Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility
2.2. Search Strategy
2.3. Study Selection and Extraction
2.4. Quality Assessment
2.5. Data Synthesis and Analysis
3. Results
3.1. Identification and Description of Studies
3.2. Methodological Quality
3.3. Intervention Comparability
3.4. Effect of IMT on Maximal Inspiratory Pressure
3.4.1. Effect of Low-Medium IMT on Maximal Inspiratory Pressure (Figure 3)
3.4.2. Effect of High-IMT on Maximal Inspiratory Pressure (Figure 4)
3.5. Effect of IMT on Weaning Duration
3.5.1. Effect of Low-Medium IMT on Weaning Duration (Figure 5)
3.5.2. Effects of High IMT on Weaning Duration (Figure 6)
3.6. Effect of IMT on Duration of Mechanical Ventilation
3.6.1. Effect of Low-Medium IMT on Duration of Mechanical Ventilation (Figure 7)
3.6.2. Effect of High IMT on Weaning Duration (Figure 8)
3.7. Effect of IMT on Rapid Swallow Breathing Index (Figure 9)
4. Discussion
5. Limitations
6. Future Directions
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mutlu, G.M.; Factor, P. Complications of mechanical ventilation. Respir. Care Clin. N. Am. 2000, 6, 213–252. [Google Scholar] [CrossRef] [PubMed]
- Jubran, A. Critical illness and mechanical ventilation: Effects on the diaphragm. Respir. Care 2006, 51, 1054–1064. [Google Scholar]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef]
- Béduneau, G.; Pham, T.; Schortgen, F.; Piquilloud, L.; Zogheib, E.; Jonas, M.; Grelon, F.; Runge, I.; Terzi, N.; Grangé, S.; et al. Epidemiology of weaning outcome according to a new definition: The WIND Study. Am. J. Respir. Crit. Care Med. 2017, 195, 772–783. [Google Scholar] [CrossRef]
- Levine, S.; Nguyen, T.; Taylor, N.; Friscia, M.E.; Budak, M.T.; Rothenberg, P.; Zhu, J.; Sachdeva, R.; Sonnad, S.; Kaiser, L.R.; et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 2008, 358, 1327–1335. [Google Scholar] [CrossRef]
- Damuth, E.; Mitchell, J.A.; Bartock, J.L.; Roberts, B.W.; Trzeciak, S. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Herridge, M.S.; Chu, L.M.; Matte, A.; Tomlinson, G.; Chan, L.; Thomas, C.; Friedrich, J.O.; Mehta, S.; Lamontagne, F.; Levasseur, M.; et al. RECOVER Program Investigators (Phase 1: Towards RECOVER); Canadian Critical Care Trials Group. The RECOVER Program: Disability risk groups and 1-year outcome after 7 or more days of mechanical ventilation. Am. J. Respir. Crit. Care Med. 2016, 194, 831–844. [Google Scholar] [CrossRef]
- Bissett, B.; Leditschke, I.A.; Green, M.; Marzano, V.; Collins, S.; Van Haren, F. Inspiratory muscle training for intensive care patients: A multidisciplinary practical guide for clinicians. Aust. Crit. Care 2019, 32, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Vorona, S.; Sabatini, U.; Al-Maqbali, S.; Bertoni, M.; Dres, M.; Bissett, B.; Van Haren, F.; Martin, A.D.; Urrea, C.; Brace, D.; et al. Inspiratory Muscle Rehabilitation in Critically Ill Adults. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 735–744. [Google Scholar] [CrossRef]
- Elkins, M.; Dentice, R. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: A systematic review. J. Physiother. 2015, 61, 125–134. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.C.; Bhogal, S.K.; Teasell, R.W.; Bureau, Y.; Speechley, M.R. Estimates of quality and reliability with the physiotherapy evidence-based database scale to assess the methodology of randomized controlled trials of pharmacological and nonpharmacological interventions. Phys. Ther. 2006, 86, 817–824. [Google Scholar] [CrossRef]
- Villelabeitia-Jaureguizar, K.; Calvo-Lobo, C.; Rodríguez-Sanz, D.; Vicente-Campos, D.; Castro-Portal, J.A.; López-Cañadas, M.; Becerro-de-Bengoa-Vallejo, R.; Chicharro, J.L. Low Intensity Respiratory Muscle Training in COVID-19 Patients after Invasive Mechanical Ventilation: A Retrospective Case-Series Study. Biomedicines 2022, 10, 2807. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.J.; Donker, S.; Lapoe, A. Inspiratory muscle training in patients with chronic obstructive pulmonary disease: The state of the evidence. Cardiopulm. Phys. Ther. J. 2009, 20, 5–15. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; (updated February 2022). Cochrane. 2022. Available online: www.training.cochrane.org/handbook (accessed on 19 April 2024).
