Bioresorbable Scaffold Use in Coronary Chronic Total Occlusions: A Long-Term, Single-Center Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Bioresorbable Scaffolds and Revascularization
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Procedural Characteristics
3.3. Quantitative Coronary Angiography
3.4. Intravascular Ultrasound
3.5. Follow-Up and Clinical Outcomes
3.6. Laboratory Findings
4. Discussion
4.1. Limitations
4.2. Suggestions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ybarra, L.F.; Rinfret, S.; Brilakis, E.S.; Karmpaliotis, D.; Azzalini, L.; Grantham, J.A.; Kandzari, D.E.; Mashayekhi, K.; Spratt, J.C.; Wijeysundera, H.C.; et al. Definitions and Clinical Trial Design Principles for Coronary Artery Chronic Total Occlusion Therapies: CTO-ARC Consensus Recommendations. Circulation 2021, 143, 479–500. [Google Scholar] [CrossRef] [PubMed]
- Ybarra, L.F.; Cantarelli, M.J.C.; Lemke, V.M.G.; Quadros, A.S. Percutaneous Coronary Intervention in Chronic Total Occlusion. Arq. Bras. Cardiol. 2018, 110, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.S.; Hildick-Smith, D.; Martin Yuste, V.; Boudou, N.; Sianos, G.; Gelev, V.; Rumoroso, J.R.; Erglis, A.; Christiansen, E.H.; Escaned, J.; et al. Three-year outcomes of A Randomized Multicentre Trial Comparing Revascularization and Optimal Medical Therapy for Chronic Total Coronary Occlusions (EuroCTO). EuroIntervention 2023, 19, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W.; Lee, P.H.; Ahn, J.M.; Park, D.W.; Yun, S.C.; Han, S.; Kang, H.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; et al. Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion. Circulation 2019, 139, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.W.; Choi, B.G.; Baek, M.J.; Ryu, Y.G.; Li, H.; Choi, S.Y.; Byun, J.K.; Mashaly, A.; Park, Y.; Jang, W.Y.; et al. Five-Year Outcomes of Successful Percutaneous Coronary Intervention with Drug-Eluting Stents versus Medical Therapy for Chronic Total Occlusions. Yonsei Med. J. 2018, 59, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.H.; Lee, S.W.; Yun, S.C.; Bae, J.; Ahn, J.M.; Park, D.W.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; Park, S.W.; et al. Full Metal Jacket With Drug-Eluting Stents for Coronary Chronic Total Occlusion. JACC Cardiovasc. Interv. 2017, 10, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Sim, H.W.; Thong, E.H.; Loh, P.H.; Lee, C.H.; Chan, M.Y.; Low, A.F.; Tay, E.L.; Chan, K.H.; Tan, H.C.; Loh, J.P. Treating Very Long Coronary Artery Lesions in the Contemporary Drug-Eluting-Stent Era: Single Long 48 mm Stent Versus Two Overlapping Stents Showed Comparable Clinical Outcomes. Cardiovasc. Revasc Med. 2020, 21, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Jun, E.J.; Shin, E.S.; Teoh, E.V.; Bhak, Y.; Yuan, S.L.; Chu, C.M.; Garg, S.; Liew, H.B. Clinical Outcomes of Drug-Coated Balloon Treatment After Successful Revascularization of de novo Chronic Total Occlusions. Front. Cardiovasc. Med. 2022, 9, 821380. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Chen, L.; Ge, L.; Qian, J.; Ma, J.; Ge, J. Long-term clinical outcomes of drug-coated balloon for the management of chronic total occlusions. Coron. Artery Dis. 2023, 34, 555–561. [Google Scholar] [CrossRef]
