60, 647–652. [Google Scholar] [PubMed]
- Hirose, T.; Kawasaki, M.; Tanaka, R.; Ono, K.; Watanabe, T.; Iwama, M.; Noda, T.; Watanabe, S.; Takemura, G.; Minatoguchi, S. Left Atrial Function Assessed by Speckle Tracking Echocardiography as a Predictor of New-Onset Non-Valvular Atrial Fibrillation: Results from a Prospective Study in 580 Adults. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Ebersberger, U.; Bernard, M.L.; Schoepf, U.J.; Wince, W.B.; Litwin, S.E.; Wang, Y.; Blanke, P.; Makowski, M.R.; McQuiston, A.D.; Silverman, J.R.; et al. Cardiac Computed Tomography for Atrial Fibrillation Patients Undergoing Ablation: Implications for the Prediction of Early Recurrence. J. Thorac. Imaging 2020, 35, 186–192. [Google Scholar] [CrossRef]
- Nakatani, Y.; Sakamoto, T.; Yamaguchi, Y.; Tsujino, Y.; Kataoka, N.; Kinugawa, K. Left Atrial Wall Thickness Is Associated with the Low-Voltage Area in Patients with Paroxysmal Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2020, 58, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Oh, Y.-W.; Lee, D.I.; Shim, J.; Park, S.-W.; Kim, Y.-H. Relation between Left Atrial Wall Composition by Late Gadolinium Enhancement and Complex Fractionated Atrial Electrograms in Patients with Persistent Atrial Fibrillation: Influence of Non-Fibrotic Substrate in the Left Atrium. Int. J. Cardiovasc. Imaging 2015, 31, 1191–1199. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 542–545. ISBN 978-0-12-811432-2. [Google Scholar]
- Schnabel, R.B.; Sullivan, L.M.; Levy, D.; Pencina, M.J.; Massaro, J.M.; D’Agostino, R.B.; Newton-Cheh, C.; Yamamoto, J.F.; Magnani, J.W.; Tadros, T.M.; et al. Development of a Risk Score for Atrial Fibrillation in the Community; The Framingham Heart Study. Lancet 2009, 373, 739–745. [Google Scholar] [CrossRef]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Soliman, E.Z.; Chambless, L.E.; Crow, R.; Ambrose, M.; Alonso, A. A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (from the Atherosclerosis Risk in Communities [ARIC] Study). Am. J. Cardiol. 2011, 107, 85–91. [Google Scholar] [CrossRef]
- Himmelreich, J.C.L.; Lucassen, W.A.M.; Harskamp, R.E.; Aussems, C.; van Weert, H.C.P.M.; Nielen, M.M.J. CHARGE-AF in a National Routine Primary Care Electronic Health Records Database in the Netherlands: Validation for 5-Year Risk of Atrial Fibrillation and Implications for Patient Selection in Atrial Fibrillation Screening. Open Heart 2021, 8, e001459. [Google Scholar] [CrossRef]
- Li, Y.-G.; Pastori, D.; Farcomeni, A.; Yang, P.-S.; Jang, E.; Joung, B.; Wang, Y.-T.; Guo, Y.-T.; Lip, G.Y.H. A Simple Clinical Risk Score (C2HEST) for Predicting Incident Atrial Fibrillation in Asian Subjects: Derivation in 471,446 Chinese Subjects, with Internal Validation and External Application in 451,199 Korean Subjects. Chest 2019, 155, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Suenari, K.; Chao, T.-F.; Liu, C.-J.; Kihara, Y.; Chen, T.-J.; Chen, S.-A. Usefulness of HATCH Score in the Prediction of New-Onset Atrial Fibrillation for Asians. Medicine 2017, 96, e5597. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Krijthe, B.P.; Aspelund, T.; Stepas, K.A.; Pencina, M.J.; Moser, C.B.; Sinner, M.F.; Sotoodehnia, N.; Fontes, J.D.; Janssens, A.C.J.W.; et al. Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: The CHARGE-AF Consortium. J. Am. Heart Assoc. 2013, 2, e000102. [Google Scholar] [CrossRef] [PubMed]
- FitzHenry, F.; Resnic, F.S.; Robbins, S.L.; Denton, J.; Nookala, L.; Meeker, D.; Ohno-Machado, L.; Matheny, M.E. Creating a Common Data Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership. Appl. Clin. Inform. 2015, 6, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Koohy, H. The Rise and Fall of Machine Learning Methods in Biomedical Research. F1000Res 2017, 6, 2012. [Google Scholar] [CrossRef]
- Stanković, L.; Mandic, D. Convolutional Neural Networks Demystified: A Matched Filtering Perspective-Based Tutorial. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 3614–3628. [Google Scholar] [CrossRef]
