Role of Histone Modifications in Kidney Fibrosis
Abstract
:1. Introduction
2. Histone Modification
3. Histone Methylation
4. KMTs and PRMTs in Renal Fibrosis
5. Histone Demethylases in Kidney Fibrosis
6. Histone Acetylation
7. HATs in Kidney Fibrosis
8. HDACs in Kidney Fibrosis
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- GBD Chronic Kidney Disease Collaboration. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016–40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- Drew, D.A.; Weiner, D.E.; Sarnak, M.J. Cognitive Impairment in Ckd: Pathophysiology, Management, and Prevention. Am. J. Kidney Dis. 2019, 74, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Lockwood, M.B.; Rhee, C.M.; Tantisattamo, E.; Andreoli, S.; Balducci, A.; Laffin, P.; Harris, T.; Knight, R.; Kumaraswami, L.; et al. Patient-Centred Approaches for the Management of Unpleasant Symptoms in Kidney Disease. Nat. Rev. Nephrol. 2022, 18, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Chesnaye, N.C.; Carrero, J.J.; Hecking, M.; Jager, K.J. Differences in the Epidemiology, Management and Outcomes of Kidney Disease in Men and Women. Nat. Rev. Nephrol. 2024, 20, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Klinkhammer, B.M.; Boor, P. Kidney Fibrosis: Emerging Diagnostic and Therapeutic Strategies. Mol. Aspects Med. 2023, 93, 101206. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fu, H.; Liu, Y. The Fibrogenic Niche in Kidney Fibrosis: Components and Mechanisms. Nat. Rev. Nephrol. 2022, 18, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Tian, Y.; Zhou, L.; Zhou, D.; Tan, R.J.; Stolz, D.B.; Liu, Y. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. J. Am. Soc. Nephrol. 2017, 28, 785–801. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Midwood, K.S.; Varga, J. Tenascin-C in Fibrosis in Multiple Organs: Translational Implications. Semin. Cell Dev. Biol. 2022, 128, 130–136. [Google Scholar] [CrossRef]
- Luo, L.; Wang, S.; Hu, Y.; Wang, L.; Jiang, X.; Zhang, J.; Liu, X.; Guo, X.; Luo, Z.; Zhu, C.; et al. Precisely Regulating M2 Subtype Macrophages for Renal Fibrosis Resolution. ACS Nano 2023, 17, 22508–22526. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ren, J.; Gui, Y.; Wei, W.; Shu, B.; Lu, Q.; Xue, X.; Sun, X.; He, W.; Yang, J.; et al. Wnt/Beta-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. J. Am. Soc. Nephrol. 2018, 29, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, Y.; Zhong, Y.; Wei, B.; Huang, X.R.; Tang, P.M.; Xu, A.; Lan, H.Y. P2y12 Inhibitor Clopidogrel Inhibits Renal Fibrosis by Blocking Macrophage-to-Myofibroblast Transition. Mol. Ther. 2022, 30, 3017–3033. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.M.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile Players in Renal Inflammation and Fibrosis. Nat. Rev. Nephrol. 2019, 15, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Yang, H.C.; Fogo, A.B. A Perspective on Chronic Kidney Disease Progression. Am. J. Physiol. Renal Physiol. 2017, 312, F375–F384. [Google Scholar] [CrossRef] [PubMed]
- Tampe, B.; Zeisberg, M. Contribution of Genetics and Epigenetics to Progression of Kidney Fibrosis. Nephrol. Dial. Transplant. 2014, 29 (Suppl. S4), iv72–iv79. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Doke, T.; Guo, D.; Sheng, X.; Ma, Z.; Park, J.; Vy, H.M.T.; Nadkarni, G.N.; Abedini, A.; Miao, Z.; et al. Epigenomic and Transcriptomic Analyses Define Core Cell Types, Genes and Targetable Mechanisms for Kidney Disease. Nat. Genet. 2022, 54, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Natarajan, R. Epigenetics and Epigenomics in Diabetic Kidney Disease and Metabolic Memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Dong, G.; Liang, X.; Dong, Z. Epigenetic Regulation in Aki and Kidney Repair: Mechanisms and Therapeutic Implications. Nat. Rev. Nephrol. 2019, 15, 220–239. [Google Scholar] [CrossRef]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef]
- Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-Wide Association Studies for Common Human Diseases. Nat. Rev. Genet. 2011, 12, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Roadmap Epigenomics, C.; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative Analysis of 111 Reference Human Epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Song, K.; Tu, B.; Lin, L.C.; Sun, H.; Zhou, Y.; Sha, J.M.; Yang, J.J.; Zhang, Y.; Zhao, J.Y.; et al. Glycolytic Reprogramming in Organ Fibrosis: New Dynamics of the Epigenetic Landscape. Free Radic. Biol. Med. 2023, 207, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Song, K.; Tu, B.; Lin, L.C.; Sun, H.; Zhou, Y.; Li, R.; Shi, Y.; Yang, J.J.; Zhang, Y.; et al. Crosstalk between Oxidative Stress and Epigenetic Marks: New Roles and Therapeutic Implications in Cardiac Fibrosis. Redox Biol. 2023, 65, 102820. