The Association of Systemic and Mandibular Bone Mineral Density in Postmenopausal Females with Osteoporosis
Abstract
:1. Introduction
2. Materials and Methods
DXA Measurement and Analysis Protocol
3. Results
3.1. Comparison of Mean BMD at Different Levels between the Two Groups
3.2. Correlations between BMD at Different Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.L.; Hodara, E.; Sriprasert, I.; Shoupe, D.; Stanczyk, F.Z. Estrogen Deficiency in the Menopause and the Role of Hormone Therapy: Integrating the Findings of Basic Science Research with Clinical Trials. Menopause 2024. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Chhantyal, K.; Chen, Z.; Zhu, R.; Zhang, L. The Association of Combined Vitamin C and D Deficiency with Bone Mineral Density and Vertebral Fracture. J. Orthop. Surg. Res. 2024, 19, 460. [Google Scholar] [CrossRef] [PubMed]
- Mattson, J.S.; Cerutis, D.R.; Parrish, L.C. Osteoporosis: A Review and Its Dental Implications. Compend. Contin. Educ. Dent. 2002, 23, 1001–1004. [Google Scholar] [PubMed]
- Tu, K.N.; Lie, J.D.; Wan, C.K.V.; Cameron, M.; Austel, A.G.; Nguyen, J.K.; Van, K.; Hyun, D. Osteoporosis: A Review of Treatment Options. Pharm. Ther. 2018, 43, 92–104. [Google Scholar]
- Wang, J.; Xue, M.; Hu, Y.; Li, J.; Li, Z.; Wang, Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Anish, R.J.; Nair, A. Osteoporosis Management-Current and Future Perspectives—A Systemic Review. J. Orthop. 2024, 53, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Vijay, G.; Chitroda, P.K.; Katti, G.; Shahbaz, S.; Baba, I.; Bhuvaneshwari. Prediction of Osteoporosis Using Dental Radiographs and Age in Females. J. Midlife Health 2015, 6, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Yepes, J.F. Dental Manifestations of Pediatric Bone Disorders. Curr. Osteoporos. Rep. 2017, 15, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Guiglia, R.; Di Fede, O.; Lo Russo, L.; Sprini, D.; Rini, G.-B.; Campisi, G. Osteoporosis, Jawbones and Periodontal Disease. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e93–e99. [Google Scholar] [CrossRef]
- Taguchi, A.; Urano, T.; Nakamura, Y.; Shiraki, M. Increased Risk of Tooth Loss in Postmenopausal Women with Prevalent Vertebral Fractures: An Observational Study. JBMR Plus 2023, 7, e10822. [Google Scholar] [CrossRef]
- Goyal, L.; Goyal, T.; Gupta, N.D. Osteoporosis and Periodontitis in Postmenopausal Women: A Systematic Review. J. Midlife Health 2017, 8, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Diba, S.F.; Gracea, R.S.; Shantiningsih, R.R.; Hidjah, K. Analysis of Mandible Trabecular Structure Using Digital Periapical Radiographs to Assess Low Bone Quality in Postmenopausal Women. Saudi Dent. J. 2021, 33, 997–1003. [Google Scholar] [CrossRef]
- Jeffcoat, M.K.; Lewis, C.E.; Reddy, M.S.; Wang, C.; Redford, M. Post-menopausal Bone Loss and Its Relationship to Oral Bone Loss. Periodontol. 2000 2000, 23, 94–102. [Google Scholar] [CrossRef]
