Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma
Abstract
:1. Introduction
2. Genomic Alterations of Clinical Interest in UC
2.1. FGFR Alterations
2.2. HER2 Overexpression
2.3. Mutations of the PI3K/AKT/mTOR Axis
2.4. DNA Damage Response Gene Alterations
2.5. Microsatellite Instability
2.6. Other Targets of Potential Clinical Interest in UC
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversann, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- SEER*Explorer Application. Available online: https://seer.cancer.gov/statistics-network/explorer/application.html?site=1&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&rate_type=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_show_ci=on&hdn_view=0&advopt_show_apc=on&advopt_display=2#resultsRegion0 (accessed on 26 January 2024).
- Rizzo, M.; Giannatempo, P.; Porta, C. Biological therapeutic advances for the treatment of advanced urothelial cancers. Biologics 2021, 15, 441–450. [Google Scholar] [CrossRef]
- Advanced Bladder Cancer (ABC) Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur. Urol. 2005, 48, 202–205; discussion 205. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, J.Y.; Jung, J.H.; Hah, Y.S.; Cho, K.S. Role of adjuvant cisplatin-based chemotherapy following radical cystectomy in locally advanced muscle-invasive bladder cancer: Systematic review and meta-analysis of randomized trials. Investig. Clin. Urol. 2019, 60, 64–74. [Google Scholar] [CrossRef]
- von der Maase, H.; Hansen, S.W.; Roberts, J.T.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Bodrogi, I.; Albers, P.; Knuth, A.M.; Lippert, C.M.; et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 2023, 41, 3881–3890. [Google Scholar] [CrossRef]
- Li, R.; Nocera, L.; Rose, K.M.; Raggi, D.; Naidu, S.; Mercinelli, C.; Cigliola, A.; Tateo, V.; Patanè, D.; Grass, G.D.; et al. Comparative Effectiveness of Neoadjuvant Pembrolizumab Versus Cisplatin-based Chemotherapy or Upfront Radical Cystectomy in Patients with Muscle-invasive Urothelial Bladder Cancer. Eur. Urol. Oncol. 2024, in press. [Google Scholar] [CrossRef]
- van der Heijden, M.S.; Sonpavde, G.; Powles, T.; Necchi, A.; Burotto, M.; Schenker, M.; Sade, J.P.; Bamias, A.; Beuzeboc, P.; Bedke, J.; et al. Nivolumab plus Gemcitabine-Cisplatin in Advanced Urothelial Carcinoma. N. Engl. J. Med. 2023, 389, 1778–1789. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Powles, T.; Sonpavde, G.P.; Loriot, Y.; Duran, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Mamtani, R.; et al. EV-301 long-term outcomes: 24-month findings from the phase III trial of enfortumab vedotin versus chemotherapy in patients with previously treated advanced urothelial carcinoma. Ann. Oncol. 2023, 34, 1047–1054. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Ullén, A.; Loriot, Y.; Sridhar, S.S.; Sternberg, C.N.; Bellmunt, J.; et al. Avelumab First-Line Maintenance for Advanced Urothelial Carcinoma: Results from the JAVELIN Bladder 100 Trial After ≥2 Years of Follow-Up. J. Clin. Oncol. 2023, 41, 3486–3492. [Google Scholar] [CrossRef]
- Powles, T.B.; Perez Valderrama, B.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. LBA6 EV-302/KEYNOTE-A39: Open-label, randomized phase III study of enfortumab vedotin in combination with pembrolizumab (EV+P) vs chemotherapy (Chemo) in previously untreated locally advanced metastatic urothelial carcinoma (la/mUC). Ann. Oncol. 2023, 34, S1340. [Google Scholar] [CrossRef]
- Balar, A.V.; Castellano, D.E.; Grivas, P.; Vaughn, D.J.; Powles, T.; Vuky, J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; et al. Efficacy and safety of pembrolizumab in metastatic urothelial carcinoma: Results from KEYNOTE-045 and KEYNOTE-052 after up to 5 years of follow-up. Ann. Oncol. 2023, 34, 289–299. [Google Scholar] [CrossRef]
- Loriot, Y.; Petrylak, D.P.; Kalebasty, A.R.; Fléchon, A.; Jain, R.K.; Gupta, S.; Bupathi, M.; Beuzeboc, P.; Palmbos, P.; Balar, A.V.; et al. TROPHY-U-01, a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors: Updated safety and efficacy outcomes. Ann. Oncol. 2024, in press. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; González-Martín, A.; Jung, K.H.; Ługowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Loriot, Y.; Matsubara, N.; Park, S.H.; Huddart, R.A.; Burgess, E.F.; Houede, N.; Banek, S.; Laguerre, B.; Guadalupi, V.; Ku, J.H.; et al. Phase 3 THOR study: Results of erdafitinib (erda) versus chemotherapy (chemo) in patients (pts) with advanced or metastatic urothelial cancer (mUC) with select fibroblast growth factor receptor alterations (FGFRalt). J. Clin. Oncol. 2023, 41, LBA4619. [Google Scholar] [CrossRef]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef]
- Pal, S.K.; Rosenberg, J.E.; Hoffman-Censits, J.H.; Berger, R.; Quinn, D.I.; Galsky, M.D.; Wolf, J.; Dittrich, C.; Keam, B.; Delord, J.P.; et al. Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1–3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations. Cancer Discov. 2018, 8, 812–821. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Iyer, G.; Regazzi, A.M.; Al-Ahmadie, H.; Gerst, S.R.; Ostrovnaya, I.; Gellert, L.L.; Kaplan, R.; Garcia-Grossman, I.R.; Pendse, D.; et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 2013, 112, 462–470. [Google Scholar] [CrossRef]