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; version 6.3 (updated February 2022); Cochrane: London, UK, 2022. [Google Scholar]
- Ibrahiem, A.A.; Mohamed, A.R.; Saber, H.M. Effect of respiratory muscles training in addition to standard chest physiotherapy on mechanically ventilated patients. J. Med. Res. Prac. 2014, 3, 52–58. [Google Scholar]
- Mohamed, A.R.; El Basiouny, H.M.; Salem, N.M. Response of mechanically ventilated respiratory failure patients to respiratory muscles training. Med. J. Cairo Univ. 2014, 82, 19–24. [Google Scholar]
- Tonella, R.M.; Ratti, L.D.S.R.; Delazari, L.E.B.; Junior, C.F.; Da Silva, P.L.; Herran, A.R.D.S.; Dos Santos Faez, D.C.; Saad, I.A.B.; De Figueiredo, L.C.; Moreno, R.; et al. Inspiratory Muscle Training in the Intensive Care Unit: A New Perspective. J. Clin. Med. Res. 2017, 9, 929–934. [Google Scholar] [CrossRef]
- Ratti, L.D.S.; Tonella, R.M.; de Figueir, C.; Saad, B.; Falcão, E.; de Oliveira, M. Inspiratory Muscle Training Strategies in Tracheostomized Critically Ill Individuals. Respir. Care 2022, 67, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Prakash, S. Effects of threshold inspiratory muscle training versus conventional physiotherapy on the weaning period of mechanically ventilated patients: A comparative study. Int. J. Physiother. Res. 2014, 2, 424–428. [Google Scholar]
- Nafae, R.M.; El-Shahat, H.M.; Shehata, S.M.; Zaki, L.G. Effect of multimodal physiotherapy on outcome of mechanically ventilated patients at zagazic university respiratory Intensive Care Unit. ZUMJ 2018, 24, 178–191. [Google Scholar]
- Condessa, R.L.; Brauner, J.S.; Saul, A.L.; Baptista, M.; Silva, A.C.; Vieira, S.R. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: A randomised trial. J. Physiother. 2013, 59, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.S.; Quiroga, I.C.; Luna, E.W.; García, A.F. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48 hours or more: A Randomized Controlled Clinical Trial. Med. Intensiv. 2019, 43, 79–89. [Google Scholar]
- Van Hollebeke, M.; Pleysier, S.; Poddighe, D.; Muelas Gómez, L.; Choudhary, Y.Q.; Clerckx, B.; Muller, J.; Hermans, G.; Gosselink, R.; Langer, D. Comparing two types of loading during inspiratory muscle training in patients with weaning difficulties: An exploratory study. Aust. Crit. Care 2023, 36, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, J.M.; Manzano, R.M.; Quitério, R.J.; da Costa Alegria, V.T.; Junqueira, T.T.; El-Fakhouri, S.; Ambrozin, A.R.P. Determinant factors for mortality of patients receiving mechanical ventilation and effects of a protocol muscle training in weaning. Manual Theapy. Posturology Rehabil. J. 2014, 12, 136–142. [Google Scholar] [CrossRef]
- Bissett, B.M.; Leditschke, I.A.; Neeman, T.; Boots, R.; Paratz, J. Inspiratory muscle training to enhance recovery from mechanical ventilation: A randomised trial. Thorax 2016, 71, 812–819. [Google Scholar] [CrossRef] [PubMed]
- da Silva Guimarães, B.; de Souza, L.C.; Cordeiro, H.F.; Regis, T.L.; Leite, C.A.; Puga, F.P.; Alvim, S.H.; Lugon, J.R. Inspiratory Muscle Training With an Electronic Resistive Loading Device Improves Prolonged Weaning Outcomes in a Randomized Controlled Trial. Crit. Care Med. 2021, 49, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Khodabandeloo, F.; Froutan, R.; Yazdi, A.P.; Shakeri, M.T.; Mazlom, S.R.; Moghaddam, A.B. The effect of threshold inspiratory muscle training on the duration of weaning in intensive care unit-admitted patients: A randomized clinical trial. J. Res. Med. Sci. 2023, 28, 44. [Google Scholar]