- Suzuki, T.; Katsumata, A.; Mastumoto, Y.; Komatu, M.; Oomura, Y.; Okamura, M.; Mizuno, S.; Anazawa, U.; Nomura, T. Features of Mandibular Cortical Bone Morphology in Osteoporotic Fracture Patients. Oral Radiol. 2022, 38, 550–557. [Google Scholar] [CrossRef]
- Boyanov, M. Estimation of Lumbar Spine Bone Mineral Density by Dual-Energy X-ray Absorptiometry: Standard Anteroposterior Scans vs. Sub-Regional Analyses of Whole-Body Scans. Br. J. Radiol. 2008, 81, 637–642. [Google Scholar] [CrossRef]
- Messina, C.; Fusco, S.; Gazzotti, S.; Albano, D.; Bonaccorsi, G.; Guglielmi, G.; Bazzocchi, A. DXA beyond Bone Mineral Density and the REMS Technique: New Insights for Current Radiologists Practice. Radiol. Med. 2024, 129, 1224–1240. [Google Scholar] [CrossRef]
- Kanis, J.A.; Black, D.; Cooper, C.; Dargent, P.; Dawson-Hughes, B.; De Laet, C.; Delmas, P.; Eisman, J.; Johnell, O.; Jonsson, B.; et al. A New Approach to the Development of Assessment Guidelines for Osteoporosis. Osteoporos. Int. 2002, 13, 527–536. [Google Scholar] [CrossRef]
- Sozen, T.; Ozisik, L.; Basaran, N.C. An Overview and Management of Osteoporosis. Eur. J. Rheumatol. 2017, 4, 46–56. [Google Scholar] [CrossRef]
- De Aguiar, E.D.O.G.; Marconi, E.M.; Monteiro-Oliveira, B.B.; Gomes-Santos, A.C.; Oliveira, A.C.C.; Paineiras-Domingos, L.L.; Sá-Caputo, D.C.; Bernardo Filho, M. Whole-Body Vibration Exercise Improves the Functionality in Postmenopausal Women: A Systematic Review. Iran. J. Public Health 2023. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yoon, H.-J.; Lee, D.-K.; Jin, X.; Che, X.; Choi, J.-Y. The Estrogen-Related Receptor γ Modulator, GSK5182, Inhibits Osteoclast Differentiation and Accelerates Osteoclast Apoptosis. BMB Rep. 2021, 54, 266–271. [Google Scholar] [CrossRef]
- Galvano, A.; Gristina, V.; Scaturro, D.; Bazan Russo, T.D.; Tomasello, S.; Vitagliani, F.; Carità, F.; La Mantia, M.; Fulfaro, F.; Bazan, V.; et al. The Role of Bone Modifying Agents for Secondary Osteoporosis Prevention and Pain Control in Post-Menopausal Osteopenic Breast Cancer Patients Undergoing Adjuvant Aromatase Inhibitors. Front. Endocrinol. 2023, 14, 1297950. [Google Scholar] [CrossRef]
- Adami, G.; Rossini, M.; Gatti, D.; Serpi, P.; Fabrizio, C.; Lovato, R. New Point-of-Care Calcaneal Ultrasound Densitometer (Osteosys BeeTLE) Compared to Standard Dual-Energy X-ray Absorptiometry (DXA). Sci. Rep. 2024, 14, 6898. [Google Scholar] [CrossRef]
- Black, D.M.; Bauer, D.C.; Vittinghoff, E.; Lui, L.-Y.; Grauer, A.; Marin, F.; Khosla, S.; De Papp, A.; Mitlak, B.; Cauley, J.A.; et al. Treatment-Related Changes in Bone Mineral Density as a Surrogate Biomarker for Fracture Risk Reduction: Meta-Regression Analyses of Individual Patient Data from Multiple Randomised Controlled Trials. Lancet Diabetes Endocrinol. 2020, 8, 672–682. [Google Scholar] [CrossRef]
- Byrne, H.; O’Reilly, S.; Weadick, C.S.; Brady, P.; Ríordáin, R.N. How We Manage Medication-Related Osteonecrosis of the Jaw. Eur. J. Med. Res. 2024, 29, 402. [Google Scholar] [CrossRef] [PubMed]