- Seront, E.; Rottey, S.; Sautois, B.; Kerger, J.; D’Hondt, L.A.; Verschaeve, V.; Canon, J.L.; Dopchie, C.; Vandenbulcke, J.M.; Whenham, N.; et al. Phase II study of everolimus in patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract: Clinical activity, molecular response, and biomarkers. Ann. Oncol. 2012, 23, 2663–2670. [Google Scholar] [CrossRef]
- Seront, E.; Rottey, S.; Filleul, B.; Glorieux, P.; Goeminne, J.C.; Verschaeve, V.; Vandenbulcke, J.M.; Sautois, B.; Boegner, P.; Gillain, A.; et al. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma. BJU Int. 2016, 118, 408–415. [Google Scholar] [CrossRef]
- Thisse, B.; Thisse, C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 2005, 287, 390–402. [Google Scholar] [CrossRef]
- Schlessinger, J.; Plotnikov, A.N.; Ibrahimi, O.A.; Eliseenkova, A.V.; Yeh, B.K.; Yayon, A.; Linhardt, R.J.; Mohammadi, M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell. 2000, 6, 743–750. [Google Scholar] [CrossRef]
- Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug. Discov. 2009, 8, 235–253. [Google Scholar] [CrossRef]
- Kalinina, J.; Dutta, K.; Ilghari, D.; Beenken, A.; Goetz, R.; Eliseenkova, A.V.; Cowburn, D.; Mohammadi, M. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 2012, 20, 77–88. [Google Scholar] [CrossRef]
- Katoh, M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int. J. Mol. Med. 2016, 38, 3–15. [Google Scholar] [CrossRef]
- Ghedini, G.C.; Ronca, R.; Presta, M.; Giacomini, A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev. Anticancer Ther. 2018, 18, 861–872. [Google Scholar] [CrossRef]
- Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005, 16, 139–149. [Google Scholar] [CrossRef]
- van Oers, J.M.; Zwarthoff, E.C.; Rehman, I.; Azzouzi, A.R.; Cussenot, O.; Meuth, M.; Hamdy, F.C.; Catto, J.W. FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours. Eur. Urol. 2009, 55, 650–657. [Google Scholar] [CrossRef]
- Hubert, P.; Selmani, Z.; Loriot, Y.; Thiery-Vuillemin, A. FGFR alterations in urothelial carcinoma: Picking the right target. Bull. Cancer 2021, 108, 566–570. [Google Scholar] [CrossRef]
- Szklener, K.; Chmiel, P.; Michalski, A.; Mańdziuk, S. New directions and challenges in targeted therapies of advanced bladder cancer: The role of FGFR inhibitors. Cancers 2022, 14, 1416. [Google Scholar] [CrossRef]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef]
- Tabernero, J.; Bahleda, R.; Dienstmann, R.; Infante, J.R.; Mita, A.; Italiano, A.; Calvo, E.; Moreno, V.; Adamo, B.; Gazzah, A.; et al. Phase I Dose-Escalation Study of JNJ-42756493, an Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2015, 33, 3401–3408. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Siefker-Radtke, A.O.; Powles, T.; Moreno, V.; Kang, T.W.; Cicin, I.; Girvin, A.; Akapame, S.; Triantos, S.; O’Hagan, A.; Zhu, W.; et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA+CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results from the phase 2 Norse study. J. Clin. Oncol. 2023, 41, 4504. [Google Scholar] [CrossRef]
- Loriot, Y.; Matsubara, N.; Park, S.H.; Huddart, R.A.; Burgess, E.F.; Houede, N.; Banek, S.; Guadalupi, V.; Ku, J.H.; Valderrama, B.P.; et al. Erdafitinib or chemotherapy in advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2023, 389, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Iannotti, N.O.; Gutierrez, M.; Smith, D.C.; Féliz, L.; Lihou, C.F.; Tian, C.; Silverman, I.M.; Ji, T.; Saleh, M. FIGHT-101, a first-in-human study of potent and selective FGFR 1–3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 2022, 33, 522–533. [Google Scholar] [CrossRef]
- Necchi, A.; Pouessel, D.; Leibowitz, R.; Gupta, S.; Fléchon, A.; García-Donas, J.; Bilen, M.A.; Debruyne, P.R.; Milowsky, M.I.; Friedlander, T.; et al. Pemigatinib for metastatic or surgically unresectable urothelial carcinoma with FGF/FGFR genomic alterations: Final results from FIGHT-201. Ann Oncol. 2023, 35, P200–P210. [Google Scholar] [CrossRef]
- Galsky, M.D.; Powles, T.; Dreicer, R.; Kitamura, H.; Asatiani, E.; Howe, J.; Zhen, H.; Oliveira, N.; Necchi, A. FIGHT-205: Phase II study of first-line pemigatinib (PEMI) plus pembrolizumab (PEMBRO) versus PEMI alone versus standard of care (SOC) for cisplatin (CIS)—Ineligible urothelial carcinoma (UC) with FGFR3 mutation or rearrangement. J. Clin. Oncol. 2020, 38, TPS592. [Google Scholar] [CrossRef]
