Magnesium from Deep Seawater as a Potentially Effective Natural Product against Insulin Resistance: A Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Participants
2.3. Clinical Trial Product
2.4. Study Design
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Efficacy Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diab etes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; p. 5. [Google Scholar]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and management of prediabetes: A review. JAMA 2023, 329, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and cardiovascular disease: Pathophysiology and interventions for prevention and risk reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Perreault, L.; Færch, K. Approaching pre-diabetes. J. Diabetes Complicat. 2014, 28, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Woo, J.T. The prediabetic period: Review of clinical aspects. Diabetes Metab. J. 2011, 35, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Yang, Y.; Zhang, L.; Sun, Z.; Jia, G.; Parrish, A.R.; Sowers, J.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021, 119, 154766. [Google Scholar] [CrossRef] [PubMed]
- Mitri, J.; Pittas, A.G. Vitamin D and diabetes. Endocrinol. Metab. Clin. N. Am. 2014, 43, 205–232. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.T.; Al Zinati, S.M.; Al Swirky, A. The effect of vitamin C alone or in combination with vitamin E on fasting blood glucose, glycosylated hemoglobin and lipid profile in type 2 diabetic patients (Gaza Strip). Jordan J. Pharm. Sci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Abutair, A.S.; Naser, I.A.; Hamed, A.T. Soluble fibers from psyllium improve glycemic response and body weight among diabetes type 2 patients (randomized control trial). Nutr. J. 2016, 15, 86. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; Hernández-Ronquillo, G.; Rodriguez-Morán, M. Oral magnesium supplementation improves glycaemic status in subjects with prediabetes and hypomagnesaemia: A double-blind placebo-controlled randomized trial. Diabetes Metab. 2015, 41, 202–207. [Google Scholar] [CrossRef]
- Rodríguez-Morán, M.; Simental Mendía, L.E.; Zambrano Galván, G.; Guerrero-Romero, F. The role of magnesium in type 2 diabetes: A brief based-clinical review. Magnes. Res. 2011, 24, 156–162. [Google Scholar] [CrossRef]
- Solati, M.; Ouspid, E.; Hosseini, S.; Soltani, N.; Keshavarz, M.; Dehghani, M. Oral magnesium supplementation in type II diabetic patients. Med. J. Islam. Repub. Iran 2014, 28, 67. [Google Scholar] [PubMed] [PubMed Central]
- Salehidoost, R.; Taghipour Boroujeni, G.T.; Feizi, A.; Aminorroaya, A.; Amini, M. Effect of oral magnesium supplement on cardiometabolic markers in people with prediabetes: A double blind randomized controlled clinical trial. Sci. Rep. 2022, 12, 18209. [Google Scholar] [CrossRef]
- Resnick, L.M. Cellular calcium and magnesium metabolism in the pathophysiology and treatment of hypertension and related metabolic disorders. Am. J. Med. 1992, 93, 11S–20S. [Google Scholar] [CrossRef]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in prevention and therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Sahebkar, A.; Rodríguez-Morán, M.; Guerrero-Romero, F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef]