- Almăşan, H.A.; Băciuţ, M.; Rotaru, H.; Bran, S.; Almăşan, O.C.; Băciuţ, G. Osteonecrosis of the Jaws Associated with the Use of Bisphosphonates. Discussion over 52 Cases. Rom. J. Morphol. Embryol. 2011, 52, 1233–1241. [Google Scholar]
- Slaidina, A.; Springe, B.; Abeltins, A.; Uribe, S.E.; Lejnieks, A. The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study. Dent. J. 2023, 11, 17. [Google Scholar] [CrossRef]
- Green, A.D. Does This Woman Have Osteoporosis? JAMA 2004, 292, 2890. [Google Scholar] [CrossRef]
- Duncea, I.; Pop, D.; Georgescu, C. Gingival Recession in Postmenopausal Women with and without Osteoporosis. Clujul Med. 2013, 86, 69–73. [Google Scholar]
- Demontiero, O.; Vidal, C.; Duque, G. Aging and Bone Loss: New Insights for the Clinician. Ther. Adv. Musculoskelet. Dis. 2012, 4, 61–76. [Google Scholar] [CrossRef]
- Duque, G. As a Matter of Fat: New Perspectives on the Understanding of Age-Related Bone Loss. IBMS BoneKEy 2007, 4, 129–140. [Google Scholar] [CrossRef]
- Padilla Colón, C.J.; Molina-Vicenty, I.L.; Frontera-Rodríguez, M.; García-Ferré, A.; Rivera, B.P.; Cintrón-Vélez, G.; Frontera-Rodríguez, S. Muscle and Bone Mass Loss in the Elderly Population: Advances in Diagnosis and Treatment. J. Biomed. 2018, 3, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Von Wowern, N.; Westergaard, J.; Kollerup, G. Bone Mineral Content and Bone Metabolism in Young Adults with Severe Periodontitis. J. Clin. Periodontol. 2001, 28, 583–588. [Google Scholar] [CrossRef]
- Shokri, A.; Ghanbari, M.; Maleki, F.H.; Ramezani, L.; Amini, P.; Tapak, L. Relationship of Gray Values in Cone Beam Computed Tomography and Bone Mineral Density Obtained by Dual Energy X-ray Absorptiometry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Koth, V.S.; Salum, F.G.; de Figueiredo, M.A.Z.; Cherubini, K. Repercussions of Osteoporosis on the Maxillofacial Complex: A Critical Overview. J. Bone Min. Metab. 2021, 39, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Singh, S.V.; Aggarwal, H.; Gupta, A. Effect of Mucostatic and Selective Pressure Impression Techniques on Residual Ridge Resorption in Individuals with Different Bone Mineral Densities: A Prospective Clinical Pilot Study. J. Prosthet. Dent. 2019, 121, 90–94. [Google Scholar] [CrossRef]
- Aizenbud, I.; Wilensky, A.; Almoznino, G. Periodontal Disease and Its Association with Metabolic Syndrome—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 13011. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, R.; Rong, X.; Zhu, S.; Cui, Y.; Liu, H.; Li, M. Immunoporosis: Role of Immune System in the Pathophysiology of Different Types of Osteoporosis. Front. Endocrinol. 2022, 13, 965258. [Google Scholar] [CrossRef]
- Wu, J.; Yao, L.; Liu, Y.; Zhang, S.; Wang, K. Periodontitis and Osteoporosis: A Two-Sample Mendelian Randomization Analysis. Braz. J. Med. Biol. Res. 2024, 57, e12951. [Google Scholar] [CrossRef]