- Bissett, B.; Leditschke, I.A.; Neeman, T.; Green, M.; Marzano, V.; Erwin, K.; van Haren, F.M.; Boots, R.; Paratz, J. Does mechanical threshold inspiratory muscle training promote recovery and improve outcomes in patients who are ventilator-dependent in the intensive care unit? The IMPROVE randomized trial. Aust. Crit. Care 2023, 36, 613–621. [Google Scholar] [CrossRef]
- Moseley, A.M.; Rahman, P.; Wells, G.A.; Zadro, J.R.; Sherrington, C.; Toupin-April, K.; Brosseau, L. Agreement between the Cochrane risk of bias tool and Physiotherapy Evidence Database (PEDro) scale: A meta-epidemiological study of randomized controlled trials of physical therapy interventions. PLoS ONE 2019, 14, e0222770. [Google Scholar] [CrossRef]
- Patsaki, I.; Papadopoulos, E.; Sidiras, G.; Christakou, A.; Kouvarakos, A.; Markaki, V. The effectiveness of inspiratory muscle training in weaning critically ill patients from mechanical ventilation. Hosp. Chron. 2013, 8, 86–90. [Google Scholar]
- Caine, M.; Mc Connell, A. The inspiratory muscles can be trained differentially to increase strength or endurance using a pressure threshold, inspiratory muscle training device. Eur. Respir. J. 1998, 12, 58–59. [Google Scholar]
- Bureau, C.; Van Hollebeke, M.; Dres, M. Managing respiratory muscle weakness during weaning from invasive ventilation. Eur. Respir. Rev. 2023, 32, 220205. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.B.; Clerckx, B.; Langer, D.; Gosselink, R.; Van Hollebeke, M. Inspiratory muscle training with tapered flow resistive loading versus mechanical threshold loading in ICU difficult to wean patients: A pilot study. Eur. Respir. J. 2017, 50, PA3280. [Google Scholar]
- Silva, P.E. Inspiratory muscle training in mechanical ventilation: Suitable protocols and endpoints, the key to clear results-A critical review. ASSOBRAFIR Cienc. 2015, 6, 21–30. [Google Scholar]
- Sommers, J.; Klooster, E.; Zoethout, S.B.; van den Oever, H.L.A.; Nollet, F.; Tepaske, R.; Horn, J.; Engelbert, R.H.H.; van der Schaaf, M. Feasibility of exercise testing in patients who are critically ill: A prospective, observational multicenter study. Arch. Phys. Med. Rehabil. 2019, 100, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.O.; MacBean, V.; Poulsen, M.K.; Karbing, D.S.; Rees, S.E.; Patel, B.V.; Polkey, M.I. The metabolic cost of inspiratory muscle training in mechanically ventilated patients in critical care. Intensive Care Med. Exp. 2023, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, W.J.M.; van Hees, H.W.H.; Doorduin, J.; Roesthuis, L.H.; Scheffer, G.J.; van der Hoeven, J.G.; Heunks, L.M. Strategies to optimize respiratory muscle function in ICU patients. Crit. Care 2016, 20, 103. [Google Scholar] [CrossRef]
- Patsaki, I.; Bachou, G.; Sidiras, G.; Nanas, S.; Routsi, C.; Karatzanos, E. Post Hospital Discharge Functional Recovery of Critical Illness Survivors. Systematic Review. J. Crit. Care Med. 2023, 9, 87–96. [Google Scholar] [CrossRef]
- MacIntyre, N.R. Respiratory mechanics in the patient who is weaning from the ventilator. Respir. Care 2005, 50, 275–286. [Google Scholar]
- Karthika, M.; Al Enezi, F.A.; Pillai, L.V.; Arabi, Y.M. Rapid shallow breathing index. Ann. Thorac. Med. 2016, 11, 167–176. [Google Scholar] [PubMed]