- Galassi, A.R.; Vadala, G.; Werner, G.S.; Cosyns, B.; Sianos, G.; Hill, J.; Dudek, D.; Picano, E.; Novo, G.; Andreini, D.; et al. Evaluation and management of patients with coronary chronic total occlusions considered for revascularisation. A clinical consensus statement of the European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the ESC, the European Association of Cardiovascular Imaging (EACVI) of the ESC, and the ESC Working Group on Cardiovascular Surgery. EuroIntervention 2024, 20, e174–e184. [Google Scholar] [CrossRef]
- Iqbal, J.; Onuma, Y.; Ormiston, J.; Abizaid, A.; Waksman, R.; Serruys, P. Bioresorbable scaffolds: Rationale, current status, challenges, and future. Eur. Heart J. 2014, 35, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Forrestal, B.; Case, B.C.; Yerasi, C.; Musallam, A.; Chezar-Azerrad, C.; Waksman, R. Bioresorbable Scaffolds: Current Technology and Future Perspectives. Rambam Maimonides Med. J. 2020, 11. [Google Scholar] [CrossRef]
- Mitomo, S.; Naganuma, T.; Fujino, Y.; Kawamoto, H.; Basavarajaiah, S.; Pitt, M.; Yin, W.H.; Tresukosol, D.; Colombo, A.; Nakamura, S. Bioresorbable Vascular Scaffolds for the Treatment of Chronic Total Occlusions: An International Multicenter Registry. Circ. Cardiovasc. Interv. 2017, 10. [Google Scholar] [CrossRef]
- Yaginuma, K.; Moehlis, H.; Koch, M.; Tischer, K.; Werner, J.; Werner, G.S. Bioresorbable vascular scaffolds for complex chronic total occlusions. Cardiovasc. Revasc Med. 2019, 20, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Eltahlawi, M.A.; Abdel-Aziz, A.F.; Sherif, A.S.; Shokry, K.A.; Shehata, I.E. Long-term follow-up of therapeutic efficacy of everolimus-eluting bioresorbable vascular scaffold in comparison to everolimus-eluting stent in treatment of chronic total occlusion guided by intracoronary imaging. Egypt. Heart J. 2020, 72, 72. [Google Scholar] [CrossRef]
- Jinnouchi, H.; Torii, S.; Sakamoto, A.; Kolodgie, F.D.; Virmani, R.; Finn, A.V. Fully bioresorbable vascular scaffolds: Lessons learned and future directions. Nat. Rev. Cardiol. 2019, 16, 286–304. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, H.M.; McFadden, E.P.; Farb, A.; Mehran, R.; Stone, G.W.; Spertus, J.; Onuma, Y.; Morel, M.A.; van Es, G.A.; Zuckerman, B.; et al. Standardized End Point Definitions for Coronary Intervention Trials: The Academic Research Consortium-2 Consensus Document. Eur. Heart J. 2018, 39, 2192–2207. [Google Scholar] [CrossRef] [PubMed]
- Kereiakes, D.J.; Ellis, S.G.; Metzger, C.; Caputo, R.P.; Rizik, D.G.; Teirstein, P.S.; Litt, M.R.; Kini, A.; Kabour, A.; Marx, S.O.; et al. 3-Year Clinical Outcomes With Everolimus-Eluting Bioresorbable Coronary Scaffolds: The ABSORB III Trial. J. Am. Coll. Cardiol. 2017, 70, 2852–2862. [Google Scholar] [CrossRef]
- FDA. FDA Investigating Increased Rate of Major Adverse Cardiac Events Observed in Patients Receiving Abbott Vascular’s Absorb GT1 Bioresorbable Vascular Scaffold (BVS)—Letter to Health Care Providers. Available online: https://www.fda.gov/medical-devices/letters-health-care-providers/fda-investigating-increased-rate-major-adverse-cardiac-events-observed-patients-receiving-abbott (accessed on 1 July 2024).
