Association between Pan-Immune-Inflammation Value and Contrast-Induced Nephropathy with Coronary Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehran, R.; Nikolsky, E. Contrast-induced nephropathy: Definition, epidemiology, and patients at risk. Kidney Int. 2006, 69, S11–S15. [Google Scholar] [CrossRef]
- Ramachandran, P.; Jayakumar, D. Contrast-induced Acute Kidney Injury. Indian J. Crit. Care Med. 2020, 24 (Suppl. 3), S122–S125. [Google Scholar]
- Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 2002, 39, 930–936. [Google Scholar] [CrossRef]
- Mitchell, A.M.; Jones, A.E.; Tumlin, J.A.; Kline, J.A. Prospective study of the incidence of contrast-induced nephropathy among patients evaluated for pulmonary embolism by contrast-enhanced computed tomography. Acad. Emerg. Med. 2012, 19, 618–625. [Google Scholar] [CrossRef]
- Rear, R.; Bell, R.M.; Hausenloy, D.J. Contrast-induced nephropathy following angiography and cardiac interventions. Heart 2016, 102, 638–648. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Lo, W.-C.; Wu, Y.-C.; Lin, T.-C.; Lin, C.-H.; Wu, M.-S.; Tu, Y.-K. The Incidence of Contrast-Induced Nephropathy and the Need of Dialysis in Patients Receiving Angiography: A Systematic Review and Meta-Analysis. Systematic Review. Front. Med. 2022, 9, 862534. [Google Scholar] [CrossRef]
- Jiang, H.; Li, D.; Xu, T.; Chen, Z.; Shan, Y.; Zhao, L.; Fu, G.; Luan, Y.; Xia, S.; Zhang, W. Systemic Immune-Inflammation Index Predicts Contrast-Induced Acute Kidney Injury in Patients Undergoing Coronary Angiography: A Cross-Sectional Study. Front. Med. 2022, 9, 841601. [Google Scholar] [CrossRef]
- Chillo, P.; Malaja, N.W.; Kisenge, P. Magnitude and associated factors of contrast induced nephropathy among patients undergoing coronary angiography and interventions at a cardiac referral hospital in Tanzania—A cross-sectional study. Pan Afr. Med. J. 2021, 38, 311. [Google Scholar] [CrossRef]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef]
- Hinson, J.S.; Al Jalbout, N.; Ehmann, M.R.; Klein, E.Y. Acute kidney injury following contrast media administration in the septic patient: A retrospective propensity-matched analysis. J. Crit. Care 2019, 51, 111–116. [Google Scholar] [CrossRef]
- Ehrmann, S.; Quartin, A.; Hobbs, B.P.; Robert-Edan, V.; Cely, C.; Bell, C.; Lyons, G.; Pham, T.; Schein, R.; Geng, Y.; et al. Contrast-associated acute kidney injury in the critically ill: Systematic review and Bayesian meta-analysis. Intensive Care Med. 2017, 43, 785–794. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2020, 294, 660–668. [Google Scholar] [CrossRef]
- Martinez, D.A.; Levin, S.R.; Klein, E.Y.; Parikh, C.R.; Menez, S.; Taylor, R.A.; Hinson, J.S. Early Prediction of Acute Kidney Injury in the Emergency Department With Machine-Learning Methods Applied to Electronic Health Record Data. Ann. Emerg. Med. 2020, 76, 501–514. [Google Scholar] [CrossRef]
- Şaylık, F.; Çınar, T.; Sarıkaya, R.; Tanboğa, İ.H. Development and Validation of Nomogram Based on the Systemic-Immune Inflammation Response Index for Predicting Contrast-Induced Nephropathy in ST-Elevation Myocardial Infarction Patients. Angiology 2023, 75, 33197231191429. [Google Scholar] [CrossRef]
- Sun, G.; Chen, P.; Wang, K.; Li, H.; Chen, S.; Liu, J.; He, Y.; Song, F.; Liu, Y.; Chen, J.Y. Contrast-Induced Nephropathy and Long-Term Mortality After Percutaneous Coronary Intervention in Patients With Acute Myocardial Infarction. Angiology 2019, 70, 621–626. [Google Scholar] [CrossRef]
- Caiazza, A.; Russo, L.; Sabbatini, M.; Russo, D. Hemodynamic and tubular changes induced by contrast media. Biomed. Res. Int. 2014, 2014, 578974. [Google Scholar] [CrossRef]