- Saccheri, C.; Morawiec, E.; Delemazure, J.; Mayaux, J.; Dubé, B.P.; Similowski, T.; Demoule, A.; Dres, M. ICU-acquired weakness, diaphragm dysfunction and long-term outcomes of critically ill patients. Ann. Intensive Care 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bissett, B.; Wang, J.; Neeman, T.; Leditschke, I.A.; Boots, R.; Paratz, J. Which ICU patients benefit most from inspiratory muscle training? Retrospective analysis of a randomized trial. Physiother. Theory Pract. 2020, 36, 1316–1321. [Google Scholar] [CrossRef] [PubMed]
- Nickels, M.; Erwin, K.; McMurray, G.; Talbot, R.; Strong, M.; Krishnan, A.; van Haren, F.M.P.; Bissett, B. Feasibility, safety, and patient acceptability of electronic inspiratory muscle training in patients who require prolonged mechanical ventilation in the intensive care unit: A dual-center observational study. Aust. Crit. Care 2023, 37, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Yang, M.; Li, L.; Chen, Y. Ultrasound assessment of diaphragmatic dysfunction as a predictor of weaning outcome from mechanical ventilation: A systematic review and meta-analysis. BMJ Open 2018, 8, e021189. [Google Scholar] [CrossRef]
- Laguado-Nieto, M.A.; Roberto-Avilán, S.L.; Naranjo-Junoy, F.; Meléndez-Flórez, H.J.; Lozada-Martinez, I.D.; Domínguez-Alvarado, G.A.; Campos-Castillo, V.A.; Ríos-Orozco, S.U.; Narváez-Rojas, A.R. Diaphragmatic Dynamics and Thickness Parameters Assessed by Ultrasonography Predict Extubation Success in Critically Ill Patients. Clin. Med. Insights Circ. Respir. Pulm. Med. 2023, 17, 11795484231165940. [Google Scholar] [CrossRef] [PubMed]
- Boussuges, A.; Rives, S.; Finance, J.; Brégeon, F. Assessment of diaphragmatic function by ultrasonography: Current approach and perspectives. World J. Clin. Cases 2020, 26, 2408–2424. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Q.; Li, X.Y.; Li, Y.; Guo, B.P.; Guan, L.L.; Chen, X.; Luo, Y.W.; Luo, P.; Chen, R.C. Inspiratory muscle training followed by non-invasive positive pressure ventilation in patients with severe chronic obstructive pulmonary disease: A randomized controlled trial. Nan Fang Yi Ke Da Xue Xue Bao J. South. Med. Univ. 2016, 36, 1069–1074. [Google Scholar]
- Patsaki, I.; Christakou, A.; Papadopoulos, E.; Katartzi, M.; Kouvarakos, A.; Siempos, I.; Tsimouris, D.; Skoura, A.; Xatzimina, A.; Malachias, S.; et al. The combination of inspiratory muscle training and high-flow nasal cannula oxygen therapy for promoting weaning outcomes in difficult-to-wean patients: Protocol for a randomised controlled trial. ERJ Open Res. 2020, 6, 00088–02020. [Google Scholar] [CrossRef]
(a) | |||||
RCT | Population | Intervention | Comparison | Outcome | Results |
Low-Medium Intensity of IMT (<50%) | |||||
Condessa et al., 2013 [24] | N = 92 (respiratory failure) | 40% MIP | Standard physiotherapy | MIP RSB Duration MV Weaning duration | p < 0.05 only in MIP |
Ibrahiem et al., 2014 [18] | N = 30 (respiratory failure) | 30% NΙP | Standard physiotherapy | NIP | p < 0.005 |
Mohamed et al., 2014 [19] | N = 40 (respiratory failure) | 30% NIP | standard physiotherapy | NIP Duration MV | NIP: p < 0.001 MV duration: p < 0.001 |
Dixit and Prakash, 2014 [22] | N = 30 (general ICU) | Τhreshold: 30% MIP | Standard physiotherapy | MIP Weaning duration | MIP: p = 0.0009 Weaning duration: p = 0.0009 |
Tonella et al., 2017 [20] | N = 19 (medical) | KH2: 30% MIP | Standard physiotherapy | MIP RSBI Duration MV Weaning duration | MIP: p = 0.017 Weaning duration: p = 0.0192 |
Nafae et al., 2018 [23] | N = 40 (medical) | Threshold IMT, 9 cm H2O pressure | Standard physiotherapy | MIP RSBI Weaning success Duration MV Weaning duration | p < 0.05 in all aside Weaning success |