- Hruby, A.; Meigs, J.B.; O’Donnell, C.J.; Jacques, P.F.; McKeown, N.M. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged Americans. Diabetes Care 2014, 37, 419–427. [Google Scholar] [CrossRef]
- Rodríguez-Morán, M.; Guerrero-Romero, F. Oral magnesium supplementation improves insulin sensitivity and metabolic control in type 2 diabetic subjects: A randomized double-blind controlled trial. Diabetes Care 2003, 26, 1147–1152. [Google Scholar] [CrossRef]
- Kisters, K.; Gremmler, B.; Kozianka, J.; Hausberg, M. Magnesium deficiency and diabetes mellitus. Clin. Nephrol. 2006, 65, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, M.; Yoshioka, S.; Hamada, A.; Takuma, D.; Yokota, J.; Kusunose, M.; Kyotani, S.; Kawakita, H.; Odani, K.; Tsutsui, Y.; et al. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 2004, 27, 1784–1787. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.G.; Shin, E.J.; Park, J.E.; Shon, Y.H. Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice. Mar. Drugs 2013, 11, 4193–4212. [Google Scholar] [CrossRef]
- Ha, B.G.; Park, J.E.; Shin, E.J.; Shon, Y.H. Effects of balanced deep-sea water on adipocyte hypertrophy and liver steatosis in high-fat, diet-induced obese mice. Obesity 2014, 22, 1669–1678. [Google Scholar] [CrossRef]
- Ha, B.G.; Park, J.E.; Shin, E.J.; Shon, Y.H. Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS ONE 2014, 9, e102095. [Google Scholar] [CrossRef]
- Ham, J.Y.; Shon, Y.H. Natural magnesium-enriched deep-sea water improves insulin resistance and the lipid profile of prediabetic adults: A randomized, double-blinded crossover trial. Nutrients 2020, 12, 515. [Google Scholar] [CrossRef]
- Sakpal, T.V. Sample size estimation in clinical trial. Perspect. Clin. Res. 2010, 1, 67–69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.H.; Kim, C.; An, H.S.; An, H.; Lee, J.S. Prediction of gestational diabetes mellitus in pregnant Korean women based on abdominal subcutaneous fat thickness as measured by ultrasonography. Diabetes Metab. J. 2017, 41, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Stumvoll, M.; Mitrakou, A.; Pimenta, W.; Jenssen, T.; Yki-Järvinen, H.; Van Haeften, T.; Renn, W.; Gerich, J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000, 23, 295–301. [Google Scholar] [CrossRef]
- Gutt, M.; Davis, C.L.; Spitzer, S.B.; Llabre, M.M.; Kumar, M.; Czarnecki, E.M.; Schneiderman, N.; Skyler, J.S.; Marks, J.B. Validation of the insulin sensitivity index (ISI0, 120): Comparison with other measures. Diabetes Res. Clin. Pract. 2000, 47, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.K.; Yoe, J.H. Spectrophotometric determination of magnesium with 1-azo-2-hydroxy-3-(2,4dimethylcarboxanilido)-naphthalene-1’-(2-hydroxy-benzene). Anal. Chim. Acta 1957, 16, 155–160. [Google Scholar] [CrossRef]