- Link, T.M.; Kazakia, G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr. Rheumatol. Rep. 2020, 22, 13. [Google Scholar] [CrossRef]
- Groen, J.J.; Menczel, J.; Shapiro, S. Chronic Destructive Periodontal Disease in Patients with Presenile Osteoporosis. J. Periodontol. 1968, 39, 19–23. [Google Scholar] [CrossRef]
- Zachariasen, R.D. Oral Bone Loss Associated with Menopause. J. Gt Houst. Dent. Soc. 1999, 71, 19–21. [Google Scholar]
- Tiossi, R.; Costa, P.; Watanabe, P. The Influence of Osteoporosis in Oral Health. In Osteoporosis: Risk Factors, Symptoms and Management; Nova Science Publisher: São Paulo, Brazil, 2012; pp. 1–32. [Google Scholar]
- Ardakani, F.E.; Mirmohamadi, S.-J. Osteoporosis and Oral Bone Resorption: A Review. J. Maxillofac. Oral Surg. 2009, 8, 121–126. [Google Scholar] [CrossRef]
- Mupparapu, M.; Akintoye, S.O. Application of Panoramic Radiography in the Detection of Osteopenia and Osteoporosis-Current State of the Art. Curr. Osteoporos. Rep. 2023, 21, 354–359. [Google Scholar] [CrossRef]
- Takaishi, Y.; Arita, S.; Honda, M.; Sugishita, T.; Kamada, A.; Ikeo, T.; Miki, T.; Fujita, T. Assessment of Alveolar Bone Mineral Density as a Predictor of Lumbar Fracture Probability. Adv. Ther. 2013, 30, 487–502. [Google Scholar] [CrossRef]
- Jonasson, G.; Rythén, M. Alveolar Bone Loss in Osteoporosis: A Loaded and Cellular Affair? Clin. Cosmet. Investig. Dent. 2016, 8, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Geraets, W.G.M.; Verheij, J.G.C.; Van Der Stelt, P.F.; Horner, K.; Lindh, C.; Nicopoulou-Karayianni, K.; Jacobs, R.; Harrison, E.J.; Adams, J.E.; Devlin, H. Prediction of Bone Mineral Density with Dental Radiographs. Bone 2007, 40, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, L.; Takahashi, D.Y.; Nishimura, D.A.; Ramos, E.A.D.A.; da Rocha Tenorio, J.; Arita, E.S. Do Patients with Osteoporosis Have Higher Risk to Present Reduced Alveolar Ridge Height? An Imaging Analysis. Indian J. Dent. Res. 2019, 30, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Penoni, D.C.; Torres, S.R.; Oliveira, M.L.; Farias, M.L.F.; Vettore, M.V.; Leão, A.T.T. Untreated Osteoporosis and Higher FRAX as Risk Factors for Tooth Loss: A 5-Year Prospective Study. J. Bone Min. Metab. 2023, 41, 727–737. [Google Scholar] [CrossRef] [PubMed]
- Esfahanian, V.; Shamami, M.S.; Shamami, M.S. Relationship between Osteoporosis and Periodontal Disease: Review of the Literature. J. Dent. 2012, 9, 256–264. [Google Scholar]
- Zufarov, K.A.; Tukhtaev, K.R.; Davronov, R. Ultrastructural changes in cells of the white pulp of the spleen during experimental salmonella infection. Arkh. Anat. Gistol. Embriol. 1986, 91, 69–71. [Google Scholar] [PubMed]