Ratti et al., 2022 [21] | N = 132 (medical, surgical, trauma, neurological) | KH2: 30% MIP | Standard physiotherapy | MIP RSBI Weaning duration | p: ns between groups |
High Intensity of IMT (≥50%) | |||||
Shimizu et al., 2014 [27] | N = 13 (medical, surgical, trauma, neurological) | Τhreshold: 50% ΜIP | Standard physiotherapy | MIP Weaning duration Duration MV | p = ns between groups |
Bissett et al., 2016 [28] | Ν = 70 (medical, surgical, neurological) | Threshold: 50% MIP | standard physiotherapy | FRI ΜΙP Dyspnea | p < 0.05 only in MIP |
Moreno et al., 2019 [25] | N = 126 (medical, surgical) | Threshold: 50% MIP | Standard physiotherapy | MIP Duration MV Weaning duration Weaning success | p = ns between groups |
da Silva Guimarães et al., 2021 [29] | N = 43 (medical) | Threshold IMT: 80% MIP | Standard physiotherapy | MIP | p < 0.001 |
Van Hollebeke et al., 2022 [26] | N = 41 (surgical, medical) | KH2: 50% MIP | 10% MIP 6 sets of 6–8 breaths | MIP | p = ns between groups |
Bissett et al., 2023 [31] | N = 70 (surgical, medical, neurological) | Threshold IMT: 50% MIP | Standard physiotherapy | MIP FRI Duration MV | p = ns between groups |
Khodabandeloo et al., 2023 [30] | N = 79 (medical) | Threshold IMT: 50% MIP | Standard physiotherapy | MIP RSBI Weaning duration Duration MV | MIP: p < 0.001 RSBI: p < 0.001 Duration MV: p < 0.05 Weaning duration: p < 0.001 |
(b) | |||||
RCT | Intervention | Comparison (Standard Physiotherapy) | |||
Condessa et al., 2013 [24] | Intensity: 40% MIP, 5 sets of 10 breaths | Passive to active-assisted mobilization of the limbs, chest compression, positioning | |||
Frequency: 2 times/day, 7 days/week | |||||
Ibrahiem et al., 2014 [18] | Intensity: 30% NΙP. 18 breaths, 5–6 sets | manual hyperinflation, percussion, vibrations, and muscle training (for upper and lower limbs) | |||
Frequency: 2 times/d | |||||
Time: 10 min | |||||
Progression: Increase 1–2 cm H20 | |||||
Mohamed et al., 2014 [19] | Intensity: 30% NIP; 18 breaths, 5–6 sets | Manual hyperinflation, percussion, vibrations, and muscle training (for upper and lower limbs) | |||
Frequency: 2 times/d | |||||
Time: 10 min | |||||
Progression: Increase 1–2 cm H20 | |||||
Dixit and Prakash, 2014 [22] | Intensity: threshold 30% MIP; 6 breaths, 5 sets | Expansion techniques, percussion, vibration, postural drainage, active and passive mobilization of the limbs | |||
Frequency: 2 times/day, 7 days/week | |||||
Time: 5–30 min | |||||
Progression: Increase 10% ΜΙP | |||||
Tonella et al., 2017 [20] | Intensity: threshold 30% MIP; 10 breaths, 3 sets | Nebulization sessions | |||
Frequency: 2 times/day | |||||
Progression: increase 10% daily | |||||
Nafae et al., 2018 [23] | Intensity: threshold IMT, 9 cm H2O pressure, 4 sets of 6–8 breaths | Expansion techniques, percussion, vibration, postural drainage, active and passive mobilization of the limbs | |||
Duration: 30 min | |||||
Progression: increase 4 cm H20 every session | |||||
Ratti et al., 2022 [21] | Intensity: threshold KH2 30%MIP, 3 sets, 10 breaths | Active-assistive mobilization of the limbs, bronchial hygiene | |||
Progression: daily increase 10% MIP | |||||
Shimizu et al., 2014 [27] | Intensity: threshold 50% ΜIP; 10 breaths, 3 sets | Nebulization sessions | |||
Frequency: 2 times/day, 7 days/week | |||||
Bissett et al., 2016 [28] | Intensity: threshold 50% MIP, 5 sets, 6 breaths | Secretion clearance techniques, limb exercises, assisted mobilization | |||