- Gerich, J.E. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch. Intern. Med. 2003, 163, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care 2004, 27, 59–65. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Hills, C.E.; Brunskill, N.J. Intracellular signalling by C-peptide. Exp. Diabetes Res. 2008, 2008, 635158. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.G.; Hattersley, A.T. The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet. Med. 2013, 30, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Günther, T. The biochemical function of Mg2+ in insulin secretion, insulin signal transduction and insulin resistance. Magnes. Res. 2010, 23, 5–18. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium in disease prevention and overall health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef]
- Volpe, S.L. Magnesium, the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus. Crit. Rev. Food Sci. Nutr. 2008, 48, 293–300. [Google Scholar] [CrossRef]
- Mooren, F.C.; Krüger, K.; Völker, K.; Golf, S.W.; Wadepuhl, M.; Kraus, A. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects–A double-blind, placebo-controlled, randomized trial. Diabetes Obes. Metab. 2011, 13, 281–284. [Google Scholar] [CrossRef]
- Kim, D.J.; Xun, P.; Liu, K.; Loria, C.; Yokota, K.; Jacobs, D.R., Jr.; He, K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010, 33, 2604–2610. [Google Scholar] [CrossRef]
- Dong, J.Y.; Xun, P.; He, K.; Qin, L.Q. Magnesium intake and risk of type 2 diabetes: Meta-analysis of prospective cohort studies. Diabetes Care 2011, 34, 2116–2122. [Google Scholar] [CrossRef]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodŕıguez-Moran, M. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: Double-blind, randomized clinical trial. Eur. J. Clin. Investig. 2011, 41, 405–410. [Google Scholar] [CrossRef]
- Hadjistavri, L.S.; Sarafidis, P.A.; Georgianos, P.I.; Tziolas, I.M.; Aroditis, C.P.; Hitoglou-Makedou, A.; Zebekakis, P.E.; Pikilidou, M.I.; Lasaridis, A.N. Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med. Sci. Monit. 2010, 16, CR307–CR312. [Google Scholar] [PubMed]
- Pratley, R.E.; Weyer, C. The role of impaired early insulin secretion in the pathogenesis of type II diabetes mellitus. Diabetologia 2001, 44, 929–945. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch. Biochem. Biophys. 2007, 458, 40–47. [Google Scholar] [CrossRef]
- Lima de Souza E Silva, E.; Cruz, T.; Rodrigues, L.E.; Ladeia, A.M.; Bomfim, O.; Olivieri, L.; Melo, J.; Correia, R.; Porto, M.; Cedro, A.; et al. Magnesium replacement does not improve insulin resistance in patients with metabolic syndrome: A 12-week randomized double-blind study. J. Clin. Med. Res. 2014, 6, 456–462. [Google Scholar] [CrossRef]
- Paolisso, G.; Sgambato, S.; Gambardella, A.; Pizza, G.; Tesauro, P.; Varricchio, M.; D’Onofrio, F. Daily magnesium supplements improve glucose handling in elderly subjects. Am. J. Clin. Nutr. 1992, 55, 1161–1167. [Google Scholar] [CrossRef]
- Bertinato, J.; Xiao, C.W.; Nimal Ratnayake, W.M.; Fernandez, L.; Lavergne, C.; Wood, C.; Swist, E. Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food Nutr. Res. 2015, 59, 25974. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium and type 2 diabetes. World J. Diabetes 2015, 6, 1152–1157. [Google Scholar] [CrossRef]
- Van Laecke, S.; Nagler, E.V.; Taes, Y.; Van Biesen, W.; Peeters, P.; Vanholder, R. The effect of magnesium supplements on early post-transplantation glucose metabolism: A randomized controlled trial. Transpl. Int. 2014, 27, 895–902. [Google Scholar] [CrossRef]