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Fu, P.; Ma, L. Kidney Fibrosis: From Mechanisms to Therapeutic Medicines. Signal Transduct. Target. Ther. 2023, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.K.M.; Pugh, B.F. Understanding Nucleosome Dynamics and Their Links to Gene Expression and DNA Replication. Nat. Rev. Mol. Cell Biol. 2017, 18, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Torres-Perez, J.V.; Irfan, J.; Febrianto, M.R.; Di Giovanni, S.; Nagy, I. Histone Post-Translational Modifications as Potential Therapeutic Targets for Pain Management. Trends Pharmacol. Sci. 2021, 42, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lan, F.; Matson, C.; Mulligan, P.; Whetstine, J.R.; Cole, P.A.; Casero, R.A.; Shi, Y. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog Lsd1. Cell 2004, 119, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, G.L.; Daujat, S.; Snowden, A.W.; Erdjument-Bromage, H.; Hagiwara, T.; Yamada, M.; Schneider, R.; Gregory, P.D.; Tempst, P.; Bannister, A.J.; et al. Histone Deimination Antagonizes Arginine Methylation. Cell 2004, 118, 545–553. [Google Scholar] [CrossRef]
- Bannister, A.J.; Kouzarides, T. Reversing Histone Methylation. Nature 2005, 436, 1103–1106. [Google Scholar] [CrossRef]
- Shinsky, S.A.; Monteith, K.E.; Viggiano, S.; Cosgrove, M.S. Biochemical Reconstitution and Phylogenetic Comparison of Human Set1 Family Core Complexes Involved in Histone Methylation. J. Biol. Chem. 2015, 290, 6361–6375. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Dharmarajan, V.; Vought, V.E.; Cosgrove, M.S. On the Mechanism of Multiple Lysine Methylation by the Human Mixed Lineage Leukemia Protein-1 (Mll1) Core Complex. J. Biol. Chem. 2009, 284, 24242–24256. [Google Scholar] [CrossRef]
- Jiang, H.; Shukla, A.; Wang, X.; Chen, W.Y.; Bernstein, B.E.; Roeder, R.G. Role for Dpy-30 in Es Cell-Fate Specification by Regulation of H3k4 Methylation within Bivalent Domains. Cell 2011, 144, 513–525. [Google Scholar] [CrossRef]
- Dou, Y.; Milne, T.A.; Ruthenburg, A.J.; Lee, S.; Lee, J.W.; Verdine, G.L.; Allis, C.D.; Roeder, R.G. Regulation of Mll1 H3k4 Methyltransferase Activity by Its Core Components. Nat. Struct. Mol. Biol. 2006, 13, 713–719. [Google Scholar] [CrossRef]
- Zou, J.; Yu, C.; Zhang, C.; Guan, Y.; Zhang, Y.; Tolbert, E.; Zhang, W.; Zhao, T.; Bayliss, G.; Li, X.; et al. Inhibition of Mll1-Menin Interaction Attenuates Renal Fibrosis in Obstructive Nephropathy. FASEB J. 2023, 37, e22712. [Google Scholar] [CrossRef]
- Shimoda, H.; Doi, S.; Nakashima, A.; Sasaki, K.; Doi, T.; Masaki, T. Inhibition of the H3k4 Methyltransferase Mll1/Wdr5 Complex Attenuates Renal Senescence in Ischemia Reperfusion Mice by Reduction of P16(Ink4a). Kidney Int. 2019, 96, 1162–1175. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, X.; Han, H.; Li, C.; Liu, S.; Gao, W.; Sun, G. Histone Lysine Methylation in Tgf-Beta1 Mediated P21 Gene Expression in Rat Mesangial Cells. Biomed. Res. Int. 2016, 2016, 6927234. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Reddy, M.A.; Yuan, H.; Lanting, L.; Kato, M.; Natarajan, R. Epigenetic Histone Methylation Modulates Fibrotic Gene Expression. J. Am. Soc. Nephrol. 2010, 21, 2069–2080. [Google Scholar] [CrossRef]
- Sasaki, K.; Doi, S.; Nakashima, A.; Irifuku, T.; Yamada, K.; Kokoroishi, K.; Ueno, T.; Doi, T.; Hida, E.; Arihiro, K.; et al. Inhibition of Set Domain-Containing Lysine Methyltransferase 7/9 Ameliorates Renal Fibrosis. J. Am. Soc. Nephrol. 2016, 27, 203–215. [Google Scholar] [CrossRef]
- Rowbotham, S.P.; Li, F.; Dost, A.F.M.; Louie, S.M.; Marsh, B.P.; Pessina, P.; Anbarasu, C.R.; Brainson, C.F.; Tuminello, S.J.; Lieberman, A.; et al. H3k9 Methyltransferases and Demethylases Control Lung Tumor-Propagating Cells and Lung Cancer Progression. Nat. Commun. 2018, 9, 4559. [Google Scholar] [CrossRef]