- Grünewald, S.; Politz, O.; Bender, S.; Héroult, M.; Lustig, K.; Thuss, U.; Kneip, C.; Kopitz, C.; Zopf, D.; Collin, M.P.; et al. Rogaratinib: A potent and selective pan-FGFR inhibitor with broad antitumor activity in FGFR-overexpressing preclinical cancer models. Int. J. Cancer 2019, 145, 1346–1357. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Petrylak, D.P.; Bellmunt, J.; Nishiyama, H.; Necchi, A.; Gurney, H.; Lee, J.L.; van der Heijden, M.S.; Rosenbaum, E.; Penel, N.; et al. FORT-1: Phase II/III Study of Rogaratinib Versus Chemotherapy in Patients With Locally Advanced or Metastatic Urothelial Carcinoma Selected Based on FGFR1/3 mRNA Expression. J. Clin. Oncol. 2023, 41, 629–639. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Gajate, P.; Morales-Barrera, R.; Lee, J.; Necchi, A.; Penel, N.; Zagonel, V.; Sierecki, M.R.; Piciu, A.; Ellinghaus, P.; et al. Safety and preliminary efficacy of rogaratinib in combination with atezolizumab in a phase Ib/II study (FORT-2) of first-line treatment in cisplatin-ineligible patients (pts) with locally advanced or metastatic urothelial cancer (UC) and FGFR mRNA overexpression. J. Clin. Oncol. 2020, 38, 5014. [Google Scholar] [CrossRef]
- Pal, S.K.; Somford, D.M.; Grivas, P.; Sridhar, S.S.; Gupta, S.; Bellmunt, J.; Sonpavde, G.; Fleming, M.T.; Lerner, S.P.; Loriot, Y.; et al. Targeting FGFR3 alterations with adjuvant infigratinib in invasive urothelial carcinoma: The phase III PROOF 302 trial. Future Oncol. 2022, 18, 2599–2614. [Google Scholar] [CrossRef] [PubMed]
- Bahleda, R.; Meric-Bernstam, F.; Goyal, L.; Tran, B.; He, Y.; Yamamiya, I.; Benhadji, K.A.; Matos, I.; Arkenau, H.T. Phase I: First-in-human study of futibatinib, a highly selective, irreversible FGFR1-4 inhibitor in patients with advanced solid tumors. Ann. Oncol. 2020, 31, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Koshkin, V.S.; Sonpavde, G.P.; Hwang, C.; Mellado, B.; Tomlinson, G.; Shimura, M.; Chisamore, M.J.; Gil, M.; Loriot, Y. Futibatinib plus pembrolizumab in patients (pts) with advanced or metastatic urothelial carcinoma (mUC): Preliminary safety results from a phase 2 study. J. Clin. Oncol. 2022, 40, 501. [Google Scholar] [CrossRef]
- André, F.; Bachelot, T.; Campone, M.; Dalenc, F.; Perez-Garcia, J.M.; Hurvitz, S.A.; Turner, N.; Rugo, H.; Smith, J.W.; Deudon, S.; et al. Targeting FGFR with dovitinib (TKI258): Preclinical and clinical data in breast cancer. Clin. Cancer Res. 2013, 19, 3693–3702. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Dittrich, C.; Durán, I.; Jagdev, S.; Millard, F.E.; Sweeney, C.J.; Bajorin, D.; Cerbone, L.; Quinn, D.I.; Stadler, W.M.; et al. Phase 2 trial of dovitinib in patients with progressive FGFR3-mutated or FGFR3 wild-type advanced urothelial carcinoma. Eur. J. Cancer 2014, 50, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Picus, J.; Kohli, M.; Arriaga, Y.E.; Milowsky, M.I.; Currie, G.; Abella, S.; Pal, K.S. FIERCE-21: Phase 1b/2 study of docetaxel + b-701, a selective inhibitor of FGFR3, in relapsed or refractory (R/R) metastatic urothelial carcinoma (mUCC). J. Clin. Oncol. 2018, 36, 4534. [Google Scholar] [CrossRef]
- Siefker-Radtke, A.O.; Currie, G.; Abella, E.; Abella, E.; Vaena, D.A.; Kalebasty, A.R.; Curigliano, G.; Tupikowski, K.; Andric, Z.G.; Lugowska, I.; et al. FIERCE-22: Clinical activity of vofatamab (V) a FGFR3 selective inhibitor in combination with pembrolizumab (P) in WT metastatic urothelial carcinoma, preliminary analysis. J. Clin. Oncol. 2019, 37, 4511. [Google Scholar] [CrossRef]
- Mazzaferro, V.; El-Rayes, B.F.; Droz Dit Busset, M.; Cotsoglou, C.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Personeni, N.; Braiteh, F.; et al. Derazantinib (ARQ 087) in advanced or inoperable FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br. J. Cancer 2019, 120, 165–171. [Google Scholar] [CrossRef]
- Nakamura, I.T.; Kohsaka, S.; Ikegami, M.; Ikeuchi, H.; Ueno, T.; Li, K.; Beyett, T.S.; Koyama, T.; Shimizu, T.; Yamamoto, N.; et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 2021, 5, 66. [Google Scholar] [CrossRef]
- Wang, L.; Šuštić, T.; Leite de Oliveira, R.; Lieftink, C.; Halonen, P.; van de Ven, M.; Beijersbergen, R.L.; van den Heuvel, M.M.; Bernards, R.; van der Heijden, M.S. A Functional Genetic Screen Identifies the Phosphoinositide 3-kinase Pathway as a Determinant of Resistance to Fibroblast Growth Factor Receptor Inhibitors in FGFR Mutant Urothelial Cell Carcinoma. Eur. Urol. 2017, 71, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, F.; Hollebecque, A.; Braye, F.; Vasseur, D.; Pradat, Y.; Bahleda, R.; Pobel, C.; Bigot, L.; Déas, O.; Florez Arango, J.D.; et al. Resistance to Selective FGFR Inhibitors in FGFR-Driven Urothelial Cancer. Cancer Discov. 2023, 13, 1998–2011. [Google Scholar] [CrossRef] [PubMed]
- Ménard, S.; Pupa, S.M.; Campiglio, M.; Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 2003, 22, 6570–6578. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Fleischmann, A.; Rotzer, D.; Seiler, R.; Studer, U.E.; Thalmann, G.N. Her2 amplification is significantly more frequent in lymph node metastases from urothelial bladder cancer than in the primary tumours. Eur. Urol. 2011, 60, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Vranić, S.; Bešlija, S.; Gatalica, Z. Targeting HER2 expression in cancer: New drugs and new indications. Bosn. J. Basic Med. Sci. 2021, 21, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Junttila, T.T.; Akita, R.W.; Parsons, K.; Fields, C.; Lewis Phillips, G.D.; Friedman, L.S.; Sampath, D.; Sliwkowski, M.X. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009, 15, 429–440. [Google Scholar] [CrossRef]