- Drenthen, L.C.A.; de Baaij, J.H.F.; Rodwell, L.; van Herwaarden, A.E.; Tack, C.J.; de Galan, B.E. Oral magnesium supplementation does not affect insulin sensitivity in people with insulin-treated type 2 diabetes and a low serum magnesium: A randomised controlled trial. Diabetologia 2024, 67, 52–61. [Google Scholar] [CrossRef]
- Cooperman, T. Magnesium Supplements Review (Including Calcium, Boron, and Vitamins D & K) Find Out What Magnesium Does, Who Needs It, and Our Top Picks among Supplements. Consumerlab.com. 2022. Available online: http://www.consumerlab.com/reviews/magnesium-supplement-review/magnesium/ (accessed on 5 May 2022).
- Morais, J.B.S.; Severo, J.S.; Santos, L.R.D.; de Sousa Melo, S.R.; de Oliveira Santos, R.; de Oliveira, A.R.S.; Cruz, K.J.C.; do Nascimento Marreiro, D. Role of magnesium in oxidative stress in individuals with obesity. Biol. Trace Elem. Res. 2017, 176, 20–26. [Google Scholar] [CrossRef]
- Rayssiguier, Y.; Mazur, A. Magnesium and inflammation: Lessons from animal models. Clin. Calcium 2005, 15, 245–248. (In Japanese) [Google Scholar] [PubMed]
- Weglicki, W.B. Hypomagnesemia-related inflammation in heart disease and diabetes. Cir. Cir. 2012, 80, 209–210. (In Spanish) [Google Scholar] [PubMed]
- Weglicki, W.B. Hypomagnesemia and inflammation: Clinical and basic aspects. Annu. Rev. Nutr. 2012, 32, 55–71. [Google Scholar] [CrossRef]
- Paolisso, G.; Scheen, A.; D’Onofrio, F.; Lefèbvre, P. Magnesium and glucose homeostasis. Diabetologia 1990, 33, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Suárez, A.; Pulido, N.; Casla, A.; Casanova, B.; Arrieta, F.J.; Rovira, A. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabetologia 1995, 38, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.D.L.; Cruz, T.; Rodrigues, L.E.; Bomfim, O.; Melo, J.; Correia, R.; Porto, M.; Cedro, A.; Vicente, E. Serum and intracellular magnesium deficiency in patients with metabolic syndrome—Evidences for its relation to insulin resistance. Diabetes Res. Clin. Pract. 2009, 83, 257–262. [Google Scholar] [CrossRef]
- Capozzi, A.; Scambia, G.; Lello, S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020, 140, 55–63. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodríguez-Morán, M. The role of magnesium in the pathogenesis of insulin resistance. In Insulin Resistance: Symptoms, Causes and Treatment; Molière, J., Gauthier, L., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 167–182. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Svetkey, L.P.; Simons-Morton, D.; Vollmer, W.M.; Appel, L.J.; Conlin, P.R.; Ryan, D.H.; Ard, J.; Kennedy, B.M. Effects of dietary patterns on blood pressure: Subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch. Intern. Med. 1999, 159, 285–293. [Google Scholar] [CrossRef]
Component | Deep Seawater Mineral Extract | Placebo | |||
---|---|---|---|---|---|
Content (mL) | Mixing Ratio (%) | Content (mL) | Mixing Ratio (%) | ||
Main component | Deep seawater mineral extract | 1.938 | 3.23 | – | – |
Minor component | Purified water | 52.668 | 87.78 | 54.606 | 91.01 |
Red grapefruit concentrate | 3.600 | 6.00 | 3.600 | 6.00 | |