- Bannister, A.J.; Zegerman, P.; Partridge, J.F.; Miska, E.A.; Thomas, J.O.; Allshire, R.C.; Kouzarides, T. Kouzarides. Selective Recognition of Methylated Lysine 9 on Histone H3 by the Hp1 Chromo Domain. Nature 2001, 410, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Irifuku, T.; Doi, S.; Sasaki, K.; Doi, T.; Nakashima, A.; Ueno, T.; Yamada, K.; Arihiro, K.; Kohno, N.; Masaki, T. Inhibition of H3k9 Histone Methyltransferase G9a Attenuates Renal Fibrosis and Retains Klotho Expression. Kidney Int. 2016, 89, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Barcena-Varela, M.; Paish, H.; Alvarez, L.; Uriarte, I.; Latasa, M.U.; Santamaria, E.; Recalde, M.; Garate, M.; Claveria, A.; Colyn, L.; et al. Epigenetic Mechanisms and Metabolic Reprogramming in Fibrogenesis: Dual Targeting of G9a and Dnmt1 for the Inhibition of Liver Fibrosis. Gut 2021, 70, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Z.; Wang, L.; Gao, P.; Wu, Z. G9a and Dnmt1 Inhibition Modulates Cdkn1a Promoter Methylation and the Cell Cycle Leading to Improvement in Kidney Fibrosis. Biochim. Biophys. Acta Gen. Subj. 2023, 1867, 130417. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zang, X.; Ponnusamy, M.; Masucci, M.V.; Tolbert, E.; Gong, R.; Zhao, T.C.; Liu, N.; Bayliss, G.; Dworkin, L.D.; et al. Enhancer of Zeste Homolog 2 Inhibition Attenuates Renal Fibrosis by Maintaining Smad7 and Phosphatase and Tensin Homolog Expression. J. Am. Soc. Nephrol. 2016, 27, 2092–2108. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xiong, C.; Tolbert, E.; Zhao, T.C.; Bayliss, G.; Zhuang, S. Targeting Histone Methyltransferase Enhancer of Zeste Homolog-2 Inhibits Renal Epithelial-Mesenchymal Transition and Attenuates Renal Fibrosis. FASEB J. 2018, 32, fj201800237R. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Hu, Y.; Ma, X.; Li, J.; Shi, Y.; Tao, M.; Wang, Y.; Zhong, Q.; Yan, D.; et al. Enhancer of Zeste Homolog 2 Promotes Renal Fibrosis after Acute Kidney Injury by Inducing Epithelial-Mesenchymal Transition and Activation of M2 Macrophage Polarization. Cell Death Dis. 2023, 14, 253. [Google Scholar] [CrossRef]
- Tao, S.; Yang, L.; Wu, C.; Hu, Y.; Guo, F.; Ren, Q.; Ma, L.; Fu, P. Gambogenic Acid Alleviates Kidney Fibrosis Via Epigenetic Inhibition of Ezh2 to Regulate Smad7-Dependent Mechanism. Phytomedicine 2022, 106, 154390. [Google Scholar] [CrossRef]
- Lin, P.; Qiu, F.; Wu, M.; Xu, L.; Huang, D.; Wang, C.; Yang, X.; Ye, C. Salvianolic Acid B Attenuates Tubulointerstitial Fibrosis by Inhibiting Ezh2 to Regulate the Pten/Akt Pathway. Pharm. Biol. 2023, 61, 23–29. [Google Scholar] [CrossRef]
- Xu, L.; Gao, J.; Huang, D.; Lin, P.; Yao, D.; Yang, F.; Zhang, Y.; Yang, X.; Wu, M.; Ye, C. Emodin Ameliorates Tubulointerstitial Fibrosis in Obstructed Kidneys by Inhibiting Ezh2. Biochem. Biophys. Res. Commun. 2021, 534, 279–285. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Z.; Yu, H.; Liu, X. Inhibition of Disruptor of Telomeric Silencing 1-Like Alleviated Renal Ischemia and Reperfusion Injury-Induced Fibrosis by Blocking Pi3k/Akt-Mediated Oxidative Stress. Drug Des. Devel Ther. 2019, 13, 4375–4387. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ngo, J.; Li, Y.; Liu, H.; Chen, C.H.; Saifudeen, Z.; Sequeira-Lopez, M.L.S.; El-Dahr, S.S. Targeted Disruption of the Histone Lysine 79 Methyltransferase Dot1l in Nephron Progenitors Causes Congenital Renal Dysplasia. Epigenetics 2021, 16, 1235–1250. [Google Scholar] [CrossRef]
- Kang, J.Y.; Kim, J.Y.; Kim, K.B.; Park, J.W.; Cho, H.; Hahm, J.Y.; Chae, Y.C.; Kim, D.; Kook, H.; Rhee, S.; et al. Kdm2b Is a Histone H3k79 Demethylase and Induces Transcriptional Repression Via Sirtuin-1-Mediated Chromatin Silencing. FASEB J. 2018, 32, 5737–5750. [Google Scholar] [CrossRef]
- Wong, M.; Polly, P.; Liu, T. The Histone Methyltransferase Dot1l: Regulatory Functions and a Cancer Therapy Target. Am. J. Cancer Res. 2015, 5, 2823–2837. [Google Scholar] [PubMed]
- Liu, W.; Deng, L.; Song, Y.; Redell, M. Dot1l Inhibition Sensitizes Mll-Rearranged Aml to Chemotherapy. PLoS ONE 2014, 9, e98270. [Google Scholar] [CrossRef]
- Liu, L.; Zou, J.; Guan, Y.; Zhang, Y.; Zhang, W.; Zhou, X.; Xiong, C.; Tolbert, E.; Zhao, T.C.; Bayliss, G.; et al. Blocking the Histone Lysine 79 Methyltransferase Dot1l Alleviates Renal Fibrosis through Inhibition of Renal Fibroblast Activation and Epithelial-Mesenchymal Transition. FASEB J. 2019, 33, 11941–11958. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Gao, C.; Chen, E.; Lightle, A.R.; Foulke, L.; Zhao, B.; Higgins, P.J.; Zhang, W. Loss of Histone H3 K79 Methyltransferase Dot1l Facilitates Kidney Fibrosis by Upregulating Endothelin 1 through Histone Deacetylase 2. J. Am. Soc. Nephrol. 2020, 31, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Schapira, M.; Arrowsmith, C.H.; Barsyte-Lovejoy, D. Protein Arginine Methylation: From Enigmatic Functions to Therapeutic Targeting. Nat. Rev. Drug Discov. 2021, 20, 509–530. [Google Scholar] [CrossRef]
- Strahl, B.D.; Briggs, S.D.; Brame, C.J.; Caldwell, J.A.; Koh, S.S.; Ma, H.; Cook, R.G.; Shabanowitz, J.; Hunt, D.F.; Stallcup, M.R.; et al. Methylation of Histone H4 at Arginine 3 Occurs in Vivo and Is Mediated by the Nuclear Receptor Coactivator Prmt1. Curr. Biol. 2001, 11, 996–1000. [Google Scholar] [CrossRef]