- Hussain, M.H.A.; MacVicar, G.R.; Petrylak, D.P.; Dunn, R.L.; Vaishampayan, U.; Lara, P.N., Jr.; Chatta, G.S.; Nanus, D.M.; Glode, L.M.; Trump, D.L.; et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: Results of a multicenter phase II National Cancer Institute trial. J. Clin. Oncol. 2007, 25, 2218–2224. [Google Scholar] [CrossRef]
- Oudard, S.; Culine, S.; Vano, Y.; Goldwasser, F.; Théodore, C.; Nguyen, T.; Voog, E.; Banu, E.; Vieillefond, A.; Priou, F.; et al. Multicentre randomised phase II trial of gemcitabine + platinum, with or without trastuzumab, in advanced or metastatic urothelial carcinoma overexpressing Her2. Eur. J. Cancer. 2015, 51, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Hainsworth, J.D.; Bose, R.; Burris, H.A.; Kurzrock, R.; Swanton, C.; Friedman, C.F.; Spigel, D.R.; Szado, T.; Schulze, K.; et al. MyPathway Human Epidermal Growth Factor Receptor 2 Basket Study: Pertuzumab + Trastuzumab Treatment of a Tissue-Agnostic Cohort of Patients with Human Epidermal Growth Factor Receptor 2-Altered Advanced Solid Tumors. J. Clin. Oncol. 2024, 42, 258–265. [Google Scholar] [CrossRef]
- Cameron, D.; Casey, M.; Oliva, C.; Newstat, B.; Imwalle, B.; Geyer, C.E. Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: Final survival analysis of a phase III randomized trial. Oncologist 2010, 15, 924–934. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Dorff, T.B.; Tsao-Wei, D.D.; Massopust, K.; Ketchens, C.; Hu, J.; Goldkorn, A.; Sadeghi, S.; Pinski, J.K.; Averia, M.; et al. Single arm phase II study of docetaxel and lapatinib in metastatic urothelial cancer: USC trial 4B-10-4. J. Clin. Oncol. 2016, 34, 424. [Google Scholar] [CrossRef]
- Powles, T.; Huddart, R.A.; Elliott, T.; Sarker, S.J.; Ackerman, C.; Jones, R.; Hussain, S.; Crabb, S.; Jagdev, S.; Chester, J.; et al. Phase III, Double-Blind, Randomized Trial That Compared Maintenance Lapatinib Versus Placebo After First-Line Chemotherapy in Patients with Human Epidermal Growth Factor Receptor 1/2-Positive Metastatic Bladder Cancer. J. Clin. Oncol. 2017, 35, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.J.; Campanile, A.; Antic, T.; Yap, K.L.; Fitzpatrick, C.A.; Wade, J.L., 3rd; Karrison, T.; Stadler, W.M.; Nakamura, Y.; O’Donnell, P.H. Afatinib Activity in Platinum-Refractory Metastatic Urothelial Carcinoma in Patients with ERBB Alterations. J. Clin. Oncol. 2016, 34, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Bedard, P.L.; Li, S.; Wisinski, K.B.; Limaye, S.A.; Mitchell, E.P.; Zwiebel, J.A.; Moscow, J.A.; Gray, R.J.; Wang, V.; McShane, L.M.; et al. Phase II Study of Afatinib in Patients with Tumors with Human Epidermal Growth Factor Receptor 2-Activating Mutations: Results From the National Cancer Institute-Molecular Analysis for Therapy Choice ECOG-ACRIN Trial (EAY131) Subprotocol EAY131-B. J. Clin. Oncol. Precis. Oncol. 2022, 6, e2200165. [Google Scholar] [CrossRef]
- Font, A.; Mellado, B.; Climent, M.A.; Virizuela, J.A.; Oudard, S.; Puente, J.; Castellano, D.; González-Del-Alba, A.; Pinto, A.; Morales-Barrera, R.; et al. Phase II trial of afatinib in patients with advanced urothelial carcinoma with genetic alterations in ERBB1-3 (LUX-Bladder 1). Br. J. Cancer 2024, 130, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; Mayer, I.A.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Diéras, V.; Miles, D.; Verma, S.; Pegram, M.; Welslau, M.; Baselga, J.; Krop, I.E.; Blackwell, K.; Hoersch, S.; Xu, J.; et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): A descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 732–742. [Google Scholar] [CrossRef]
- Liu, D.; Makker, V.; Buonocore, D.J.; Shen, R.; Yaeger, R.; Ginsberg, M.S.; Yeh, R.; Johnson, A.; Offin, M.; Solit, D.B.; et al. Final analysis of multi-histology basket trial expansion of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J. Clin. Oncol. 2023, 41, 3025. [Google Scholar] [CrossRef]
- de Vries, E.G.E.; Rüschoff, J.; Lolkema, M.; Tabernero, J.; Gianni, L.; Voest, E.; de Groot, D.J.A.; Castellano, D.; Erb, G.; Naab, J.; et al. Phase II study (KAMELEON) of single-agent T-DM1 in patients with HER2-positive advanced urothelial bladder cancer or pancreatic cancer/cholangiocarcinoma. Cancer Med. 2023, 12, 12071–12083. [Google Scholar] [CrossRef]
- Cortés, J.; Kim, S.-B.; Chung, W.-P.; Im, S.A.; Park, Y.H.; Hegg, R.; Kim, M.H.; Tseng, L.M.; Petry, V.; Chung, C.F.; et al. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N. Engl. J. Med. 2022, 386, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.H.; Sakai, D.; Chung, H.C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Del Conte, G.; Foti, S.; Yu, E.Y.; Machiels, J.H.; Doger, B.; Necchi, A.; De Braud, F.G.; Hamilton, E.P.; Hennequin, A.; et al. Primary analysis from DS8201-A-U105: A phase 1b, two-part, open-label study of trastuzumab deruxtecan (T-DXd) with nivolumab (nivo) in patients (pts) with HER2-expressing urothelial carcinoma (UC). J. Clin. Oncol. 2022, 40, 438. [Google Scholar] [CrossRef]