- Stone, G.W.; Abizaid, A.; Onuma, Y.; Seth, A.; Gao, R.; Ormiston, J.; Kimura, T.; Chevalier, B.; Ben-Yehuda, O.; Dressler, O.; et al. Effect of Technique on Outcomes Following Bioresorbable Vascular Scaffold Implantation: Analysis From the ABSORB Trials. J. Am. Coll. Cardiol. 2017, 70, 2863–2874. [Google Scholar] [CrossRef]
- Stone, G.W.; Kereiakes, D.J.; Gori, T.; Metzger, D.C.; Stein, B.; Erickson, M.; Torzewski, J.; Kabour, A.; Piegari, G.; Cavendish, J.; et al. 5-Year Outcomes After Bioresorbable Coronary Scaffolds Implanted With Improved Technique. J. Am. Coll. Cardiol. 2023, 82, 183–195. [Google Scholar] [CrossRef]
- Verheye, S.; Wlodarczak, A.; Montorsi, P.; Torzewski, J.; Bennett, J.; Haude, M.; Starmer, G.; Buck, T.; Wiemer, M.; Nuruddin, A.A.B.; et al. BIOSOLVE-IV-registry: Safety and performance of the Magmaris scaffold: 12-month outcomes of the first cohort of 1,075 patients. Catheter. Cardiovasc. Interv. 2021, 98, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Haude, M.; Ince, H.; Kische, S.; Toelg, R.; Van Mieghem, N.M.; Verheye, S.; von Birgelen, C.; Christiansen, E.H.; Barbato, E.; Garcia-Garcia, H.M.; et al. Sustained Safety and Performance of the Second-Generation Sirolimus-Eluting Absorbable Metal Scaffold: Pooled Outcomes of the BIOSOLVE-II and -III Trials at 3 Years. Cardiovasc. Revasc. Med. 2020, 21, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Guan, H.; Tian, T.; Guan, C.; Bai, Y.; Hu, Y.; Yuan, J.; Qiao, S.; Xu, B.; Yang, W. Thirty-day and 5-year results of percutaneous coronary intervention for in-stent restenotic chronic total occlusion lesions: Data from 2,659 consecutive patients. Catheter. Cardiovasc. Interv. 2021, 97 Suppl 2, 1016–1024. [Google Scholar] [CrossRef]
- Gheorghe, L.; Millan, X.; Jimenez-Kockar, M.; Gomez-Lara, J.; Arzamendi, D.; Danduch, L.; Agudelo, V.; Serra, A. Bioresorbable vascular scaffolds in coronary chronic total occlusions: Clinical, vasomotor and optical coherence tomography findings at three-year follow-up (ABSORB-CTO study). EuroIntervention 2019, 15, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Vaquerizo, B.; Barros, A.; Pujadas, S.; Bajo, E.; Estrada, D.; Miranda-Guardiola, F.; Rigla, J.; Jimenez, M.; Cinca, J.; Serra, A. Bioresorbable everolimus-eluting vascular scaffold for the treatment of chronic total occlusions: CTO-ABSORB pilot study. EuroIntervention 2015, 11, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J.; Nissen, S.E. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995, 92, 2333–2342. [Google Scholar] [CrossRef]
- Erglis, A.; Narbute, I.; Sondore, D.; Jegere, S.; Kumsars, I.; Dombrovskis, A.; Grikis, K.; Briede, I.; Dombrovska, K.; Trusinskis, K.; et al. Four-Year Outcomes of Left Main Percutaneous Coronary Intervention with a Bioresorbable Scaffold in the Circumflex Ostium. J. Interv. Cardiol. 2022, 2022, 7934868. [Google Scholar] [CrossRef] [PubMed]