- Tseng, A.S.; Noseworthy, P.A. Prediction of Atrial Fibrillation Using Machine Learning: A Review. Front. Physiol. 2021, 12, 752317. [Google Scholar] [CrossRef]
- Tiwari, P.; Colborn, K.L.; Smith, D.E.; Xing, F.; Ghosh, D.; Rosenberg, M.A. Assessment of a Machine Learning Model Applied to Harmonized Electronic Health Record Data for the Prediction of Incident Atrial Fibrillation. JAMA Netw. Open 2020, 3, e1919396. [Google Scholar] [CrossRef]
- Sekelj, S.; Sandler, B.; Johnston, E.; Pollock, K.G.; Hill, N.R.; Gordon, J.; Tsang, C.; Khan, S.; Ng, F.S.; Farooqui, U. Detecting Undiagnosed Atrial Fibrillation in UK Primary Care: Validation of a Machine Learning Prediction Algorithm in a Retrospective Cohort Study. Eur. J. Prev. Cardiol. 2021, 28, 598–605. [Google Scholar] [CrossRef]
- Hill, N.R.; Ayoubkhani, D.; McEwan, P.; Sugrue, D.M.; Farooqui, U.; Lister, S.; Lumley, M.; Bakhai, A.; Cohen, A.T.; O’Neill, M.; et al. Predicting Atrial Fibrillation in Primary Care Using Machine Learning. PLoS ONE 2019, 14, e0224582. [Google Scholar] [CrossRef]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An Artificial Intelligence-Enabled ECG Algorithm for the Identification of Patients with Atrial Fibrillation during Sinus Rhythm: A Retrospective Analysis of Outcome Prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
- Ebrahimzadeh, E.; Kalantari, M.; Joulani, M.; Shahraki, R.S.; Fayaz, F.; Ahmadi, F. Prediction of Paroxysmal Atrial Fibrillation: A Machine Learning Based Approach Using Combined Feature Vector and Mixture of Expert Classification on HRV Signal. Comput. Methods Programs Biomed. 2018, 165, 53–67. [Google Scholar] [CrossRef]
- Firouznia, M.; Feeny, A.K.; LaBarbera, M.A.; McHale, M.; Cantlay, C.; Kalfas, N.; Schoenhagen, P.; Saliba, W.; Tchou, P.; Barnard, J.; et al. Machine Learning-Derived Fractal Features of Shape and Texture of the Left Atrium and Pulmonary Veins from Cardiac Computed Tomography Scans Are Associated with Risk of Recurrence of Atrial Fibrillation Postablation. Circ. Arrhythm. Electrophysiol. 2021, 14, e009265. [Google Scholar] [CrossRef]
- Atta-Fosu, T.; LaBarbera, M.; Ghose, S.; Schoenhagen, P.; Saliba, W.; Tchou, P.J.; Lindsay, B.D.; Desai, M.Y.; Kwon, D.; Chung, M.K.; et al. A New Machine Learning Approach for Predicting Likelihood of Recurrence following Ablation for Atrial Fibrillation from CT. BMC Med. Imaging 2021, 21, 45. [Google Scholar] [CrossRef]
Study | Number of Participants | Performance Indicator in the Study 1 | Reference |
---|---|---|---|
FHS | 49,599 | AUC = 0.78 (0.76–0.80) | [79] |
ARIC | 14,546 | AUC = 0.77 (0.75–0.78) | [80] |
CHARGE-AF | 18,556 | AUC = 0.77 (0.75–0.78) | [81] |
C2HEST | 471,446 | AUC = 0.75 (0.73–0.77) | [82] |
HATCH | 670,804 | AUC = 0.72 (0.71–0.72) | [83] |
Factor | FHS | ARIC * | CHARGE-AF ** | C2HEST ** | HATCH * |
---|---|---|---|---|---|
Blood pressure | + | + | + | + | + |
Weight | + | + | |||
Age | + | + | + | + | + |
Left Ventricular Hypertrophy | + | ||||
Ischemic Heart Disease | + | + | |||
Stroke or Transient Ischemic Attack | + | ||||
History of Myocardial Infarction | + | + | + | ||
Body Mass Index | + | ||||
Smoking Status | + | + | + | ||
Sex | + | ||||
Race | + | + | + | ||
Height | + | + | + | ||
Diabetes Mellitus | + | + | + | ||
Heart Murmur | + | + | |||
Thyrotoxicosis | + | ||||
Left Atrial Enlargement | + | ||||
COPD | + | + | |||
Chronic Heart Failure | + | + | + | + | + |
Electrocardiogram | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyarov, S.; Lyubavin, A. Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients. Medicina 2024, 60, 352. https://doi.org/10.3390/medicina60030352
Kotlyarov S, Lyubavin A. Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients. Medicina. 2024; 60(3):352. https://doi.org/10.3390/medicina60030352
Chicago/Turabian StyleKotlyarov, Stanislav, and Alexander Lyubavin. 2024. "Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients" Medicina 60, no. 3: 352. https://doi.org/10.3390/medicina60030352
APA StyleKotlyarov, S., & Lyubavin, A. (2024). Early Detection of Atrial Fibrillation in Chronic Obstructive Pulmonary Disease Patients. Medicina, 60(3), 352. https://doi.org/10.3390/medicina60030352