- Stallcup, M.R. Role of Protein Methylation in Chromatin Remodeling and Transcriptional Regulation. Oncogene 2001, 20, 3014–3020. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.Q.; Xia, L.; Feng, Q.; Erdjument-Bromage, H.; Strahl, B.D.; Briggs, S.D.; Allis, C.D.; Wong, J.; Tempst, P.; et al. Methylation of Histone H4 at Arginine 3 Facilitating Transcriptional Activation by Nuclear Hormone Receptor. Science 2001, 293, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Peng, X.F.; Liu, G.Y.; Liu, J.S.; Sun, L.; Liu, H.; Xiao, L.; He, L.Y. Protein Arginine Methyltranferase-1 Induces Er Stress and Epithelial-Mesenchymal Transition in Renal Tubular Epithelial Cells and Contributes to Diabetic Nephropathy. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 2563–2575. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, C.; Zhuang, S. Protein Arginine Methyltransferase 1 Mediates Renal Fibroblast Activation and Fibrogenesis through Activation of Smad3 Signaling. Am. J. Physiol. Renal Physiol. 2020, 318, F375–F387. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lin, P.; Li, L.; Chen, D.; Yang, X.; Xu, L.; Zhou, B.; Wang, C.; Zhang, Y.; Luo, C.; et al. Reduced Asymmetric Dimethylarginine Accumulation through Inhibition of the Type I Protein Arginine Methyltransferases Promotes Renal Fibrosis in Obstructed Kidneys. FASEB J. 2019, 33, 6948–6956. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Liao, G.; Yu, B. Lsd1/Kdm1a Inhibitors in Clinical Trials: Advances and Prospects. J. Hematol. Oncol. 2019, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, L.X.; Yu, C.; Nath, K.A.; Zhuang, S.; Li, X. Targeting Lysine-Specific Demethylase 1a Inhibits Renal Epithelial-Mesenchymal Transition and Attenuates Renal Fibrosis. FASEB J. 2022, 36, e22122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xing, J.; Zhao, L. Lysine-Specific Demethylase 1 Induced Epithelial-Mesenchymal Transition and Promoted Renal Fibrosis through Jagged-1/Notch Signaling Pathway. Hum. Exp. Toxicol. 2021, 40, S203–S214. [Google Scholar] [CrossRef]
- Dong, L.; Yu, L.; Zhong, J. Histone Lysine-Specific Demethylase 1 Induced Renal Fibrosis Via Decreasing Sirtuin 3 Expression and Activating Tgf-Beta1/Smad3 Pathway in Diabetic Nephropathy. Diabetol. Metab. Syndr. 2022, 14, 2. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Wang, X.; Zhang, Y.Y.; Yuan, W.J. The Histone Demethylase Lsd1 Promotes Renal Inflammation by Mediating Tlr4 Signaling in Hepatitis B Virus-Associated Glomerulonephritis. Cell Death Dis. 2019, 10, 278. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Wu, T.; Yin, W.; Yan, J.; Sun, Y.; Zhao, D. Therapeutic Potential of Targeting Lsd1/ Kdm1a in Cancers. Pharmacol. Res. 2022, 175, 105958. [Google Scholar] [CrossRef]
- Xia, Y.; Yan, J.; Jin, X.; Entman, M.L.; Wang, Y. The Chemokine Receptor Cxcr6 Contributes to Recruitment of Bone Marrow-Derived Fibroblast Precursors in Renal Fibrosis. Kidney Int. 2014, 86, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Lin, S.C.; Chen, J.; He, L.; Dong, F.; Xu, J.; Han, S.; Du, J.; Entman, M.L.; Wang, Y. Cxcl16 Recruits Bone Marrow-Derived Fibroblast Precursors in Renal Fibrosis. J. Am. Soc. Nephrol. 2011, 22, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Chen, Z.; Yuan, Y.; Su, Q.; Ye, K.; Chen, C.; Li, G.; Song, Y.; Chen, H.; et al. Gsdmd-Dependent Neutrophil Extracellular Traps Promote Macrophage-to-Myofibroblast Transition and Renal Fibrosis in Obstructive Nephropathy. Cell Death Dis. 2022, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.M.; Zhang, Y.Y.; Xiao, J.; Tang, P.C.; Chung, J.Y.; Li, J.; Xue, V.W.; Huang, X.R.; Chong, C.C.; Ng, C.F.; et al. Neural Transcription Factor Pou4f1 Promotes Renal Fibrosis Via Macrophage-Myofibroblast Transition. Proc. Natl. Acad. Sci. USA 2020, 117, 20741–20752. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liu, B.; Gao, Y.; Nie, J.; Feng, S.; Yu, W.; Wen, S.; Su, X. Jmjd3/Irf4 Axis Aggravates Myeloid Fibroblast Activation and M2 Macrophage to Myofibroblast Transition in Renal Fibrosis. Front. Immunol. 2022, 13, 978262. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Jiao, B.; Du, H.; Tran, M.; Song, B.; Wang, P.; Zhou, D.; Wang, Y. Jumonji Domain-Containing Protein-3 (Jmjd3) Promotes Myeloid Fibroblast Activation and Macrophage Polarization in Kidney Fibrosis. Br. J. Pharmacol. 2023, 180, 2250–2265. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, W.; Song, J.; Nie, J.; Cui, Z.; Wen, S.; Liu, B.; Liang, H. Jmjd3 Ablation in Myeloid Cells Confers Renoprotection in Mice with Doca/Salt-Induced Hypertension. Hypertens. Res. 2023, 46, 1934–1948. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xiong, C.; Tang, J.; Hou, X.; Liu, N.; Bayliss, G.; Zhuang, S. Histone Demethylase Jmjd3 Protects against Renal Fibrosis by Suppressing Tgfbeta and Notch Signaling and Preserving Pten Expression. Theranostics 2021, 11, 2706–2721. [Google Scholar] [CrossRef]