- Wang, Z.; Zhou, F.; Feng, X.; Li, H.; Duan, C.; Wu, Y.; Xiong, Y. FoxO1/NLRP3 Inflammasome Promotes Age-Related Alveolar Bone Resorption. J. Dent. Res. 2023, 102, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Chang, I.; Wang, J.; Badreldin, A.A.; Li, X.; Yu, B.; Wang, C.-Y. Loss of KDM4B Impairs Osteogenic Differentiation of OMSCs and Promotes Oral Bone Aging. Int. J. Oral Sci. 2022, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Pisulkar, S.G.; Mistry, R.A.; Nimonkar, S.; Dahihandekar, C.; Pisulkar, G.; Belkhode, V. The Correlation of Mineral Density of Jaws with Skeletal Bone and Its Effect on Implant Stability in Osteoporotic Patients: A Review of Patient-Based Studies. Cureus 2022, 14, e27481. [Google Scholar] [CrossRef] [PubMed]
- Calciolari, E.; Donos, N.; Park, J.; Petrie, A.; Mardas, N. A Systematic Review on the Correlation between Skeletal and Jawbone Mineral Density in Osteoporotic Subjects. Clin. Oral Implant. Res. 2016, 27, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Humphries, S.; Devlin, H.; Worthington, H. A Radiographic Investigation into Bone Resorption of Mandibular Alveolar Bone in Elderly Edentulous Adults. J. Dent. 1989, 17, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Bandela, V. Osteoporosis: Its Prosthodontic Considerations—A Review. JCDR 2015, 9, ZE01. [Google Scholar] [CrossRef] [PubMed]
- Ortman, L.F.; Hausmann, E.; Dunford, R.G. Skeletal Osteopenia and Residual Ridge Resorption. J. Prosthet. Dent. 1989, 61, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, P.; Różyło-Kalinowska, I.; Piskórz, M.; Bojakowska-Komsta, U. Correlations between Periodontal Disease, Mandibular Inferior Cortex Index and the Osteoporotic Fracture Probability Assessed by Means of the Fracture Risk Assessment Body Mass Index Tool. BMC Med. Imaging 2019, 19, 41. [Google Scholar] [CrossRef]
- Zhang, Y.-Y.; Xie, N.; Sun, X.-D.; Nice, E.C.; Liou, Y.-C.; Huang, C.; Zhu, H.; Shen, Z. Insights and Implications of Sexual Dimorphism in Osteoporosis. Bone Res. 2024, 12, 8. [Google Scholar] [CrossRef]
- AlSheikh, H.A.; AlZain, S.; Warsy, A.; AlMukaynizi, F.; AlThomali, A. Mandibular Residual Ridge Height in Relation to Age, Gender and Duration of Edentulism in a Saudi Population: A Clinical and Radiographic Study. Saudi Dent. J. 2019, 31, 258–264. [Google Scholar] [CrossRef]
- Erdogan, O.; Incki, K.K.; Benlidayi, M.E.; Seydaoglu, G.; Kelekci, S. Dental and Radiographic Findings as Predictors of Osteoporosis in Postmenopausal Women. Geriatr. Gerontol. Int. 2009, 9, 155–164. [Google Scholar] [CrossRef]
- Singhal, S.; Chand, P.; Singh, B.P.; Singh, S.V.; Rao, J.; Shankar, R.; Kumar, S. The Effect of Osteoporosis on Residual Ridge Resorption and Masticatory Performance in Denture Wearers. Gerodontology 2012, 29, e1059–e1066. [Google Scholar] [CrossRef]
- Johnson, R.B.; Gilbert, J.A.; Cooper, R.C.; Parsell, D.E.; Stewart, B.A.; Dai, X.; Nick, T.G.; Streckfus, C.F.; Butler, R.A.; Boring, J.G. Effect of Estrogen Deficiency on Skeletal and Alveolar Bone Density in Sheep. J. Periodontol. 2002, 73, 383–391. [Google Scholar] [CrossRef]
- Payne, J.B.; Reinhardt, R.A.; Nummikoski, P.V.; Patil, K.D. Longitudinal Alveolar Bone Loss in Postmenopausal Osteoporotic/Osteopenic Women. Osteoporos. Int. 1999, 10, 34–40. [Google Scholar] [CrossRef]