Prune concentrate | 0.300 | 0.50 | 0.300 | 0.50 | |
Xanthan gum | 0.090 | 0.15 | 0.090 | 0.15 | |
Sucralose | 0.024 | 0.04 | 0.024 | 0.04 | |
Enzymatically treated stevia | 0.060 | 0.10 | 0.060 | 0.10 | |
Anhydrous citric acid | 0.600 | 1.00 | 0.600 | 1.00 | |
Grapefruit flavor | 0.720 | 1.20 | 0.720 | 1.20 | |
Total | 60.000 | 100.00 | 60.000 | 100.00 | |
Nutrient | |||||
Carbohydrate (g) | 6.16 | N/A | 5.14 | N/A | |
Fat (g) | 0.07 | N/A | 0.07 | N/A | |
Protein (g) | 0.13 | N/A | 0.12 | N/A | |
Energy (Kcal) | 25.82 | N/A | 21.69 | N/A | |
Mineral/Property | |||||
Magnesium (Mg2+) | 128.2 | N/A | – | N/A | |
Calcium (Ca2+) | – | N/A | – | N/A | |
Sodium (Na+) | 43.0 | N/A | – | N/A | |
Potassium (K+) | 40.0 | N/A | – | N/A | |
Concentrated deep seawater (mg/L) | |||||
Magnesium (Mg2+) | 2971.0 | N/A | |||
Calcium (Ca2+) | 142.0 | N/A | |||
Sodium (Na+) | 284.0 | N/A | |||
Potassium (K+) | – | N/A | |||
Hardness | 12,536.0 a | N/A |
Control Group (n = 40) | Test Group (n = 40) | Total (n = 80) | p-Value | |
---|---|---|---|---|
Sex (male/female) | 11/29 | 14/26 | 25/55 | 0.4693 |
Age (years) | 53.28 ± 9.28 | 55.80 ± 9.73 | 54.54 ± 9.53 | 0.2386 |
Height (cm) | 162.48 ± 7.06 | 162.68 ± 7.55 | 162.58 ± 7.26 | 0.9029 |
Weight (kg) | 68.74 ± 13.29 | 66.78 ± 11.59 | 67.76 ± 12.43 | 0.4842 |
BMI (kg/m2) | 25.92 ± 4.08 | 25.13 ± 3.44 | 25.52 ± 3.77 | 0.3471 |
Current smoker (n, %) | 3 (7.5) | 4 (10.0) | 7 (8.8) | 0.7119 |
Amount of smoking, cigarette/day | 10.00 ± 0.00 | 13.75 ± 4.79 | 12.14 ± 3.93 | 0.2152 |
Alcohol (n, %) | 24 (60.0) | 20 (50) | 44 (55.0) | 0.3687 |
Alcohol consumption (g/week) | 66.33 ± 124.75 | 48.60 ± 56.94 | 58.27 ± 99.18 | 0.5376 |
Hypertension (n, %) | 7 (17.5) | 6 (15.0) | 13 (16.3) | 0.7618 |
FPG (mg/dL) | 100.10 ± 9.24 | 99.10 ± 7.41 | 99.60 ± 8.33 | 0.5947 |
2h-PPG (mg/dL) | 166.40 ± 16.41 | 161.95 ± 18.55 | 164.18 ± 17.54 | 0.2593 |
HbA1c (%) | 5.71 ± 0.32 | 5.77 ± 0.26 | 5.74 ± 0.29 | 0.3427 |
Mg (mg/dL) | 2.12 ± 0.14 | 2.12 ± 0.17 | 2.12 ± 0.17 | 0.8954 |
Control Group (n = 37) | Test Group (n = 34) | Total (n = 71) | p-Value | |
---|---|---|---|---|
Number of products to consume (bottles) | 168.86 ± 8.70 | 167.29 ± 8.48 | 168.11 ± 8.57 | 0.4445 |
Number of products consumed (bottles) | 160.57 ± 12.67 | 157.85 ± 10.85 | 159.27 ± 11.83 | 0.3378 |
Compliance (%) | 95.09 ± 5.65 | 94.40 ± 5.25 | 94.73 ± 5.43 | 0.5993 |
Control Group (n = 37) | Test Group (n = 34) | p-Value a | ||
---|---|---|---|---|
Total calories (kcal) | Baseline | 1406.14 ± 528.73 | 1407.11 ± 444.73 | 0.9934 |
6 weeks | 1377.02 ± 453.99 | 1508.22 ± 446.23 | ||
Variation from baseline | −29.12 ± 548.48 | 101.12 ± 612.10 | ||
p-value b | 0.7486 | 0.3424 | 0.3477 | |
12 weeks | 1473.19 ± 389.88 | 1456.66 ± 458.19 | ||
Variation from baseline | 67.05 ± 521.45 | 49.55 ± 588.36 | ||
p-value b | 0.4392 | 0.6266 | 0.8947 | |
Carbohydrate (g) | Baseline | 206.78 ± 85.72 | 206.80 ± 68.86 | 0.9989 |
6 weeks | 204.41 ± 64.69 | 217.89 ± 66.10 | ||
Variation from baseline | −2.36 ± 81.71 | 11.09 ± 93.68 | ||
p-value b | 0.8613 | 0.4949 | 0.5203 | |
12 weeks | 207.84 ± 65.00 | 221.57 ± 71.98 | ||
Change from baseline | 1.06 ± 71.12 | 14.77 ± 96.31 | ||