- He, W.; Li, Q.; Li, X. Acetyl-Coa Regulates Lipid Metabolism and Histone Acetylation Modification in Cancer. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188837. [Google Scholar] [CrossRef]
- Li, X.Y.; Yu, J.T.; Dong, Y.H.; Shen, X.Y.; Hou, R.; Xie, M.M.; Wei, J.; Hu, X.W.; Dong, Z.H.; Shan, R.R.; et al. Protein Acetylation and Related Potential Therapeutic Strategies in Kidney Disease. Pharmacol. Res. 2023, 197, 106950. [Google Scholar] [CrossRef]
- Pogo, B.G.; Allfrey, V.G.; Mirsky, A.E. RNA Synthesis and Histone Acetylation During the Course of Gene Activation in Lymphocytes. Proc. Natl. Acad. Sci. USA 1966, 55, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.A.J.; Shilatifard, A. Epigenetic Moonlighting: Catalytic-Independent Functions of Histone Modifiers in Regulating Transcription. Sci. Adv. 2023, 9, eadg6593. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Fan, Y.; Liao, W.; Lin, X. Plant Homeodomain Genes Play Important Roles in Cryptococcal Yeast-Hypha Transition. Appl. Environ. Microbiol. 2018, 84, e01732-17. [Google Scholar] [CrossRef]
- Londregan, A.T.; Aitmakhanova, K.; Bennett, J.; Byrnes, L.J.; Canterbury, D.P.; Cheng, X.; Christott, T.; Clemens, J.; Coffey, S.B.; Dias, J.M.; et al. Discovery of High-Affinity Small-Molecule Binders of the Epigenetic Reader Yeats4. J. Med. Chem. 2023, 66, 460–472. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, R.; Lu, H.; Bian, K.; Wang, R.; Wang, L.; Gao, R.; Zhang, J.; Wu, J.; Yao, X.; et al. Fragment-Based Discovery of Af9 Yeats Domain Inhibitors. Int. J. Mol. Sci. 2022, 23, 3893. [Google Scholar] [CrossRef]
- Cochran, A.G.; Conery, A.R.; Sims, R.J., 3rd. Bromodomains: A New Target Class for Drug Development. Nat. Rev. Drug Discov. 2019, 18, 609–628. [Google Scholar] [CrossRef]
- Narita, T.; Ito, S.; Higashijima, Y.; Chu, W.K.; Neumann, K.; Walter, J.; Satpathy, S.; Liebner, T.; Hamilton, W.B.; Maskey, E.; et al. Enhancers Are Activated by P300/Cbp Activity-Dependent Pic Assembly, Rnapii Recruitment, and Pause Release. Mol. Cell 2021, 81, 2166–2182 e2166. [Google Scholar] [CrossRef]
- Shvedunova, M.; Akhtar, A. Modulation of Cellular Processes by Histone and Non-Histone Protein Acetylation. Nat. Rev. Mol. Cell Biol. 2022, 23, 329–349. [Google Scholar] [CrossRef] [PubMed]
- Shiama, N. The P300/Cbp Family: Integrating Signals with Transcription Factors and Chromatin. Trends Cell Biol. 1997, 7, 230–236. [Google Scholar] [CrossRef]
- Rubio, K.; Molina-Herrera, A.; Perez-Gonzalez, A.; Hernandez-Galdamez, H.V.; Pina-Vazquez, C.; Araujo-Ramos, T.; Singh, I. Ep300 as a Molecular Integrator of Fibrotic Transcriptional Programs. Int. J. Mol. Sci. 2023, 24, 12302. [Google Scholar] [CrossRef]
- Rai, R.; Verma, S.K.; Kim, D.; Ramirez, V.; Lux, E.; Li, C.; Sahoo, S.; Wilsbacher, L.D.; Vaughan, D.E.; Quaggin, S.E.; et al. A Novel Acetyltransferase P300 Inhibitor Ameliorates Hypertension-Associated Cardio-Renal Fibrosis. Epigenetics 2017, 12, 1004–1013. [Google Scholar] [CrossRef]
- Lazar, A.G.; Vlad, M.L.; Manea, A.; Simionescu, M.; Manea, S.A. Activated Histone Acetyltransferase P300/Cbp-Related Signalling Pathways Mediate up-Regulation of Nadph Oxidase, Inflammation, and Fibrosis in Diabetic Kidney. Antioxidants 2021, 10, 1356. [Google Scholar] [CrossRef]
- Gong, Y.; Dou, Y.; Wang, L.; Wang, X.; Zhao, Z. Ep300 Promotes Renal Tubular Epithelial Cell Fibrosis by Increasing Hif2alpha Expression in Diabetic Nephropathy. Cell. Signal. 2022, 98, 110407. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, K.; Liang, Y.; Chen, Y.; Chen, Y.; Gong, Y. Histone Acetyltransferase Inhibitor C646 Reverses Epithelial to Mesenchymal Transition of Human Peritoneal Mesothelial Cells Via Blocking Tgf-Beta1/Smad3 Signaling Pathway in Vitro. Int. J. Clin. Exp. Pathol. 2015, 8, 2746–2754. [Google Scholar]
- Chung, S.; Kim, S.; Son, M.; Kim, M.; Koh, E.S.; Shin, S.J.; Park, C.W.; Kim, H.S. Inhibition of P300/Cbp-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of Nf-Kb and Nrf2. Int. J. Mol. Sci. 2019, 20, 1554. [Google Scholar] [CrossRef]
- Wang, X.; Lupton, C.; Lauth, A.; Wan, T.C.; Foster, P.; Patterson, M.; Auchampach, J.A.; Lough, J.W. Evidence That the Acetyltransferase Tip60 Induces the DNA Damage Response and Cell-Cycle Arrest in Neonatal Cardiomyocytes. J. Mol. Cell. Cardiol. 2021, 155, 88–98. [Google Scholar] [CrossRef]
