Effects of Sling-Suspension-Based Active Shoulder Joint Exercise on Shoulder Joint Subluxation, Pain, Muscle Strength, and Upper Limb Function in Patients with Subacute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Training Program
2.3.1. The Sling-Suspension-Based System Active Shoulder Joint Exercise
2.3.2. Motorized Upper Extremity Exercise
2.3.3. General Physical Therapy
2.3.4. Outcome Measures
2.3.5. Data Analysis
3. Results
3.1. Participant General Characteristics
3.2. Subluxation of the Shoulder Joint
3.3. Pain
3.4. Muscle Strength of the Shoulder Joint
3.5. Upper Limb Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arya, K.N.; Pandian, S.; Vikas; Puri, V. Rehabilitation methods for reducing shoulder subluxation in post-stroke hemiparesis: A systematic review. Top. Stroke Rehabil. 2018, 25, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Ikai, T.; Tei, K.; Yoshida, K.; Miyano, S.; Yonemoto, K. Evaluation and treatment of shoulder subluxation in hemiplegia: Relationship between subluxation and pain1. Am. J. Phys. Med. Rehabil. 1998, 77, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Suethanapornkul, S.; Kuptniratsaikul, P.S.; Kuptniratsaikul, V.; Uthensut, P.; Dajpratha, P.; Wongwisethkarn, J. Post stroke shoulder subluxation and shoulder pain: A cohort multicenter study. Med. J. Med. Assoc. Thail. 2008, 91, 1885. [Google Scholar]
- Acar, M.; Karatas, G.K. The effect of arm sling on balance in patients with hemiplegia. Gait Posture 2010, 32, 641–644. [Google Scholar] [CrossRef]
- Jang, S.H.; Yi, J.H.; Chang, C.H.; Jung, Y.J.; Kim, S.H.; Lee, J.; Seo, J.P. Prediction of motor outcome by shoulder subluxation at early stage of stroke. Medicine 2016, 95, e4525. [Google Scholar] [CrossRef] [PubMed]
- Kalichman, L.; Ratmansky, M. Underlying pathology and associated factors of hemiplegic shoulder pain. Am. J. Phys. Med. Rehabil. 2011, 90, 768–780. [Google Scholar] [CrossRef] [PubMed]
- David, T.Y.; Chae, J.; Walker, M.E.; Hart, R.L.; Petroski, G.F. Comparing stimulation-induced pain during percutaneous (intramuscular) and transcutaneous neuromuscular electric stimulation for treating shoulder subluxation in hemiplegia. Arch. Phys. Med. Rehabil. 2001, 82, 756–760. [Google Scholar]
- Joynt, R.L. The source of shoulder pain in hemiplegia. Arch. Phys. Med. Rehabil. 1992, 73, 409–413. [Google Scholar]
- Stolzenberg, D.; Siu, G.; Cruz, E. Current and future interventions for glenohumeral subluxation in hemiplegia secondary to stroke. Top. Stroke Rehabil. 2012, 19, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Ada, L.; Foongchomcheay, A. Efficacy of electrical stimulation in preventing or reducing subluxation of the shoulder after stroke: A meta-analysis. Aust. J. Physiother. 2002, 48, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Yavuzer, G.; Ergin, S. Effect of an arm sling on gait pattern in patients with hemiplegia. Arch. Phys. Med. Rehabil. 2002, 83, 960–963. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hayner, K.A.; Arumugam, N.; Goyal, M.; Midha, D.; Arora, A.; Sharma, S.; Kumar, S.P. The California tri-pull taping method in the treatment of shoulder subluxation after stroke: A randomized clinical trial. N. Am. J. Med. Sciences. 2016, 8, 175. [Google Scholar]
- Chen, L.; Chen, J.; Peng, Q.; Chen, J.; Zou, Y.; Liu, G. Effect of sling exercise training on balance in patients with stroke: A meta-analysis. PLoS ONE 2016, 11, e0163351. [Google Scholar] [CrossRef]
- Kirkesola, G. Sling exercise therapy (SET): A total concept for exercise and active treatment of musculoskeletal disorders. J. Korean Acad. Orthop. Man. Phys. Ther. 2001, 7, 87–106. [Google Scholar]