- Li, Y.; Ren, K. The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. Contrast Media Mol. Imaging 2020, 2020, 3295176. [Google Scholar] [CrossRef]
- Öztürk, R.; İnan, D.; Güngör, B. Systemic Immune-Inflammation Index Is a Predictor of Contrast-Induced Nephropathy in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2022, 73, 125–131. [Google Scholar] [CrossRef]
- Kwasa, E.A.; Vinayak, S.; Armstrong, R. The role of inflammation in contrast-induced nephropathy. Br. J. Radiol. 2014, 87, 20130738. [Google Scholar] [CrossRef]
- Ma, X.; Mo, C.; Li, Y.; Gui, C. Systemic immune-inflammation index associated with contrast-induced nephropathy after elective percutaneous coronary intervention in a case-control study. Coron. Artery Dis. 2023, 34, 432–440. [Google Scholar] [CrossRef]
- Guven, D.C.; Sahin, T.K.; Erul, E.; Kilickap, S.; Gambichler, T.; Aksoy, S. The Association between the Pan-Immune-Inflammation Value and Cancer Prognosis: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2675. [Google Scholar] [CrossRef] [PubMed]
- Şahin, A.B.; Cubukcu, E.; Ocak, B.; Deligonul, A.; Oyucu Orhan, S.; Tolunay, S.; Gokgoz, M.S.; Cetintas, S.; Yarbas, G.; Senol, K.; et al. Low pan-immune-inflammation-value predicts better chemotherapy response and survival in breast cancer patients treated with neoadjuvant chemotherapy. Sci. Rep. 2021, 11, 14662. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.M.; Mahfouz, A.; Achkar, K.; Rafie, I.M.; Hajar, R. Contrast-induced Nephropathy. Heart Views 2013, 14, 106–116. [Google Scholar] [CrossRef] [PubMed]
- García-Núñez, A.; Jiménez-Gómez, G.; Hidalgo-Molina, A.; Córdoba-Doña, J.A.; León-Jiménez, A.; Campos-Caro, A. Inflammatory indices obtained from routine blood tests show an inflammatory state associated with disease progression in engineered stone silicosis patients. Sci. Rep. 2022, 12, 8211. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, L.; Chai, K. Systemic immune-inflammation index is associated with disease activity in patients with ankylosing spondylitis. J. Clin. Lab. Anal. 2021, 35, e23964. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Zhang, S.; Liu, Y.; Ma, L.; Zhu, J.; Xin, Y.; Wang, Y.; Yang, C.; Cheng, Y. Systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio can predict clinical outcomes in patients with metastatic non-small-cell lung cancer treated with nivolumab. J. Clin. Lab. Anal. 2019, 33, e22964. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yuan, L.; Wu, K.; Shen, B.; Zhu, C. Association between systemic immune-inflammation index and chronic obstructive pulmonary disease: A population-based study. BMC Pulm. Med. 2023, 23, 295. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Fucà, G.; Guarini, V.; Antoniotti, C.; Morano, F.; Moretto, R.; Corallo, S.; Marmorino, F.; Lonardi, S.; Rimassa, L.; Sartore-Bianchi, A.; et al. The Pan-Immune-Inflammation Value is a new prognostic biomarker in metastatic colorectal cancer: Results from a pooled-analysis of the Valentino and TRIBE first-line trials. Br. J. Cancer 2020, 123, 403–409. [Google Scholar] [CrossRef]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar]
- Mehran, R.; Owen, R.; Chiarito, M.; Baber, U.; Sartori, S.; Cao, D.; Nicolas, J.; Pivato, C.A.; Nardin, M.; Krishnan, P.; et al. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: Derivation and validation from an observational registry. Lancet 2021, 398, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhang, T.; Pu, J.; Shen, L.; He, B. Incidence and risk of developing contrast-induced acute kidney injury following intravascular contrast administration in elderly patients. Clin. Interv. Aging 2014, 9, 85–93. [Google Scholar] [PubMed]