- Sheng, X.; He, Z.; Shi, Y.; Luo, H.; Han, W.; Yao, X.; Shi, B.; Liu, J.; Hu, C.; Liu, J.; et al. RC48-ADC for metastatic urothelial carcinoma with HER2-positive: Combined analysis of RC48-C005 and RC48-C009 trials. J. Clin. Oncol. 2022, 40, 4520. [Google Scholar] [CrossRef]
- Banerji, U.; van Herpen, C.M.L.; Saura, C.; Thistlethwaite, F.; Lord, S.; Moreno, V.; Macpherson, I.R.; Boni, V.; Rolfo, C.; de Vries, E.G.E.; et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: A phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019, 20, 1124–1135. [Google Scholar] [CrossRef]
- Bellmunt, J.; Werner, L.; Bamias, A.; Fay, A.P.; Park, R.S.; Riester, M.; Selvarajah, S.; Barletta, J.A.; Berman, D.M.; de Muga, S.; et al. HER2 as a target in invasive urothelial carcinoma. Cancer Med. 2015, 4, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Kancha, R.K.; von Bubnoff, N.; Bartosch, N.; Peschel, C.; Engh, R.A.; Duyster, J. Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS ONE 2011, 6, e26760. [Google Scholar] [CrossRef]
- Sperinde, J.; Jin, X.; Banerjee, J.; Penuel, E.; Saha, A.; Diedrich, G.; Huang, W.; Leitzel, K.; Weidler, J.; Ali, S.M.; et al. Quantitation of p95HER2 in paraffin sections by using a p95-specific antibody and correlation with outcome in a cohort of trastuzumab-treated breast cancer patients. Clin. Cancer Res. 2010, 16, 4226–4235. [Google Scholar] [CrossRef]
- Nagata, Y.; Lan, K.H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.; et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004, 6, 117–127. [Google Scholar] [CrossRef]
- Hansel, D.E.; Swain, E.; Dreicer, R.; Tubbs, R.R. HER2 overexpression and amplification in urothelial carcinoma of the bladder is associated with MYC coamplification in a subset of cases. Am. J. Clin. Pathol. 2008, 130, 274–281. [Google Scholar] [CrossRef]
- Gallardo, A.; Lerma, E.; Escuin, D.; Tibau, A.; Muñoz, J.; Ojeda, B.; Barnadas, A.; Adrover, E.; Sánchez-Tejada, L.; Giner, D.; et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br. J. Cancer 2012, 106, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-H.; Chang, Y.-H.; Pan, C.-C. Activation of the PI3K/Akt/mTOR pathway correlates with tumour progression and reduced survival in patients with urothelial carcinoma of the urinary bladder. Histopathology 2011, 58, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Lalani, A.-K.A.; Jacobus, S.; Wankowicz, S.A.; Polacek, L.; Takeda, D.Y.; Harshman, L.C.; Wagle, N.; Moreno, I.; Lundgren, K.; et al. Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma. Br. J. Cancer 2018, 119, 707–712. [Google Scholar] [CrossRef] [PubMed]
- McPherson, V.; Reardon, B.; Bhayankara, A.; Scott, S.N.; Boyd, M.E.; Garcia-Grossman, I.R.; Regazzi, A.M.; McCoy, A.S.; Kim, P.H.; Al-Ahmadie, H.; et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer 2020, 126, 4532–4544. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Postow, M.; Chmielowski, B.; Sullivan, R.; Patnaik, A.; Cohen, E.E.W.; Shapiro, G.; Steuer, C.; Gutierrez, M.; Yeckes-Rodin, H.; et al. Eganelisib, a First-in-Class PI3Kγ Inhibitor, in Patients with Advanced Solid Tumors: Results of the Phase 1/1b MARIO-1 Trial. Clin. Cancer Res. 2023, 29, 2210–2219. [Google Scholar] [CrossRef]
- Kim, J.W.; Milowsky, M.I.; Hahn, N.M.; Kwiatkowski, D.J.; Morgans, A.K.; Davis, N.B.; Appleman, L.J.; Gupta, S.; Lara, N. Sapanisertib, a dual mTORC1/2 inhibitor, for TSC1- or TSC2- mutated metastatic urothelial carcinoma (mUC). J. Clin. Oncol. 2021, 39, 431. [Google Scholar] [CrossRef]
- Powles, T.; Carroll, D.; Chowdhury, S.; Gravis, G.; Joly, F.; Carles, J.; Fléchon, A.; Maroto, P.; Petrylak, D.; Rolland, F.; et al. An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. Nat. Med. 2021, 27, 793–801. [Google Scholar] [CrossRef]
- O’Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell. 2015, 60, 547–560. [Google Scholar] [CrossRef]
- Voutsadakis, I.A.; Stravodimou, A. Homologous recombination defects and mutations in DNA damage response (DDR) genes besides BRCA1 and BRCA2 as breast cancer biomarkers for PARP inhibitors and other DDR targeting therapies. Anticancer Res. 2023, 43, 967–981. [Google Scholar] [CrossRef]
- Mullane, S.A.; Werner, L.; Guancial, E.A.; Lis, R.T.; Stack, E.C.; Loda, M.; Kantoff, P.W.; Choueiri, T.K.; Rosenberg, J.; Bellmunt, J. Expression Levels of DNA Damage Repair Proteins Are Associated with Overall Survival in Platinum-Treated Advanced Urothelial Carcinoma. Clin. Genitourin. Cancer 2016, 14, 352–359. [Google Scholar] [CrossRef]
- Teo, M.Y.; Bambury, R.M.; Zabor, E.C.; Jordan, E.; Al-Ahmadie, H.; Boyd, M.E.; Bouvier, N.; Mullane, S.A.; Cha, E.K.; Roper, N.; et al. DNA Damage Response and Repair Gene Alterations Are Associated with Improved Survival in Patients with Platinum-Treated Advanced Urothelial Carcinoma. Clin. Cancer Res. 2017, 23, 3610–3618. [Google Scholar] [CrossRef] [PubMed]