- Cheng, X.; Ma, X.; Zhu, Q.; Song, D.; Ding, X.; Li, L.; Jiang, X.; Wang, X.; Tian, R.; Su, H.; et al. Pacer Is a Mediator of Mtorc1 and Gsk3-Tip60 Signaling in Regulation of Autophagosome Maturation and Lipid Metabolism. Mol. Cell 2019, 73, 788–802.e7. [Google Scholar] [CrossRef] [PubMed]
- Basak, M.; Das, K.; Mahata, T.; Sengar, A.S.; Verma, S.K.; Biswas, S.; Bhadra, K.; Stewart, A.; Maity, B. Rgs7-Atf3-Tip60 Complex Promotes Hepatic Steatosis and Fibrosis by Directly Inducing Tnfalpha. Antioxid. Redox Signal. 2023, 38, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Basak, M.; Das, K.; Mahata, T.; Kumar, D.; Nagar, N.; Poluri, K.M.; Kumar, P.; Das, P.; Stewart, A.; Maity, B. Rgs7 Balances Acetylation/De-Acetylation of P65 to Control Chemotherapy-Dependent Cardiac Inflammation. Cell. Mol. Life Sci. 2023, 80, 255. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Liu, J. Role of Hdacs in Normal and Malignant Hematopoiesis. Mol. Cancer 2020, 19, 5. [Google Scholar] [CrossRef]
- Hadden, M.J.; Advani, A. Histone Deacetylase Inhibitors and Diabetic Kidney Disease. Int. J. Mol. Sci. 2018, 19, 2630. [Google Scholar] [CrossRef]
- Brancolini, C.; Gagliano, T.; Minisini, M. Hdacs and the Epigenetic Plasticity of Cancer Cells: Target the Complexity. Pharmacol. Ther. 2022, 238, 108190. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kee, H.J.; Kurz, T.; Hansen, F.K.; Ryu, Y.; Kim, G.R.; Lin, M.Q.; Jin, L.; Piao, Z.H.; Jeong, M.H. Class I Hdacs Specifically Regulate E-Cadherin Expression in Human Renal Epithelial Cells. J. Cell Mol. Med. 2016, 20, 2289–2298. [Google Scholar] [CrossRef]
- Marumo, T.; Hishikawa, K.; Yoshikawa, M.; Hirahashi, J.; Kawachi, S.; Fujita, T. Histone Deacetylase Modulates the Proinflammatory and -Fibrotic Changes in Tubulointerstitial Injury. Am. J. Physiol. Renal Physiol. 2010, 298, F133–F141. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Cheng, P.; Yan, M.; Gu, Y.; Xue, J. Aldosterone Induces Renal Fibrosis by Promoting Hdac1 Expression, Deacetylating H3k9 and Inhibiting Klotho Transcription. Mol. Med. Rep. 2019, 19, 1803–1808. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, S.; Chen, J.; Zou, M.; Yang, Y.; Lu, W.; Ren, S.; Wang, X.; Dong, W.; Zhang, Z.; et al. The Hdac2/Sp1/Mir-205 Feedback Loop Contributes to Tubular Epithelial Cell Extracellular Matrix Production in Diabetic Kidney Disease. Clin. Sci. 2022, 136, 223–238. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Q. Short-Chain Fatty Acids Attenuate Renal Fibrosis and Enhance Autophagy of Renal Tubular Cells in Diabetic Mice through the Hdac2/Ulk1 Axis. Endocrinol. Metab. 2022, 37, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wang, H.; Li, C.; Cheng, H.; Cui, Y.; Liu, L.; Zhao, Y. Sulforaphane Ameliorates Diabetes-Induced Renal Fibrosis through Epigenetic up-Regulation of Bmp-7. Diabetes Metab. J. 2021, 45, 909–920. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Q.; Wei, A.; Chen, X.; Shi, Y.; Wang, H.; Cao, W. Histone Deacetylase 3 Aberration Inhibits Klotho Transcription and Promotes Renal Fibrosis. Cell Death Differ. 2021, 28, 1001–1012. [Google Scholar] [CrossRef]
- Lin, W.; Zhang, Q.; Liu, L.; Yin, S.; Liu, Z.; Cao, W. Klotho Restoration Via Acetylation of Peroxisome Proliferation-Activated Receptor Gamma Reduces the Progression of Chronic Kidney Disease. Kidney Int. 2017, 92, 669–679. [Google Scholar] [CrossRef]
- Hu, L.; Yang, K.; Mai, X.; Wei, J.; Ma, C. Depleted Hdac3 Attenuates Hyperuricemia-Induced Renal Interstitial Fibrosis Via Mir-19b-3p/Sf3b3 Axis. Cell Cycle 2022, 21, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zou, J.; Tolbert, E.; Zhao, T.C.; Bayliss, G.; Zhuang, S. Identification of Histone Deacetylase 8 as a Novel Therapeutic Target for Renal Fibrosis. FASEB J. 2020, 34, 7295–7310. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Guan, Y.; Zhou, X.; Liu, L.; Zhuang, M.A.; Zhang, W.; Zhang, Y.; Masucci, M.V.; Bayliss, G.; Zhao, T.C.; et al. Selective Inhibition of Class Iia Histone Deacetylases Alleviates Renal Fibrosis. FASEB J. 2019, 33, 8249–8262. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Hou, X.; Li, T.; Yu, J.; Chen, H.; Liu, N.; Qiu, A.; Zhuang, S. Pharmacological and Genetic Inhibition of Hdac4 Alleviates Renal Injury and Fibrosis in Mice. Front. Pharmacol. 2022, 13, 929334. [Google Scholar] [CrossRef]