- Reinhardt, R.A.; Payne, J.B.; Maze, C.A.; Patil, K.D.; Gallagher, S.J.; Mattson, J.S. Influence of Estrogen and Osteopenia/Osteoporosis on Clinical Periodontitis in Postmenopausal Women. J. Periodontol. 1999, 70, 823–828. [Google Scholar] [CrossRef]
- Sowińska-Przepiera, E.; Krzyścin, M.; Syrenicz, I.; Ćwiertnia, A.; Orlińska, A.; Ćwiek, D.; Branecka-Woźniak, D.; Cymbaluk-Płoska, A.; Bumbulienė, Ž.; Syrenicz, A. Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters. Biomedicines 2024, 12, 758. [Google Scholar] [CrossRef]
- Jia, L.; Tu, Y.; Jia, X.; Du, Q.; Zheng, X.; Yuan, Q.; Zheng, L.; Zhou, X.; Xu, X. Probiotics Ameliorate Alveolar Bone Loss by Regulating Gut Microbiota. Cell Prolif. 2021, 54, e13075. [Google Scholar] [CrossRef]
- Sharma, N.; Reche, A. Unraveling the Relationship Between Osteoporosis, Treatment Modalities, and Oral Health: A Comprehensive Review. Cureus 2023, 15, e49399. [Google Scholar] [CrossRef]
- Koduganti, R.; Gorthi, C.; Reddy, P.; Sandeep, N. Osteoporosis: “A Risk Factor for Periodontitis”. J. Indian Soc. Periodontol. 2009, 13, 90. [Google Scholar] [CrossRef]
- Wang, S.-H.; Hsu, J.-T.; Fuh, L.-J.; Peng, S.-L.; Huang, H.-L.; Tsai, M.-T. New Classification for Bone Type at Dental Implant Sites: A Dental Computed Tomography Study. BMC Oral Health 2023, 23, 324. [Google Scholar] [CrossRef]
- Gulsahi, A. Bone Quality Assessment for Dental Implants. In Implant Dentistry—The Most Promising Discipline of Dentistry; Turkyilmaz, I., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-481-8. [Google Scholar]
- Marra, P.M.; Nucci, L.; Itro, A.; Santoro, R.; Marra, A.; Perillo, L.; Grassia, V. Prevalence of Retained/Transmigrated Permanent and Persistence of Primary Teeth Associated with Odontomas in Young Children. Eur. J. Paediatr. Dent. 2021, 22, 215–218. [Google Scholar] [CrossRef] [PubMed]
Number | Age | L1–L4 * BMD | Femoral Neck BMD | Total Hip BMD | Mandible BMD | ||
---|---|---|---|---|---|---|---|
Osteoporosis (OP) | 62 | Mean | 62.42 | 0.80 | 0.77 | 0.82 | 1.12 |
SD | 7.852 | 0.07 | 0.08 | 0.08 | 0.18 | ||
Control (C) | 35 | Mean | 56.80 | 1.04 | 0.91 | 0.97 | 1.35 |
SD | 7.003 | 0.10 | 0.10 | 0.11 | 0.24 |
Levene’s Test for Equality of Variances | t-Test for Equality of Means | ||||||||
---|---|---|---|---|---|---|---|---|---|
F | Sig. | t | Sig. (2-Tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | |||
Lower | Upper | ||||||||
L1–L4 * BMD | Equal variances assumed | 9.357 | 0.003 | 12.640 | 0.0001 | 0.235147 | 0.018604 | 0.198214 | 0.272081 |
Equal variances not assumed | 11.474 | 0.0001 | 0.235147 | 0.020493 | 0.194046 | 0.276249 | |||
Femoral Neck BMD | Equal variances assumed | 4.676 | 0.033 | 7.122 | 0.0001 | 0.137161 | 0.019259 | 0.098911 | 0.175410 |
Equal variances not assumed | 6.653 | 0.0001 | 0.137161 | 0.020618 | 0.095883 | 0.178439 | |||
Total Hip BMD | Equal variances assumed | 3.470 | 0.066 | 7.024 | 0.0001 | 0.151148 | 0.021518 | 0.108411 | 0.193884 |
Equal variances not assumed | 6.547 | 0.0001 | 0.151148 | 0.023087 | 0.104920 | 0.197376 | |||