p-value b | 0.9280 | 0.3778 | 0.4952 | |
Fat (g) | Baseline | 37.75 ± 23.10 | 37.18 ± 17.55 | 0.9084 |
6 weeks | 38.26 ± 27.06 | 43.17 ± 26.65 | ||
Variation from baseline | 0.51 ± 27.71 | 5.99 ± 30.62 | ||
p-value b | 0.9108 | 0.2626 | 0.4320 | |
12 weeks | 43.41 ± 20.69 | 38.64 ± 19.40 | ||
Variation from baseline | 5.66 ± 27.15 | 1.46 ± 23.20 | ||
p-value b | 0.2126 | 0.7157 | 0.4876 | |
Protein (g) | Baseline | 60.36 ± 30.19 | 63.06 ± 29.16 | 0.7031 |
6 weeks | 55.54 ± 24.46 | 65.99 ± 26.42 | ||
Variation from baseline | −4.82 ± 32.38 | 2.92 ± 39.65 | ||
p-value b | 0.3708 | 0.6701 | 0.3687 | |
12 weeks | 63.13 ± 22.07 | 60.25 ± 23.24 | ||
Variation from baseline | 2.77 ± 33.50 | −2.81 ± 36.43 | ||
p-value b | 0.6185 | 0.6556 | 0.5037 | |
Dietary fiber (g) | Baseline | 17.31 ± 8.16 | 19.80 ± 9.07 | 0.2273 |
6 weeks | 17.86 ± 8.55 | 19.83 ± 7.04 | ||
Variation from baseline | 0.55 ± 8.61 | 0.02 ± 10.10 | ||
p-value b | 0.7006 | 0.9900 | 0.8134 | |
12 weeks | 18.11 ± 7.42 | 20.34 ± 9.25 | ||
Variation from baseline | 0.80 ± 8.07 | 0.54 ± 11.16 | ||
p-value b | 0.5515 | 0.7796 | 0.9112 |
Control Group (n = 37) | Test Group (n = 34) | p-Value a | ||
---|---|---|---|---|
Physical activity MET-min/week | Baseline | 960 (360–1600) | 1450 (240–3840) | 0.2672 |
6 weeks | 960 (560–2160) | 980 (240–2880) | ||
Variation from baseline | 0 (−600 to –1200) | 0 (−960 to –740) | ||
p-value b | 0.6083 | 0.9410 | 0.9447 | |
12 weeks | 800 (0–1680) | 1160 (120–2400) | ||
Variation from baseline | 0 (−1200 to −480) | 0 (−1200 to –480) | ||
p-value b | 0.2683 | 0.9329 | 0.5489 |
Control Group (n = 38) | Test Group (n = 37) | p-Value a | ||
---|---|---|---|---|
FPG (mg/dL) | Baseline | 100.45 ± 9.35 | 98.95 ± 7.59 | 0.4482 |
6 weeks | 96.61 ± 9.92 | 98.30 ± 8.41 | ||
Variation from baseline | −3.84 ± 8.79 | −0.65 ± 6.12 | ||
p-value b | 0.0105 | 0.5235 | 0.0718 | |
12 weeks | 100.39 ± 9.78 | 98.95 ± 7.78 | ||
Variation from baseline | −0.05 ± 8.04 | 0.00 ± 5.57 | ||
p-value b | 0.9680 | >0.9999 | 0.9738 | |
PPG0.5h (mg/dL) | Baseline | 174.34 ± 26.67 | 173.46 ± 22.45 | 0.8774 |
6 weeks | 169.39 ± 26.56 | 172.78 ± 29.25 | ||
Variation from baseline | −4.95 ± 30.83 | −0.68 ± 28.04 | ||
p-value b | 0.3290 | 0.8843 | 0.5324 | |
12 weeks | 174.16 ± 23.55 | 168.24 ± 25.25 | ||
Variation from baseline | −0.18 ± 26.81 | −5.22 ± 22.14 | ||
p-value b | 0.9664 | 0.1604 | 0.3791 | |
PPG1.0h (mg/dL) | Baseline | 195.84 ± 39.74 | 198.30 ± 29.35 | 0.7622 |
6 weeks | 190.71 ± 41.05 | 191.05 ± 37.57 | ||
Variation from baseline | −5.13 ± 34.45 | −7.24 ± 39.06 | ||
p-value b | 0.3645 | 0.2668 | 0.8045 | |
12 weeks | 201.26 ± 35.59 | 198.84 ± 34.97 | ||
Variation from baseline | 5.42 ± 28.01 | 0.54 ± 35.43 | ||
p-value b | 0.2404 | 0.9266 | 0.5095 | |
PPG1.5h (mg/dL) | Baseline | 183.24 ± 29.23 | 181.43 ± 27.94 | 0.7855 |
6 weeks | 188.08 ± 36.30 | 179.73 ± 36.91 | ||
Variation from baseline | 4.84 ± 32.25 | −1.70 ± 39.14 | ||
p-value b | 0.3607 | 0.7928 | 0.4314 | |
12 weeks | 186.08 ± 36.55 | 183.95 ± 39.05 | ||
Variation from baseline | 2.84 ± 29.33 | 2.51 ± 36.91 | ||
p-value b | 0.5540 | 0.6812 | 0.9660 | |
PPG2.0h (mg/dL) | Baseline | 166.39 ± 16.16 | 162.54 ± 18.58 | 0.3406 |