- Choi, S.Y.; Piao, Z.H.; Jin, L.; Kim, J.H.; Kim, G.R.; Ryu, Y.; Lin, M.Q.; Kim, H.S.; Kee, H.J.; Jeong, M.H. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction Via Downregulation of Histone Deacetylase 4/5 or P38-Mapk Signaling. PLoS ONE 2016, 11, e0167340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Zhang, W.J.; Chang, S. Hdac6 Inhibition: A Significant Potential Regulator and Therapeutic Option to Translate into Clinical Practice in Renal Transplantation. Front. Immunol. 2023, 14, 1168848. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, C.; Hou, X.; Li, J.; Li, T.; Qiu, A.; Liu, N.; Zhuang, S. Histone Deacetylase 6 Inhibition Mitigates Renal Fibrosis by Suppressing Tgf-Beta and Egfr Signaling Pathways in Obstructive Nephropathy. Am. J. Physiol. Renal Physiol. 2020, 319, F1003–F1014. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Kan, S.; Wang, Z.; Shi, J.; Zeng, C.; Yang, D.; Jiang, S.; Liu, Z. Inhibition of Hdac6 with Cay10603 Ameliorates Diabetic Kidney Disease by Suppressing Nlrp3 Inflammasome. Front. Pharmacol. 2022, 13, 938391. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, Y.; Zhang, M.Z.; You, L.; Davis, L.S.; Fan, H.; Yang, H.C.; Fogo, A.B.; Zent, R.; Harris, R.C.; et al. Sirt1 Activation Protects the Mouse Renal Medulla from Oxidative Injury. J. Clin. Investig. 2010, 120, 1056–1068. [Google Scholar] [CrossRef]
- Ryu, D.R.; Yu, M.R.; Kong, K.H.; Kim, H.; Kwon, S.H.; Jeon, J.S.; Han, D.C.; Noh, H. Sirt1-Hypoxia-Inducible Factor-1alpha Interaction Is a Key Mediator of Tubulointerstitial Damage in the Aged Kidney. Aging Cell 2019, 18, e12904. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Qin, X.; Chen, K.; Wang, R.; Yuan, L.; Chen, X.; Hao, C.; Huang, X. Sirt1 Attenuates Renal Fibrosis by Repressing Hif-2alpha. Cell Death Discov. 2021, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, X.; Ricardo, S.D.; Bertram, J.F.; Nikolic-Paterson, D.J. Resveratrol Inhibits Renal Fibrosis in the Obstructed Kidney: Potential Role in Deacetylation of Smad3. Am. J. Pathol. 2010, 177, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wei, R.; Huang, M.; Chen, J.; Li, P.; Ma, Y.; Chen, X. Luteolin Can Ameliorate Renal Interstitial Fibrosis-Induced Renal Anaemia through the Sirt1/Foxo3 Pathway. Food Funct. 2022, 13, 11896–11914. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xie, N.; Li, Y.; Liu, C.; Hou, F.F.; Wang, J. N-Acetylcysteine Ameliorates Cisplatin-Induced Renal Senescence and Renal Interstitial Fibrosis through Sirtuin1 Activation and P53 Deacetylation. Free Radic. Biol. Med. 2019, 130, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Li, P.; Luo, Y.; Wu, C.; Liu, Y.; Qin, X.; Huang, X.; Sun, C. Salidroside Stimulates the Sirt1/Pgc-1alpha Axis and Ameliorates Diabetic Nephropathy in Mice. Phytomedicine 2019, 54, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.P.; Li, J.; Kitada, M.; Fujita, H.; Yamada, Y.; Goodwin, J.E.; Kanasaki, K.; Koya, D. Sirt3 Deficiency Leads to Induction of Abnormal Glycolysis in Diabetic Kidney with Fibrosis. Cell Death Dis. 2018, 9, 997. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Takagi, S.; Nitta, K.; Kitada, M.; Srivastava, S.P.; Takagaki, Y.; Kanasaki, K.; Koya, D. Renal Protective Effects of Empagliflozin Via Inhibition of Emt and Aberrant Glycolysis in Proximal Tubules. JCI Insight 2020, 5, e129034. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, P.; Luo, J.; Ding, H.; Cao, H.; He, W.; Zen, K.; Zhou, Y.; Yang, J.; Jiang, L. Sirtuin 3 Regulates Mitochondrial Protein Acetylation and Metabolism in Tubular Epithelial Cells During Renal Fibrosis. Cell Death Dis. 2021, 12, 847. [Google Scholar] [CrossRef]
- Chen, D.Q.; Chen, L.; Guo, Y.; Wu, X.Q.; Zhao, T.T.; Zhao, H.L.; Zhang, H.J.; Yan, M.H.; Zhang, G.Q.; Li, P. Poricoic Acid a Suppresses Renal Fibroblast Activation and Interstitial Fibrosis in Uuo Rats Via Upregulating Sirt3 and Promoting Beta-Catenin K49 Deacetylation. Acta Pharmacol. Sin. 2023, 44, 1038–1050. [Google Scholar] [CrossRef]
- Jin, J.; Li, W.; Wang, T.; Park, B.H.; Park, S.K.; Kang, K.P. Loss of Proximal Tubular Sirtuin 6 Aggravates Unilateral Ureteral Obstruction-Induced Tubulointerstitial Inflammation and Fibrosis by Regulation of Beta-Catenin Acetylation. Cells 2022, 11, 1477. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Z.; Huang, X.; Shu, S.; Hu, X.; Zheng, M.; Tang, C.; Liu, Y.; Chen, G.; Sun, L.; et al. The Deacetylase Sirtuin 6 Protects against Kidney Fibrosis by Epigenetically Blocking Beta-Catenin Target Gene Expression. Kidney Int. 2020, 97, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Liu, L.; Zhang, T.; Qin, H.; Wu, X.; Xu, Y. Histone Deacetylase 11 Contributes to Renal Fibrosis by Repressing Klf15 Transcription. Front. Cell Dev. Biol. 2020, 8, 235. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Marin de Evsikova, C.; Bian, K.; Achille, A.; Telles, E.; Pei, H.; Seto, E. Programming and Regulation of Metabolic Homeostasis by Hdac11. EBioMedicine 2018, 33, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Bi, L.; Ren, Y.; Feng, M.; Meng, P.; Wang, Q.; Chen, W.; Jiao, Q.; Wang, Y.; Du, L.; Zhou, F.; et al. Hdac11 Regulates Glycolysis through the Lkb1/Ampk Signaling Pathway to Maintain Hepatocellular Carcinoma Stemness. Cancer Res. 2021, 81, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Morschhauser, F.; Tilly, H.; Chaidos, A.; McKay, P.; Phillips, T.; Assouline, S.; Batlevi, C.L.; Campbell, P.; Ribrag, V.; Damaj, G.L.; et al. Tazemetostat for Patients with Relapsed or Refractory Follicular Lymphoma: An Open-Label, Single-Arm, Multicentre, Phase 2 Trial. Lancet Oncol. 2020, 21, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Izutsu, K.; Makita, S.; Nosaka, K.; Yoshimitsu, M.; Utsunomiya, A.; Kusumoto, S.; Morishima, S.; Tsukasaki, K.; Kawamata, T.; Ono, T.; et al. An Open-Label, Single-Arm Phase 2 Trial of Valemetostat for Relapsed or Refractory Adult T-Cell Leukemia/Lymphoma. Blood 2023, 141, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Du, W.; Guo, W. Ezh2: A Novel Target for Cancer Treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef]
- Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schioth, H.B. Recent Developments of Hdac Inhibitors: Emerging Indications and Novel Molecules. Br. J. Clin. Pharmacol. 2021, 87, 4577–4597. [Google Scholar] [CrossRef]
Histone Demethylases | Interventions | HISTONE SITE | Model | Effects and Mechanisms | Ref. |
---|---|---|---|---|---|
LSD1 | ORY-1001 | H3K4me1, H3K4me2 | UUO | Protective; EMT↓, renal fibroblast activation↓, TGF-β↓, SMAD3↓, p-STAT3↓, p-AKT↓, 14-3-3ζ↑ | [66] |
LSD1 KO | Not mentioned | DN | Protective; Sirt3↑, TGF-β↓, SMAD3↓ | [68] | |
JMJD3 | JMJD3 KO, GSK-J4 | Not mentioned | UUO, FA | Protective; M2 MMT↓, myeloid fibroblast activation↓, IRF4↓ | [75] |
GSK-J4 | H3K27me3 | UUO | Protective; myeloid fibroblast activation↓, M2 macrophage polarization↓, | [76] | |
JMJD3 KO, GSK-J4 | H3K27me3 | UUO, 5/6 SNx | Pro-fibrotic; TGF-β↑, SMAD3↑, Notch1↑, Notch3↑, SMAD3↓, p-AKT↑, p-ERK↑, SMAD7↓, PTEN↓ | [78] |
Interventions | Target | Model | Effects and Mechanisms | Ref. |
---|---|---|---|---|
L002 | FATP300 | Hypertensive cardio-renal fibrosis | Protective; H4ac↓,COL1A1↓, COL4A3↓,α-SMA↓ | [91] |
EP300 KO | EP300 | DN | Protective; HIF-2α↓ | [93] |
C646 | P300 | DN | Protective; H3K27ac↓, ROS↓, fibronectin↓, NF-κb↓, STAT3↓ | [92] |
Garcinol | PCAF | UUO | Protective; H3K9ac↓,NF-κb↓,Nrf2↑,ROS↓ | [95] |
Interventions | Target | Model | Effects and Mechanisms | Ref. |
---|---|---|---|---|
TSA | HDAC1,2 | UUO | Protective; H3ac↓, CSF-1↓, macrophage infiltration↓ | [104] |
Sulforaphane | HDAC2 | DN | Protective; H3K9ac↓, H3K14ac↓, BMP-7↑, ECM↓ | [108] |
RGFP966 | HDAC3 | UUO, AAN | Protective; H3K4ac↑, H3K9ac↑, H4K5ac↑, NF-κb↓, Ncor↓, KLOTHO↑ | [109] |
TSA | HDAC3 | adenine CKD | Protective; KLOTHO↑, PPARγ acetylation↑ | [110] |
PCI34051 | HDAC8 | UUO | Protective; KLOTHO↑, BMP-7↑, EMT↓, cell cycle arrest↓ | [112] |
MC1568 | IIa HDACs | UUO | Protective; EMT↓, BMP-7↑, KLOTHO↑, | [113] |
Tasquinimod, HDAC4 KO | HDAC4 | UUO | Protective; EMT↓, cell cycle arrest↓, KLOTHO↑, tubular cell apoptosis↓ | [114] |
Piceatannol | HDAC4,5 | UUO | Protective; p-P38-MAPK↓ | [115] |
ACY-1215 | HDAC6 | UUO | Protective; H3ac↑, SMAD7↑, TGF-β↓, SMAD3↓, EGFR↓, p-STAT3↓, NF-κb↓ | [117] |
CAY10603 | HDAC6 | DKD | Protective; NLRP3↓ | [118] |
Quisinostat | HDAC11 | UUO | Protective; KLF15↑ | [132] |
Sirt1 KO | Sirt1 | UUO | Pro-fibrotic; ROS↑, COX2↓, tubular cell apoptosis↑ | [119] |
Sirt1 KO | Sirt1 | UUO | Pro-fibrotic; HIF-2α↑ | [121] |
Sirt3 KO | Sirt3 | Diabetic mice | Pro-fibrotic; HIF-1α↑, PKM2↑, glycolysis↑ | [126] |
Sirt3 KO | Sirt3 | UUO | Pro-fibrotic; PDHE1α acetylation↑, EMT↑ | [128] |
OSS, Sirt6 KO | Sirt6 | UUO | Pro-fibrotic; β-catenin↑, H3K56ac↑, ECM↑ | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, S.; Yuan, T.; Xia, Y.; Yu, W.; Zhou, X.; Cheng, F. Role of Histone Modifications in Kidney Fibrosis. Medicina 2024, 60, 888. https://doi.org/10.3390/medicina60060888
Pan S, Yuan T, Xia Y, Yu W, Zhou X, Cheng F. Role of Histone Modifications in Kidney Fibrosis. Medicina. 2024; 60(6):888. https://doi.org/10.3390/medicina60060888
Chicago/Turabian StylePan, Shengyu, Tianhui Yuan, Yuqi Xia, Weimin Yu, Xiangjun Zhou, and Fan Cheng. 2024. "Role of Histone Modifications in Kidney Fibrosis" Medicina 60, no. 6: 888. https://doi.org/10.3390/medicina60060888
APA StylePan, S., Yuan, T., Xia, Y., Yu, W., Zhou, X., & Cheng, F. (2024). Role of Histone Modifications in Kidney Fibrosis. Medicina, 60(6), 888. https://doi.org/10.3390/medicina60060888