- Galsky, M.D.; Uzilov, A.V.; McBride, R.B.; Wang, H.; Patel, V.G.; Sfakianos, J.; Wang, L.; Akers, N.; Iyer, G.; Solit, D.B.; et al. DNA damage response (DDR) gene mutations (mut), mut load, and sensitivity to chemotherapy plus immune checkpoint blockade in urothelial cancer (UC). J. Clin. Oncol. 2017, 35, 300. [Google Scholar] [CrossRef]
- Maiorano, B.A.; Maiorano, M.F.P.; Maiello, E. Olaparib and advanced ovarian cancer: Summary of the past and looking into the future. Front. Pharmacol. 2023, 14, 1162665. [Google Scholar] [CrossRef] [PubMed]
- Pandya, K.; Scher, A.; Omene, C.; Ganesan, S.; Kumar, S.; Ohri, N.; Potdevin, L.; Haffty, B.; Toppmeyer, D.L.; George, M.A. Clinical efficacy of PARP inhibitors in breast cancer. Breast Cancer Res. Treat. 2023, 200, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Casolino, R.; Biankin, A.V.; Hammel, P.; Whitaker, K.D.; Hall, M.J.; Riegert-Johnson, D.L. Germline BRCA testing in pancreatic cancer: Improving awareness, timing, turnaround, and uptake. Ther. Adv. Med. Oncol. 2023, 15, 17588359231189128. [Google Scholar] [CrossRef] [PubMed]
- Hatano, K.; Nonomura, N. Systemic Therapies for Metastatic Castration-Resistant Prostate Cancer: An Updated Review. World J. Men’s Health 2023, 41, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Chandran, E.; Simon, N.I.; Niglio, S.A.; Ley, L.; Cordes, L.M.; Banday, R.; Kesserwan, C.; Mouw, K.W.; Kydd, A.R.; Boudjadi, S.; et al. A phase II study of olaparib (AZD2281) in patients (Pts) with metastatic/advanced urothelial carcinoma and other genitourinary (GU) tumors with DNA-repair defects. J. Clin. Oncol. 2023, 41, TPS4607. [Google Scholar] [CrossRef]
- Grivas, P.; Loriot, Y.; Morales-Barrera, R.; Teo, M.Y.; Zakharia, Y.; Feyerabend, S.; Vogelzang, N.J.; Grande, E.; Adra, N.; Alva, A.; et al. Efficacy and safety of rucaparib in previously treated, locally advanced or metastatic urothelial carcinoma from a phase 2, open-label trial (ATLAS). BMC Cancer 2021, 21, 593. [Google Scholar] [CrossRef]
- Teo, M.Y.; Seier, K.; Ostrovnaya, I.; Regazzi, A.M.; Kania, B.E.; Moran, M.M.; Cipolla, C.K.; Bluth, M.J.; Chaim, J.; Al-Ahmadie, H.; et al. Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers. J. Clin. Oncol. 2018, 36, 1685–1694. [Google Scholar] [CrossRef]
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell. Int. 2020, 20, 16. [Google Scholar] [CrossRef]
- Ma, Y.-T.; Yang, H.-L.; Yan, L.; Hua, F.; Wang, D.G.; Xu, G.Y.; Li, Y.; Xue, Y.J.; Qin, Y.J.; Sha, D.; et al. Case Report: Potential Predictive Value of MMR/MSI Status and PD-1 Expression in Immunotherapy for Urothelial Carcinoma. Pathol. Oncol. Res. 2022, 28, 1610638. [Google Scholar] [CrossRef]
- Sarfaty, M.; Teo, M.Y.; Al-Ahmadie, H.; Funt, S.A.; Lee, C.; Aggen, D.H.; Solit, D.B.; Ratna, N.; Regazzi, A.M.; Hechtman, J.F.; et al. Microsatellite instability (MSI-H) in metastatic urothelial carcinoma (mUC): A biomarker of divergent responses to systemic therapy. J. Clin. Oncol. 2020, 38, 566. [Google Scholar] [CrossRef]
- Pezzicoli, G.; Salonne, F.; Musci, V.; Ciciriello, F.; Tommasi, S.; Lacalamita, R.; Zito, A.; Allegretta, S.A.; Solimando, A.G.; Rizzo, M. Concomitant Immunotherapy and Metastasis-Directed Radiotherapy in Upper Tract Urothelial Carcinoma: A Biomarker-Driven, Original, Case-Based Proof-of-Concept Study. J. Clin. Med. 2023, 12, 7761. [Google Scholar] [CrossRef]
- Chandran, E.; Iannantuono, G.M.; Akbulut, D.; Atiq, S.O.; Gurram, S.; Teo, M.Y.; Coleman, J.; Sinaii, N.; Apolo, A.B. Mismatch repair deficiency and microsatellite instability-high in urothelial carcinoma: A systematic review and meta-analysis. J. Clin. Oncol. 2023, 41, 4570. [Google Scholar] [CrossRef]
- Bellmunt, J.; Selvarajah, S.; Rodig, S.; Salido, M.; de Muga, S.; Costa, I.; Bellosillo, B.; Werner, L.; Mullane, S.; Fay, A.P.; et al. Identification of ALK gene alterations in urothelial carcinoma. PLoS ONE 2014, 9, e103325. [Google Scholar] [CrossRef]
- Miyata, Y.; Sagara, Y.; Kanda, S.; Hayashi, T.; Kanetake, H. Phosphorylated hepatocyte growth factor receptor/c-Met is associated with tumor growth and prognosis in patients with bladder cancer: Correlation with matrix metalloproteinase-2 and -7 and E-cadherin. Hum. Pathol. 2009, 40, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Hahn, N.M.; Knudsen, B.S.; Daneshmand, S.; Koch, M.O.; Bihrle, R.; Foster, R.S.; Gardner, T.A.; Cheng, L.; Liu, Z.; Breen, T.; et al. Neoadjuvant dasatinib for muscle-invasive bladder cancer with tissue analysis of biologic activity. Urol. Oncol. 2016, 34, e11–e17. [Google Scholar] [CrossRef]
- Molina-Cerrillo, J.; Alonso-Gordoa, T.; Gajate, P.; Grande, E. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat. Rev. 2017, 58, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chiu, Y.-H.; Chiu, S.-C.; Cho, D.Y.; Lee, L.M.; Wen, Y.C.; Whang-Peng, J.; Hsiao, C.H.; Shih, P.H. Inhibition of Bruton’s Tyrosine Kinase Suppresses Cancer Stemness and Promotes Carboplatin-induced Cytotoxicity Against Bladder Cancer Cells. Anticancer Res. 2020, 40, 6093–6099. [Google Scholar] [CrossRef]