Frequency: 1 per day, 5 days/week, 2 weeks | |||||
Duration: 5–30 min | |||||
Progression: increase: 1–2 cm H2O | |||||
Moreno et al., 2019 [25] | Intensity: threshold 50% MIP, 3 sets, 10 breaths | Chest physiotherapy, limb exercises, mobilization | |||
Frequency: 2 times/day, 7 days/week | |||||
da Silva Guimarães et al., 2021 [29] | Intensity: threshold IMT 80% MIP; 2 sets, 30 breaths | Early mobilization | |||
Progression: the load increased within each set of breaths until reaching 80% MIP | |||||
Van Hollebeke et al., 2022 [26] | Intensity: tapered-threshold 50% MIP; 6 sets of 6–8 breaths | Tapered-threshold 10% MIP 6 sets of 6–8 breaths | |||
Progression: to the highest level tolerated | |||||
Bissett et al., 2023 [31] | Intensity: threshold IMT 50% MIP; 5 sets of 6 breaths | Secretion clearance techniques | |||
Frequency: once per day, 5 days/week | |||||
Progression: highest level tolerated to complete sixth breath | |||||
Khodabandeloo et al., 2023 [30] | Intensity: threshold IMT 50% MIP; 5 sets of 6 breaths Frequency: 5 days/w | Passive to active movements of the limbs, chest physiotherapy (vibration and percussion), and repositioning | |||
Progression: Daily increase of 10% MIP |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ibrahiem et al., 2014 [18] | ✓ * | ✓ | − | ✓ | − | − | − | ✓ | ✓ | ✓ | ✓ | 6/10 |
Mohamed et al., 2014 [19] | ✓ * | ✓ | _ | ✓ | _ | _ | _ | _ | _ | ✓ | ✓ | 4/10 |
Dixit and Prakash, 2014 [22] | ✓ * | ✓ | − | − | − | − | − | − | − | ✓ | ✓ | 3/10 |
Bissett et al., 2016 [28] | ✓ * | ✓ | ✓ | ✓ | − | − | ✓ | _ | ✓ | ✓ | ✓ | 7/10 |
Tonella et al., 2017 [20] | ✓ * | ✓ | ✓ | ✓ | − | − | − | ✓ | − | ✓ | ✓ | 6/10 |
Nafae et al., 2018 [23] | ✓ * | ✓ | _ | ✓ | _ | _ | _ | _ | _ | ✓ | ✓ | 4/10 |
Ratti et al., 2022 [21] | ✓ * | ✓ | ✓ | _ | _ | _ | _ | _ | _ | ✓ | ✓ | 4/10 |
Condessa et al., 2013 [24] | ✓ * | ✓ | ✓ | ✓ | _ | _ | ✓ | _ | _ | _ | ✓ | 5/10 |
Shimizu et al., 2014 [27] | ✓ * | ✓ | − | ✓ | − | − | − | − | − | ✓ | ✓ | 4/10 |
Moreno et al., 2019 [25] | ✓ * | ✓ | ✓ | ✓ | ✓ | − | ✓ | ✓ | ✓ | ✓ | ✓ | 9/10 |
da Silva Guimarães et al., 2021 [29] | ✓ * | ✓ | _ | _ | _ | _ | _ | ✓ | _ | ✓ | ✓ | 4/10 |
Van Hollebeke et al., 2022 [26] | ✓ * | ✓ | ✓ | ✓ | ✓ | - | ✓ | - | - | ✓ | ✓ | 7/10 |
Bissett et al., 2023 [31] | ✓ * | ✓ | ✓ | ✓ | _ | _ | ✓ | _ | ✓ | ✓ | ✓ | 7/10 |
Khodabandeloo et al., 2023 [30] | ✓ * | ✓ | - | ✓ | ✓ | - | ✓ | - | ✓ | ✓ | ✓ | 7/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patsaki, I.; Kouvarakos, A.; Vasileiadis, I.; Koumantakis, G.A.; Ischaki, E.; Grammatopoulou, E.; Kotanidou, A.; Magira, E.E. Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicina 2024, 60, 869. https://doi.org/10.3390/medicina60060869
Patsaki I, Kouvarakos A, Vasileiadis I, Koumantakis GA, Ischaki E, Grammatopoulou E, Kotanidou A, Magira EE. Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicina. 2024; 60(6):869. https://doi.org/10.3390/medicina60060869
Chicago/Turabian StylePatsaki, Irini, Alexandros Kouvarakos, Ioannis Vasileiadis, Georgios A. Koumantakis, Eleni Ischaki, Eirini Grammatopoulou, Anastasia Kotanidou, and Eleni E. Magira. 2024. "Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis" Medicina 60, no. 6: 869. https://doi.org/10.3390/medicina60060869
APA StylePatsaki, I., Kouvarakos, A., Vasileiadis, I., Koumantakis, G. A., Ischaki, E., Grammatopoulou, E., Kotanidou, A., & Magira, E. E. (2024). Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicina, 60(6), 869. https://doi.org/10.3390/medicina60060869