Mandible BMD | Equal variances assumed | 2.071 | 0.156 | 3.972 | 0.0001 | 0.229891 | 0.057875 | 0.113859 | 0.345923 |
Equal variances not assumed | 4.014 | 0.0001 | 0.229891 | 0.057270 | 0.114946 | 0.344836 |
L1–L4 * BMD | Femoral Neck BMD | Total Hip BMD | Mandible BMD | ||
---|---|---|---|---|---|
L1–L4 * BMD | Pearson Correlation | 1 | 0.738 ** | 0.735 ** | 0.506 ** |
Sig. (2-tailed) | 0.0001 | 0.0001 | 0.0001 | ||
Femoral Neck BMD | Pearson Correlation | 0.738 ** | 1 | 0.891 ** | 0.482 ** |
Sig. (2-tailed) | 0.0001 | 0.0001 | 0.0001 | ||
Total Hip BMD | Pearson Correlation | 0.735 ** | 0.891 ** | 1 | 0.466 ** |
Sig. (2-tailed) | 0.0001 | 0.0001 | 0.0001 | ||
Mandible BMD | Pearson Correlation | 0.506 ** | 0.482 ** | 0.466 ** | 1 |
Sig. (2-tailed) | 0.0001 | 0.0001 | 0.0001 |
L1–L4 * BMD | Femoral Neck BMD | Total Hip BMD | Mandible BMD | ||
---|---|---|---|---|---|
L1–L4 * BMD | Pearson Correlation | 1 | 0.685 ** | 0.755 ** | 0.275 |
Sig. (1-tailed) | 0.0001 | 0.0001 | 0.075 | ||
Femoral Neck BMD | Pearson Correlation | 0.685 ** | 1 | 0.843 ** | 0.252 |
Sig. (1-tailed) | 0.0001 | 0.0001 | 0.093 | ||
Total Hip BMD | Pearson Correlation | 0.755 ** | 0.843 ** | 1 | 0.203 |
Sig. (1-tailed) | 0.0001 | 0.0001 | 0.146 | ||
Mandible BMD | Pearson Correlation | 0.275 | 0.252 | 0.203 | 1 |
Sig. (1-tailed) | 0.075 | 0.093 | 0.146 |
L1–L4 ^ BMD | Femoral Neck BMD | Total Hip BMD | Mandible BMD | ||
---|---|---|---|---|---|
L1–L4 ^ BMD | Pearson Correlation | 1 | 0.390 ** | 0.312 ** | 0.152 |
Sig. (1-tailed) | 0.001 | 0.008 | 0.225 | ||
Femoral Neck BMD | Pearson Correlation | 0.390 ** | 1 | 0.821 ** | 0.367 * |
Sig. (1-tailed) | 0.001 | 0.0001 | 0.030 | ||
Total Hip BMD | Pearson Correlation | 0.312 ** | 0.821 ** | 1 | 0.315 |
Sig. (1-tailed) | 0.008 | 0.0001 | 0.055 | ||
Mandible BMD | Pearson Correlation | 0.152 | 0.367 * | 0.315 | 1 |
Sig. (1-tailed) | 0.225 | 0.030 | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duncea, I.; Bacali, C.; Buduru, S.; Scrobota, I.; Almășan, O. The Association of Systemic and Mandibular Bone Mineral Density in Postmenopausal Females with Osteoporosis. Medicina 2024, 60, 1313. https://doi.org/10.3390/medicina60081313
Duncea I, Bacali C, Buduru S, Scrobota I, Almășan O. The Association of Systemic and Mandibular Bone Mineral Density in Postmenopausal Females with Osteoporosis. Medicina. 2024; 60(8):1313. https://doi.org/10.3390/medicina60081313
Chicago/Turabian StyleDuncea, Ioana, Cecilia Bacali, Smaranda Buduru, Ioana Scrobota, and Oana Almășan. 2024. "The Association of Systemic and Mandibular Bone Mineral Density in Postmenopausal Females with Osteoporosis" Medicina 60, no. 8: 1313. https://doi.org/10.3390/medicina60081313
APA StyleDuncea, I., Bacali, C., Buduru, S., Scrobota, I., & Almășan, O. (2024). The Association of Systemic and Mandibular Bone Mineral Density in Postmenopausal Females with Osteoporosis. Medicina, 60(8), 1313. https://doi.org/10.3390/medicina60081313