6 weeks | 164.55 ± 34.45 | 160.46 ± 33.22 | ||
Variation from baseline | −1.84 ± 33.81 | −2.08 ± 36.36 | ||
p-value b | 0.7388 | 0.7297 | 0.9766 | |
12 weeks | 165.95 ± 34.51 | 164.05 ± 31.92 | ||
Variation from baseline | −0.45 ± 30.97 | 1.51 ± 32.20 | ||
p-value b | 0.9295 | 0.7766 | 0.7889 | |
Glucose iAUC0–2h (h × mg/dL) | Baseline | 143.01 ± 38.82 | 144.07 ± 32.64 | 0.8984 |
6 weeks | 146.17 ± 40.90 | 140.12 ± 43.92 | ||
Variation from baseline | 3.16 ± 37.55 | −3.96 ± 47.92 | ||
p-value b | 0.6067 | 0.6184 | 0.4754 | |
12 weeks | 146.55 ± 39.10 | 143.42 ± 42.96 | ||
Variation from baseline | 3.53 ± 31.50 | −0.65 ± 39.09 | ||
p-value b | 0.4935 | 0.9196 | 0.6105 |
Control Group (n = 38) | Test Group (n = 37) | p-Value a | ||
---|---|---|---|---|
Fasting insulin (μU/mL) | Baseline | 9.61 ± 5.08 | 10.79 ± 6.84 | 0.3990 |
6 weeks | 8.47 ± 4.65 | 9.78 ± 6.42 | ||
Variation from baseline | −1.14 ± 3.71 | −1.01 ± 6.84 | ||
p-value b | 0.0660 | 0.3737 | 0.9217 | |
12 weeks | 9.39 ± 6.00 | 8.32 ± 4.61 | ||
Variation from baseline | −0.22 ± 3.93 | −2.47 ± 4.51 | ||
p-value b | 0.7338 | 0.0020 | 0.0238 * | |
Insulin0.5h (μU/mL) | Baseline | 64.62 ± 48.85 | 54.64 ± 28.16 | 0.2813 |
6 weeks | 66.89 ± 49.63 | 60.00 ± 40.36 | ||
Variation from baseline | 2.28 ± 46.13 | 5.36 ± 23.44 | ||
p-value b | 0.7627 | 0.1729 | 0.7155 | |
12 weeks | 62.87 ± 43.97 | 48.12 ± 28.22 | ||
Variation from baseline | −1.75 ± 29.03 | −6.52 ± 22.46 | ||
p-value b | 0.7127 | 0.0859 | 0.4291 | |
Insulin1.0h (μU/mL) | Baseline | 80.28 ± 54.17 | 79.18 ± 37.43 | 0.9184 |
6 weeks | 73.63 ± 48.30 | 78.15 ± 43.48 | ||
Variation from baseline | −6.64 ± 47.56 | −1.02 ± 30.44 | ||
p-value b | 0.3946 | 0.8394 | 0.5431 | |
12 weeks | 85.79 ± 52.30 | 69.41 ± 33.69 | ||
Variation from baseline | 5.51 ± 44.84 | −9.76 ± 31.37 | ||
p-value b | 0.4537 | 0.0663 | 0.0914 | |
Insulin1.5h (μU/mL) | Baseline | 91.47 ± 59.58 | 86.07 ± 41.22 | 0.6488 |
6 weeks | 88.04 ± 54.72 | 82.08 ± 45.26 | ||
Variation from baseline | −3.43 ± 48.80 | −3.99 ± 43.07 | ||
p-value b | 0.6676 | 0.5767 | 0.9579 | |
12 weeks | 86.88 ± 49.21 | 83.37 ± 51.60 | ||
Variation from baseline | −4.59 ± 33.55 | −2.69 ± 48.31 | ||
p-value b | 0.4042 | 0.7364 | 0.8444 | |
Insulin2.0h (μU/mL) | Baseline | 93.26 ± 58.37 | 86.51 ± 43.90 | 0.5739 |
6 weeks | 89.36 ± 62.04 | 82.30 ± 42.84 | ||
Variation from baseline | −3.90 ± 56.18 | −4.21 ± 50.58 | ||
p-value b | 0.6714 | 0.6155 | 0.9797 | |
12 weeks | 90.44 ± 56.11 | 87.30 ± 57.22 | ||
Variation from baseline | −2.82 ± 35.18 | 0.79 ± 41.54 | ||
p-value b | 0.6244 | 0.9086 | 0.6857 | |
C-peptide (ng/mL) | Baseline | 2.29 ± 0.76 | 2.26 ± 0.75 | 0.8578 |
6 weeks | 2.40 ± 0.92 | 2.21 ± 0.59 | ||
Variation from baseline | 0.10 ± 0.56 | −0.06 ± 0.52 | ||
p-value b | 0.2677 | 0.5152 | 0.2087 | |
12 weeks | 2.51 ± 0.89 | 2.15 ± 0.67 | ||
Variation from baseline | 0.21 ± 0.70 | −0.12 ± 0.51 | ||
p-value b | 0.0666 | 0.1715 | 0.0220 * | |
IGI | Baseline | 0.80 ± 0.67 | 0.60 ± 0.29 | 0.1006 |
6 weeks | 0.84 ± 0.63 | 0.67 ± 0.48 | ||
Variation from baseline | 0.04 ± 0.67 | 0.07 ± 0.32 | ||
p-value b | 0.7183 | 0.1788 | 0.7891 | |
12 weeks | 0.72 ± 0.52 | 0.58 ± 0.38 | ||