- Mar, N.; Zakharia, Y.; Falcon, A.; Morales-Barrera, R.; Mellado, B.; Duran, I.; Oh, D.Y.; Williamson, S.K.; Gajate, P.; Arkenau, H.T.; et al. Results from a Phase 1b/2 Study of Ibrutinib Combination Therapy in Advanced Urothelial Carcinoma. Cancers 2023, 15, 2978. [Google Scholar] [CrossRef] [PubMed]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.-J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Sapino, A.; Goia, M.; Recupero, D.; Marchiò, C. Current challenges for HER2 testing in diagnostic pathology: State of the art and controversial issues. Front. Oncol. 2013, 3, 129. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Zaucha, R.; Gartrell, B.A.; Lotan, Y.; Hussain, S.A.; Lee, E.K.; Procopio, G.; Galanternik, F.; Naini, V.; Carcione, J.; et al. Phase 2 study of the efficacy and safety of erdafitinib in patients (pts) with intermediate-risk non–muscle-invasive bladder cancer (IR-NMIBC) with FGFR3/2 alterations (alt) in THOR-2: Cohort 3 interim analysis. J. Clin. Oncol. 2023, 41, 504. [Google Scholar] [CrossRef]
- Grivas, P.; Daneshmand, S.; Makarov, V.; Bellmunt, J.; Sridhar, S.S.; Sonpavde, G.P.; Cole, S.; Tripathi, A.; Faltas, B.M.; Lerner, S.P.; et al. Fibroblast growth factor receptor 3 (FGFR3) alterations in PROOF 302: A phase III trial of infigratinib (BGJ398) as adjuvant therapy in patients (pts) with invasive urothelial carcinoma (UC). J. Clin. Oncol. 2023, 41, 4511. [Google Scholar] [CrossRef]
- Song, Y.; Peng, Y.; Qin, C.; Wang, Y.; Yang, W.; Du, Y.; Xu, T. Fibroblast growth factor receptor 3 mutation attenuates response to immune checkpoint blockade in metastatic urothelial carcinoma by driving immunosuppressive microenvironment. J. Immunother. Cancer 2023, 11, e006643. [Google Scholar] [CrossRef]
- Lei, H.; Ling, Y.; Yuan, P.; Guo, J.; Sheng, X.; Zhou, A.; Ying, J. Assessment of a HER-2 scoring system and its correlation of HER2-targeting antibody-drug conjugate therapy in urothelial carcinoma. J. Clin. Oncol. 2022, 40, 4572. [Google Scholar] [CrossRef]
- Sheng, X.; Zhou, L.; He, Z.; Guo, H.; Yan, X.; Li, S.; Xu, H.; Li, J.; Chi, Z.; Si, L.; et al. Preliminary results of a phase Ib/II combination study of RC48-ADC, a novel humanized anti-HER2 antibody-drug conjugate (ADC) with toripalimab, a humanized IgG4 mAb against programmed death-1 (PD-1) in patients with locally advanced or metastatic urothelial carcinoma. J. Clin. Oncol. 2022, 40, 4518. [Google Scholar] [CrossRef]
- Clinton, T.N.; Chen, Z.; Wise, H.; Lenis, A.T.; Chavan, S.; Donoghue, M.T.A.; Almassi, N.; Chu, C.E.; Dason, S.; Rao, P.; et al. Genomic heterogeneity as a barrier to precision oncology in urothelial cancer. Cell. Rep. 2022, 41, 111859. [Google Scholar] [CrossRef]
- Liu, D.; Abbosh, P.; Keliher, D.; Reardon, B.; Miao, D.; Mouw, K.; Weiner-Taylor, A.; Wankowicz, S.; Han, G.; Teo, M.Y.; et al. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer. Nat. Commun. 2017, 8, 2193. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Quesnel-Vallières, M.; Wang, D.; Thomas-Tikhonenko, A.; Lynch, K.W.; Barash, Y. Identifying common transcriptome signatures of cancer by interpreting deep learning models. Genome Biol. 2022, 23, 117. [Google Scholar] [CrossRef] [PubMed]
Target | Trial Name | Phase | Patients | Study Arms | Outcomes |
---|---|---|---|---|---|
FGFR alterations | NCT02365597 | II | 99 mUC pts, pretreated with CT and/or ICI, with FGFR3 point mutations or FGFR2/3 fusions | Single arm: Erdafitinib monotherapy | ORR: 40%; mPFS: 5.5 mts; mOS: 13.8 mts |
Norse trial (NCT03473743) | II | 87 mUC pts treatment-naïve, cisplatin-unfit, with FGFR alterations | Erdafitinib + Cetrelimab (n = 44) vs. Erdafitinib (n = 43) | ORR: 54.5% vs. 44.2%; mPFS: 10.97 mts vs. 5.62 mts | |
THOR trial (NCT03390504) | III | 266 mUC pts pretreated with CT and/or ICI, with FGFR3 point mutations (R248C, S249C, G370C, or Y373C) FGFR2/3 fusions (FGFR2-BICC1, FGFR2-CASP7, FGFR3-TACC3, or FGFR3-BAIAP2L1) | Erdafitinib (n = 136) vs. investigator’s choice CT (n = 130) | mOS: 12.1 mts vs. 7.8 mts; ORR: 45.6% vs. 11.5%; mPFS: 5.6 mts vs. 2.7 mts | |
FIGHT-201 (NCT02872714) | II | 260 mUC pts pretreated with CT and/or ICI, with FGFR3 point mutations or fusions (Cohort A) or other FGF/FGFR alterations (Cohort B) | Pemigatinib (continuous or intermittent) | ORR: 24%; mPFS: 4 mts; mOS: 7 mts | |
FIGHT-205 (NCT04003610) | II | mUC pts, treatment-naïve, with FGFR3 point mutations or rearrangements | Pembrolizumab + Pemigatinib vs. Pemigatinib vs. investigator’s choice CT | Ongoing | |
FORT-1 (NCT03410693) | II/III | 175 mUC pts pretreated with CT, with FGFR1/3 mRNA positive tumours | Rogaratinib (n = 88) vs. investigator’s choice CT (n = 87) | ORR: 20.7% vs. 19.3%; mPFS: 2.7 mts vs. 3.2 mts; mOS: 8.3 mts vs. 9.8 mts | |
FORT-2 (NCT03473756) | Ib/II | 27 mUC pts, treatment-naïve, with FGFR1/3 amRNA positive tumours | Rogaratinib + Atezolizumab vs. Rogaratinib | Phase II ongoing | |
Pal et al. [18] | Ib/II | 67 mUC pts, pretreated with CT and/or ICI, platinum-unfit, with FGFR3 point mutation or fusions | Single arm: Infigratinib | ORR: 25.4%; mPFS: 3.75 mts; mOS: 7.75 mts | |