- Xenogiannis, I.; Pavlidis, A.N.; Kaier, T.E.; Rigopoulos, A.G.; Karamasis, G.V.; Triantafyllis, A.S.; Vardas, P.; Brilakis, E.S.; Kalogeropoulos, A.S. The role of intravascular imaging in chronic total occlusion percutaneous coronary intervention. Front. Cardiovasc. Med. 2023, 10, 1199067. [Google Scholar] [CrossRef]
- Kim, B.K.; Shin, D.H.; Hong, M.K.; Park, H.S.; Rha, S.W.; Mintz, G.S.; Kim, J.S.; Kim, J.S.; Lee, S.J.; Kim, H.Y.; et al. Clinical Impact of Intravascular Ultrasound-Guided Chronic Total Occlusion Intervention With Zotarolimus-Eluting Versus Biolimus-Eluting Stent Implantation: Randomized Study. Circ. Cardiovasc. Interv. 2015, 8, e002592. [Google Scholar] [CrossRef]
- Tian, N.L.; Gami, S.K.; Ye, F.; Zhang, J.J.; Liu, Z.Z.; Lin, S.; Ge, Z.; Shan, S.J.; You, W.; Chen, L.; et al. Angiographic and clinical comparisons of intravascular ultrasound- versus angiography-guided drug-eluting stent implantation for patients with chronic total occlusion lesions: Two-year results from a randomised AIR-CTO study. EuroIntervention 2015, 10, 1409–1417. [Google Scholar] [CrossRef]
Parameter | N = 34 |
---|---|
Age, years | 60.6 ± 9.5 |
Gender: | |
Male | 26 (76.5) |
Female | 8 (23.5) |
Arterial hypertension | 25 (73.5) |
Atrial fibrillation | 3 (8.8) |
Chronic heart failure, NYHA class: | |
NYHA I | 4 (11.8) |
NYHA II | 11 (32.4) |
NYHA III | 1 (2.9) |
Chronic kidney disease | 5 (14.7) |
Diabetes mellitus | 4 (11.8) |
Hypercholesterolemia | 14 (41.2) |
History of myocardial infarction | 16 (47.1) |
Prior PCI | 25 (73.5) |
Parameter | N = 34 |
---|---|
CTO vessel: | |
Right coronary artery | 25 (73.5) |
Left descending artery | 8 (23.5) |
Circumflex artery | 1 (2.9) |
J-CTO score | 2.0 [2.0–3.0] |
7 French sheath size | 27 (79.4) |
Number of predilatation balloons used per lesion | 2.0 [2.0–3.0] |
Cutting balloon predilatation | 34 (100.0) |
Post-dilatation | 34 (100.0) |
Approach to CTO: | |
Antegrade | 23 (67.6) |
Retrograde | 11 (32.4) |
Length of occlusion, mm | 23.0 [13.9–32.7] |
Type of stents implanted: | |
1 DES and 1 BRS | 18 (52.9) |
2 DES and 1 BRS | 7 (20.6) |
1 BRS only | 7 (20.6) |
2 BRS and 1 DES | 2 (5.9) |
Number of DESs implanted | 1.0 [1.0–1.0] |
Number of BRSs implanted | 1.0 [1.0–1.0] |
1 Absorb | 21 (61.8) |
2 Absorb | 2 (5.9) |
1 Magmaris | 11 (32.4) |
Total length of stents and/or scaffold, mm | 49.6 ± 20.4 |
Parameter | Index (N = 34) | Follow-Up (N = 31) | p-Value |
---|---|---|---|
Residual diameter stenosis, % | 20.1 [14.9–26.7] | 31.4 [24.4–42.0] | <0.01 |
Residual area stenosis, % | 36.1 [27.5–46.2] | 52.6 [42.7–65.5] | <0.01 |
Length of residual stenosis, mm | 4.5 [2.8–6.8] | 5.9 [3.9–9.4] | 0.04 |
Parameter | N = 19 |
---|---|
Target segment length, mm | 43.4 ± 19.1 |
Maximal lumen area, mm2 | 13.3 ± 4.2 |
Minimal lumen area, mm2 | 5.35 ± 1.2 |
Mean lumen area, mm2 | 8.83 ± 1.9 |
Maximal vessel area, mm2 | 22.2 ± 6.5 |