- Jung, K.M.; Choi, J.D. The effects of active shoulder exercise with a sling suspension system on shoulder subluxation, proprioception, and upper extremity function in patients with acute stroke. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 4849. [Google Scholar] [CrossRef]
- Brooke, M.M.; de Lateur, B.J.; Diana-Rigby, G.C.; Questad, K.A. Shoulder subluxation in hemiplegia: Effects of three different supports. Arch. Phys. Med. Rehabil. 1991, 72, 582–586. [Google Scholar] [PubMed]
- Cho, K.H.; Kang, Y.H. Radiological Projection for Diagnosis of Shoulder Subluxation in Patients with Post-Stroke Hemiplegia. J. Radiol. Sci. Technol. 2009, 32, 253–259. [Google Scholar]
- Tunks, E.; Crook, J.; Norman, G.; Kalaher, S. Tender points in fibromyalgia. Pain 1988, 34, 11–19. [Google Scholar] [CrossRef]
- Gorrell, L.M.; Beath, K.; Engel, R.M. Manual and instrument applied cervical manipulation for mechanical neck pain: A randomized controlled trial. J. Manip. Physiol. Ther. 2016, 39, 319–329. [Google Scholar] [CrossRef]
- Bohannon, R.W. Gait performance of hemiparetic stroke patients: Selected variables. Arch. Phys. Med. Rehabil. 1987, 68, 777–781. [Google Scholar]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Kondo, T.; Suzukamo, Y.; Michimata, A.; Izumi, S. Reliability and validity of the Manual Function Test in patients with stroke. Am. J. Phys. Med. Rehabil. 2009, 88, 247–255. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2013. [Google Scholar]
- Calliet, R. Neck and Arm Pain: Pain Series; FA Davis & Co.: Philadelphia, PA, USA, 1991; pp. 348–367. [Google Scholar]
- Morley, A.; Clarke, A.; English, S.; Helliwell, S. Management of the subluxed low tone shoulder: Review of the evidence. Physiotherapy 2002, 88, 208–216. [Google Scholar] [CrossRef]
- Ratnasabapathy, Y.; Broad, J.; Baskett, J.; Pledger, M.; Marshall, J.; Bonita, R. Shoulder pain in people with a stroke: A population-based study. Clin. Rehabil. 2003, 17, 304–311. [Google Scholar] [CrossRef]
- Vikne, J.; Oedegaard, A.; Laerum, E.; Ihlebaek, C.; Kirkesola, G. A randomized study of new sling exercise treatment vs traditional physiotherapy for patients with chronic whiplash-associated disorders with unsettled compensation claims. J. Rehabil. Med. 2007, 39, 252–259. [Google Scholar] [CrossRef]
- Kobayashi, H.; Onishi, H.; Ihashi, K.; Yagi, R.; Handa, Y. Reduction in subluxation and improved muscle function of the hemiplegic shoulder joint after therapeutic electrical stimulation. J. Electromyogr. Kinesiol. 1999, 9, 327–336. [Google Scholar] [CrossRef]
- Hotta, G.H.; Santos, A.L.; McQuade, K.J.; de Oliveira, A.S. Scapular-focused exercise treatment protocol for shoulder impingement symptoms: Three-dimensional scapular kinematics analysis. Clin. Biomech. 2018, 51, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Struyf, F.; Nijs, J.; Baeyens, J.; Mottram, S.; Meeusen, R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand. J. Med. Sci. Sports 2011, 21, 352–358. [Google Scholar] [CrossRef]
- Pop, T. Subluxation of the shoulder joint in stroke patients and the influence of selected factors on the incidence of instability. Ortop. Traumatol. Rehabil. 2013, 15, 259–267. [Google Scholar] [CrossRef]
- Fil, A.; Armutlu, K.; Atay, A.O.; Kerimoglu, U.; Elibol, B. The effect of electrical stimulation in combination with Bobath techniques in the prevention of shoulder subluxation in acute stroke patients. Clin. Rehabil. 2011, 25, 51–59. [Google Scholar] [CrossRef]