- Pan, H.C.; Wu, X.H.; Wan, Q.L.; Liu, B.H.; Wu, X.S. Analysis of the risk factors for contrast-induced nephropathy in over-aged patients receiving coronary intervention. Exp. Biol. Med. 2018, 243, 970–975. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | |
---|---|
Age (years), median (IQR) | 58 (50–67) |
Female gender, n (%) | 696 (48.2) |
Diabetes mellitus, n (%) | 278 (20.7) |
Hypertension, n (%) | 478 (35.6) |
Heart failure, n (%) | 191 (14.2) |
Medications prior to CAG | |
Antiplatelet agents, n (%) | 441 (32.8) |
ACEI/ARB, n (%) | 429 (31.9) |
Beta blockers, n (%) | 415 (30.9) |
Calcium channel blocker, n (%) | 165 (12.3) |
Statin, n (%) | 170 (12.7) |
Nitrates, n (%) | 0 (0) |
With CIN (n = 202) | Without CIN (n = 1141) | p Value | |
---|---|---|---|
Age (years), median (IQR) | 60 (51–69.25) | 58 (50–67) | 0.787 |
Female gender, n (%) | 103 (51.0) | 544 (47.7) | 0.385 |
Diabetes mellitus, n (%) | 47 (23.3) | 231 (20.2) | 0.329 |
Hypertension, n (%) | 76 (37.6) | 402 (35.2) | 0.513 |
Heart failure, n (%) | 30 (14.9) | 161 (14.1) | 0.781 |
Medications prior to CAG | |||
Antiplatelet agents, n (%) | 56 (27.7) | 385 (33.7) | 0.093 |
ACEI/ARB, n (%) | 66 (32.7) | 363 (31.8) | 0.809 |
Beta blockers, n (%) | 67 (33.2) | 348 (30.5) | 0.449 |
Calcium channel blocker, n (%) | 20 (9.9) | 145 (12.7) | 0.263 |
Statin, n (%) | 24 (11.9) | 146 (12.8) | 0.719 |
Laboratory findings | |||
Serum creatinine (mg/dL), median (IQR) | 0.76 (0.63–0.88) | 0.77 (0.67–0.92) | 0.301 |
eGFR (mL/min/1.73 m2) | 87 (77–99) | 90 (77–102.25) | 0.132 |
Haemoglobin (g/dL), median (IQR) | 13.77 (12.17–15.20) | 13.90 (12.50–15.10) | 0.542 |
White cell count (103/mL), median (IQR) | 8.71 (7.21–10.36) | 8.47 (7.09–10.39) | 0.772 |
Neutrophil count (103/mL), median (IQR) | 6.06 (4.76–8.03) | 5.24 (4.09–6.78) | <0.001 |
Lymphocyte count (103/mL), median (IQR) | 2.00 (1.38–2.85) | 2.16 (1.56–2.79) | 0.490 |
Monocyte count (103/mL), median (IQR) | 0.56 (0.44–0.71) | 0.52 (0.41–0.66) | 0.015 |
Platelet count (103/mL), median (IQR) | 270 (213–323) | 255 (213–299) | 0.062 |
HDL-C (mg/dL), median (IQR) | 41.50 (35.07–49.55) | 43 (36.30–50.50) | 0.258 |
LDL-C (mg/dL), median (IQR) | 106.61 (80.00–131.50) | 108.00 (86–133) | 0.358 |
Triglycerides (mg/dL), median (IQR) | 160 (103–243.50) | 141 (99–212) | 0.052 |
Albumin (g/dL), median (IQR) | 4 (3.37–4.30) | 4 (3.50–4.30) | 0.454 |
CRP (mg/L), median (IQR) | 2.70 (2.00–10.02) | 2.00 (2.00–6.20) | 0.130 |
NLR, median (IQR) | 2.96 (1.85–4.55) | 2.47 (1.70–3.73) | 0.001 |
PIV, median (IQR) | 444.86 (262.46–708.61) | 329.91 (195.08–553.31) | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Age (continuous) | 1.013 | 1.000–1.025 | 0.050 | 1.015 | 1.002–1.028 | 0.020 |
Antiplatelet agents | 0.753 | 0.541–1.049 | 0.094 | 0.670 | 0.475–0.945 | 0.022 |
NLR | 1.024 | 1.005–1.045 | 0.016 | 1.010 | 0.985–1.036 | 0.415 |
PIV/100 | 1.016 | 1.004–1.028 | 0.008 | 1.016 | 1.004–1.028 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkaya, S.; Cakmak, U. Association between Pan-Immune-Inflammation Value and Contrast-Induced Nephropathy with Coronary Angiography. Medicina 2024, 60, 1012. https://doi.org/10.3390/medicina60061012
Akkaya S, Cakmak U. Association between Pan-Immune-Inflammation Value and Contrast-Induced Nephropathy with Coronary Angiography. Medicina. 2024; 60(6):1012. https://doi.org/10.3390/medicina60061012
Chicago/Turabian StyleAkkaya, Suleyman, and Umit Cakmak. 2024. "Association between Pan-Immune-Inflammation Value and Contrast-Induced Nephropathy with Coronary Angiography" Medicina 60, no. 6: 1012. https://doi.org/10.3390/medicina60061012
APA StyleAkkaya, S., & Cakmak, U. (2024). Association between Pan-Immune-Inflammation Value and Contrast-Induced Nephropathy with Coronary Angiography. Medicina, 60(6), 1012. https://doi.org/10.3390/medicina60061012