Minimal vessel area, mm2 | 10.3 ± 3.6 |
Mean vessel area, mm2 | 15.7 ± 4.4 |
Maximal lumen diameter, mm | 4.1 ± 0.6 |
Minimal lumen diameter, mm | 2.6 ± 0.3 |
Mean lumen diameter, mm | 3.3 ± 0.36 |
Maximal vessel diameter, mm | 5.3 ± 0.8 |
Minimal vessel diameter, mm | 3.54 ± 0.6 |
Distal lumen area, mm2 | 7.79 ± 1.7 |
Distal lumen diameter, mm | 3.1 ± 0.3 |
Distal vessel area, mm2 | 13.7 ± 4.4 |
Distal vessel diameter, mm | 4.1 ± 0.35 |
Proximal lumen area, mm2 | 9.6 ± 2.9 |
Proximal lumen diameter, mm | 3.5 ± 0.5 |
Proximal vessel area, mm2 | 18 ± 5.7 |
Proximal vessel diameter, mm | 4.7 ± 0.8 |
Neointimal hyperplasia, % | 21.3 [17.7–22.4] |
Parameter | N = 34 |
---|---|
Target vessel re-occlusion | 2 (5.9) |
Cardiac death | 0 (0) |
Myocardial infarction | 1 (2.9) |
BRS thrombosis | 0 (0) |
DES thrombosis | 1 (2.9) |
Target lesion failure | 12 (35.3) |
Target vessel failure | 13 (38.2) |
Target lesion revascularization | 12 (35.3) |
Target vessel revascularization | 13 (38.2) |
Parameter | Index (N = 34) | Follow-Up (N = 31) | p-Value |
---|---|---|---|
Total cholesterol, mmol/L | 3.8 [3.3–4.5] | 3.3 [3.0–3.5] | 0.005 |
LDL cholesterol, mmol/L | 1.9 [1.6–2.3] | 1.8 [1.3–1.9] | 0.39 |
HDL cholesterol, mmol/L | 1.1 [0.9–1.2] | 1.0 [0.8–1.3] | 0.11 |
Triglycerides, mmol/L | 1.4 [0.9–2.4] | 1.5 [1.2–2.0] | 0.62 |
Creatinine, µmol/L | 77.0 [71.0–91.0] | 83.5 [76.5–91.5] | 0.01 |
GFR, mL/min/1.73 m2 | 97.0 [76.0–102.0] | 88.5 [69.5–93.0] | 0.01 |
Glucose, mmol/L | 5.8 [5.1–6.9] | 5.8 [5.2–6.7] | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sondore, D.; Briede, I.; Linde, M.; Trusinskis, K.; Narbute, I.; Jegere, S.; Lismanis, A.; Kumsars, I.; Grikis, K.; Strazdins, U.; et al. Bioresorbable Scaffold Use in Coronary Chronic Total Occlusions: A Long-Term, Single-Center Follow-Up Study. Medicina 2024, 60, 1233. https://doi.org/10.3390/medicina60081233
Sondore D, Briede I, Linde M, Trusinskis K, Narbute I, Jegere S, Lismanis A, Kumsars I, Grikis K, Strazdins U, et al. Bioresorbable Scaffold Use in Coronary Chronic Total Occlusions: A Long-Term, Single-Center Follow-Up Study. Medicina. 2024; 60(8):1233. https://doi.org/10.3390/medicina60081233
Chicago/Turabian StyleSondore, Dace, Ieva Briede, Matiss Linde, Karlis Trusinskis, Inga Narbute, Sanda Jegere, Aigars Lismanis, Indulis Kumsars, Karlis Grikis, Uldis Strazdins, and et al. 2024. "Bioresorbable Scaffold Use in Coronary Chronic Total Occlusions: A Long-Term, Single-Center Follow-Up Study" Medicina 60, no. 8: 1233. https://doi.org/10.3390/medicina60081233
APA StyleSondore, D., Briede, I., Linde, M., Trusinskis, K., Narbute, I., Jegere, S., Lismanis, A., Kumsars, I., Grikis, K., Strazdins, U., & Erglis, A. (2024). Bioresorbable Scaffold Use in Coronary Chronic Total Occlusions: A Long-Term, Single-Center Follow-Up Study. Medicina, 60(8), 1233. https://doi.org/10.3390/medicina60081233