Variation from baseline | −0.07 ± 0.56 | −0.02 ± 0.27 | ||
p-value b | 0.4253 | 0.6567 | 0.5977 |
Control Group (n = 38) | Test Group (n = 37) | p-Value a | ||
---|---|---|---|---|
HOMA-IR | Baseline | 2.39 ± 1.26 | 2.70 ± 1.82 | 0.3947 |
6 weeks | 2.81 ± 2.39 | 2.33 ± 1.10 | ||
Variation from baseline | 0.42 ± 1.72 | −0.37 ± 1.40 | ||
p-value b | 0.1375 | 0.1152 | 0.0316 * | |
12 weeks | 2.98 ± 1.80 | 2.41 ± 1.48 | ||
Variation from baseline | 0.59 ± 1.48 | −0.29 ± 1.40 | ||
p-value b | 0.0185 | 0.2214 | 0.0102 * | |
HOMA-β (%) | Baseline | 97.43 ± 57.00 | 106.15 ± 58.71 | 0.5159 |
6 weeks | 106.91 ± 64.56 | 93.29 ± 36.69 | ||
Variation from baseline | 9.48 ± 56.54 | −12.86 ± 49.72 | ||
p-value b | 0.3080 | 0.1244 | 0.0736 | |
12 weeks | 110.67 ± 64.19 | 90.54 ± 37.70 | ||
Variation from baseline | 13.24 ± 50.52 | −15.61 ± 44.62 | ||
p-value b | 0.1148 | 0.0402 | 0.0107 * | |
QUICKI | Baseline | 0.35 ± 0.03 | 0.34 ± 0.04 | 0.8500 |
6 weeks | 0.34 ± 0.03 | 0.34 ± 0.03 | ||
Variation from baseline | 0.00 ± 0.02 | 0.00 ± 0.02 | ||
p-value b | 0.1782 | 0.9472 | 0.3492 | |
12 weeks | 0.33 ± 0.03 | 0.35 ± 0.04 | ||
Variation from baseline | −0.01 ± 0.03 | 0.00 ± 0.03 | ||
p-value b | 0.0188 | 0.5573 | 0.0378 * | |
ISIstumvoll | Baseline | 0.108 ± 0.015 | 0.109 ± 0.013 | 0.7540 |
6 weeks | 0.108 ± 0.015 | 0.110 ± 0.013 | ||
Variation from baseline | 0.000 ± 0.003 | 0.001 ± 0.004 | ||
p-value b | 0.5751 | 0.3255 | 0.6756 | |
12 weeks | 0.108 ± 0.015 | 0.111 ± 0.013 | ||
Variation from baseline | 0.000 ± 0.003 | 0.002 ± 0.003 | ||
p-value b | 0.9462 | 0.0002 | 0.0073 ** | |
ISI0,120 | Baseline | 34.95 ± 8.10 | 35.38 ± 7.35 | 0.8127 |
6 weeks | 35.62 ± 8.46 | 41.90 ± 37.24 | ||
Variation from baseline | 0.67 ± 7.55 | 6.52 ± 36.53 | ||
p-value b | 0.5876 | 0.2848 | 0.3457 | |
12 weeks | 35.05 ± 9.83 | 41.43 ± 37.01 | ||
Variation from baseline | 0.10 ± 6.33 | 6.05 ± 36.06 | ||
p-value b | 0.9231 | 0.3139 | 0.3285 | |
HbA1c (%) | Baseline | 5.71 ± 0.32 | 5.78 ± 0.27 | 0.3485 |
12 weeks | 5.68 ± 0.29 | 5.73 ± 0.30 | ||
Variation from baseline | −0.03 ± 0.16 | −0.05 ± 0.14 | ||
p-value b | 0.2646 | 0.0481 | 0.6195 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, J.Y.; Jang, Y.K.; Jeon, B.Y.; Shon, Y.H. Magnesium from Deep Seawater as a Potentially Effective Natural Product against Insulin Resistance: A Randomized Trial. Medicina 2024, 60, 1265. https://doi.org/10.3390/medicina60081265
Ham JY, Jang YK, Jeon BY, Shon YH. Magnesium from Deep Seawater as a Potentially Effective Natural Product against Insulin Resistance: A Randomized Trial. Medicina. 2024; 60(8):1265. https://doi.org/10.3390/medicina60081265
Chicago/Turabian StyleHam, Ji Yeon, You Kyung Jang, Byong Yeob Jeon, and Yun Hee Shon. 2024. "Magnesium from Deep Seawater as a Potentially Effective Natural Product against Insulin Resistance: A Randomized Trial" Medicina 60, no. 8: 1265. https://doi.org/10.3390/medicina60081265
APA StyleHam, J. Y., Jang, Y. K., Jeon, B. Y., & Shon, Y. H. (2024). Magnesium from Deep Seawater as a Potentially Effective Natural Product against Insulin Resistance: A Randomized Trial. Medicina, 60(8), 1265. https://doi.org/10.3390/medicina60081265