NCT04601857 | II | mUC pts, treatment-naïve, cisplatin-ineligible, with or without FGFR3 point mutations or FGFR1-4 fusions | Single arm: Futibatinib + Pembrolizumab | Ongoing | |
NCT00790426 | II | 44 mUC pts, pretreated with CT and/or ICI, with or without FGFR3 point mutations | Single arm: Dovitinib | ORR: 3.2%; mPFS: 3 mts | |
FIERCE-21 (NCT02401542) | Ib/II | 55 mUC pts, pretreated with CT and/or ICI, with or without FGFR3 point mutations or fusions | Vofatamab monotherapy or Vofatamab + Docetaxel | ORR: 12% | |
FIERCE-22 (NCT02401542) | Ib/II | 35 mUC pts, pretreated with CT, with or without FGFR3 point mutations or fusions | Vofatamab + Pembrolizumab | ORR: 30% | |
HER2 over- expression | NCT00151034 | II | 109 mUC pts, treatment naïve, expressing HER2 | Single arm: Trastuzumab + Paclitaxel + Carboplatin + Gemcitabine | mPFS: 9.3 mts; mOS: 14.1 mts; ORR: 70% |
NCT01828736 | II | 61 mUC pts, treatment naïve, expressing HER2 | Gemcitabine + Platin vs. Gemcitabine + Platin + Trastuzumab | mPFS: 10.2 mts vs. 8.2 mts; mOS: 15.7 mts vs. 14.1 mts; ORR: 65.5% vs. 53.2% | |
NCT00949455 | II | 59 mUC pts, pretreated with platinum-based CT, with or without HER2 positivity | Single arm: Lapatinib | mOS: (HER2+ vs. HER2-) 7.5 mts vs. 2.5 mts | |
NCT01382706 | III | Maintenance after 1st line CT therapy for 232 mUC pts, expressing HER2 | Lapatinib vs. Placebo | mPFS: 4.5 mts vs. 5.1 mts; mOS: 12.6 mts vs. 12.0 mts | |
NCT02122172 | II | 15 mUC pts, previously treated with CT | Single arm: Lapatinib + Docetaxel | mOS: 6.3 mts; mPFS: 2.0 mts; ORR: 8% | |
NCT02780687 | II | 25 mUC pts, previously treated with CT | Single arm: Afatinib | mPFS (HER2+ vs. HER2-): 6.6 mts vs. 1.4 mts | |
LUX Bladder 1 trial (NCT01953926) | II | 42 mUC pts, previously treated with CT, EGFR/HER2/ERBB3/4 mutated | Single arm: Afatinib | HER2+ cohort: mPFS 2.5 mts; mOS: 30.1 mts; ORR: 5.9% | |
NCT04264936 | II | 19 mUC pts, previously treated with CT, without HER2 positivity | Single arm: Disitamab Vedotin | ORR: 26.3%; mPFS: 5.5 mts; mOS: 16.4 mts | |
NCT03523572 | II | 32 mUC pts, previously treated with CT, with or without HER2 positivity | Single arm: Disitamab Vedotin + Toripalimab | ORR: 75% | |
NCT04482309 | I | 30 mUC pts, previously treated with CT, with HER2 positivity | Trastuzumab Deruxtecan + Nivolumab | ORR: 36.7%; mPFS: 6.9 mts; mOS: 11.0 mts | |
Mutations of the PI3K/Akt/mTOR axis | Milowsky et al. [19] | II | 45 mUC pts, pretreated with platinum-based CT | Single arm: Everolimus | ORR: 5%; mPFS: 2.6 mts; mOS: 8.3 mts |
Seront et al. [20] | II | 37 mUC pts, pretreated with platinum-based CT | Single arm: Everolimus | ORR: 5.4%; mPFS: 2 mts; mOS: 3.3 mts | |
NCT01184326 | Ib/II | 19 mUC pts, pretreated with platinum-based CT | Single arm: Everolimus + Pazopanib | ORR: 21%; mPFS: 3.6 mts; mOS: 9.1 mts | |
NCT01551030 | II | 13 mUC pts, pretreated with platinum-based CT | Single arm: Burpalisib | ORR: 7.6%; mPFS: 3.2 mts; mOS: 8.7 mts | |
NCT03047213 | II | 17 mUC pts, pretreated with platinum-based CT, with TSC1/2 mutations | Single arm: Sapanisertib | ORR: 0%; mPFS: NA; mOS: 3.4 mts | |
Seront et al. [21] | II | 20 mUC pts, pretreated with platinum-based CT | Single arm: BEZ235 | ORR: 5%; mPFS: 2 mts; mOS: 4 mts | |
BISCAY trial arm E (NCT02546661) | Ib | 29 mUC pts, pretreated with platinum-based CT, with mTOR/PI3K alterations | Arm E: Vistusertib + Durvalumab | ORR: 24.1%; 6mts-PFS: 31.3%; 12mts-OS: 49% | |
DDR Gene alterations | NCT03375307 | II | mUC pts with DDR gene alterations | Single arm: Olaparib | Ongoing |
ATLAS trial (NCT03397394) | II | 97 mUC pts, pretreated with CT and/or ICI, with or without HRD-positivity | Single arm: Rucaparib | ORR: 0%; mPFS: 1.8 mts | |
BISCAY trial arm C (NCT02546661) | Ib | 14 mUC pts, pretreated with platinum-based CT, with DDR gene alterations | Arm E: Olaparib + Durvalumab | ORR: 35.7%; 6mts-PFS: 42.9%; 12mts-OS: 49.4% | |
BAYOU trial (NCT03459846) | II | 154 mUC pts, treatment-naïve, platinum-ineligible | Durvalumab + Olaparib vs. Durvalumab + Placebo | ORR: 28.2% vs. 18.4%; mPFS: 4.2 mts vs. 3.5 mts; mOS: 10.2 mts vs. 10.7 mts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzicoli, G.; Ciciriello, F.; Musci, V.; Minei, S.; Biasi, A.; Ragno, A.; Cafforio, P.; Rizzo, M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. Medicina 2024, 60, 585. https://doi.org/10.3390/medicina60040585
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. Medicina. 2024; 60(4):585. https://doi.org/10.3390/medicina60040585
Chicago/Turabian StylePezzicoli, Gaetano, Federica Ciciriello, Vittoria Musci, Silvia Minei, Antonello Biasi, Anna Ragno, Paola Cafforio, and Mimma Rizzo. 2024. "Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma" Medicina 60, no. 4: 585. https://doi.org/10.3390/medicina60040585
APA StylePezzicoli, G., Ciciriello, F., Musci, V., Minei, S., Biasi, A., Ragno, A., Cafforio, P., & Rizzo, M. (2024). Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. Medicina, 60(4), 585. https://doi.org/10.3390/medicina60040585