- Gowland, C.; deBruin, H.; Basmajian, J.V.; Plews, N.; Burcea, I. Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys. Ther. 1992, 72, 624–633. [Google Scholar] [CrossRef]
- Kung, P.; Lin, C.K.; Ju, M. Neuro-rehabilitation robot-assisted assessments of synergy patterns of forearm, elbow and shoulder joints in chronic stroke patients. Clin. Biomech. 2010, 25, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Wattanaprakornkul, D.; Halaki, M.; Boettcher, C.; Cathers, I.; Ginn, K.A. A comprehensive analysis of muscle recruitment patterns during shoulder flexion: An electromyographic study. Clin. Anat. 2011, 24, 619–626. [Google Scholar] [CrossRef]
- Criswell, E. Cram’s Introduction to Surface Electromyography; Jones & Bartlett Publishers: Sudbury, MA, USA, 2010. [Google Scholar]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef] [PubMed]
- Carod-Artal, F.J.; González-Gutiérrez, J.L.; Herrero, J.A.E.; Horan, T.; Seijas, E.V.D. Functional recovery and instrumental activities of daily living: Follow-up 1-year after treatment in a stroke unit. Brain Inj. 2002, 16, 207–216. [Google Scholar] [CrossRef]
- Paci, M.; Nannetti, L.; Taiti, P.; Baccini, M.; Pasquini, J.; Rinaldi, L. Shoulder subluxation after stroke: Relationships with pain and motor recovery. Physiother. Res. Int. 2007, 12, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Potturi, G.; Dubey, N.; Agarwal, A.; Chaudhary, R.S. A narrative review on various therapeutic approaches used by physiotherapists in stroke patients. Int. J. Med. 2024, 8. [Google Scholar]
- Krabben, T.; Prange, G.B.; Molier, B.I.; Stienen, A.H.; Jannink, M.J.; Buurke, J.H.; Rietman, J.S. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. J. Neuroeng. Rehabil. 2012, 9, 1–12. [Google Scholar] [CrossRef]
- Pandian, S.; Arya, K.N.; Kumar, D. Minimal clinically important difference of the lower-extremity fugl–meyer assessment in chronic-stroke. Top. Stroke Rehabil. 2016, 23, 233–239. [Google Scholar] [CrossRef]
- Zorowitz, R.D. Recovery patterns of shoulder subluxation after stroke: A six-month follow-up study. Top. Stroke Rehabil. 2001, 8, 1–9. [Google Scholar] [CrossRef]
Characteristics | SASE Group (n = 14) | MUEE Group (n = 14) | X2/t(p) |
---|---|---|---|
Sex (M/F) | 8/6 | 5/9 | 1.292(0.256) |
Age (years) | 59.0(17.83) a | 64.64(14.41) | 0.921(0.366) |
Height (cm) | 164.57(8.63) | 163.64(11.43) | 0.242(0.810) |
Weight (kg) | 63.71(11.11) | 61.98(10.51) | 0.425(0.675) |
Onset period (months) | 4.21(0.89) | 3.787(0.801) | 0.334(0.193) |
Lesion sites (right/left) | 6/8 | 5/9 | 0.150(0.699) |
Stroke type (ischemic/hemorrhagic) | 9/5 | 8/6 | 0.150(0.699) |
Parameters | SASE Group (n = 14) | MUEE Group (n = 14) | t(p) | Time F(p) | Group F(p) | Time–Group F(p) | |
---|---|---|---|---|---|---|---|
Subluxation (mm) | Pretest | 44.59(9.27) a | 40.03(9.28) | 1.300(0.205) | 49.578 (0.000) | 0.729 (0.401) | 6.025(0.021) |
Post-test | 36.97(6.21) | 36.35(8.03) | |||||
Mean difference | −7.61(5.66) | −3.68(1.98) | 2.313(0.038) | ||||
t(p) | −5.030(0.000) | −6.943(0.000) |
Parameters | SASE Group (n = 14) | MUEE Group (n = 14) | t(p) | Time F(p) | Group F(p) | Time–Group F(p) | |
---|---|---|---|---|---|---|---|
Splenius (kgf) | Pretest | 3.92(1.22) a | 3.85(0.74) | 0.163(0.872) | 384.345(0.000) | 0.531(0.473) | 7.470(0.011) |
Post-test | 5.84(1.42) | 5.31(0.90) | |||||
Mean difference | 1.92(0.43) | 1.45(0.48) | −2.386(0.033) | ||||
t(p) | 16.889(0.000) | 11.246(0.000) | |||||
UTZ (kgf) | Pretest | 5.30(1.60) | 5.36(1.16) | −0.125(0.902) | 323.720(0.000) | 0.312(0.581) | 9.623(0.005) |
Post-test | 7.74(1.56) | 7.08(1.33) | |||||
Mean difference | 2.44(0.76) | 1.72(0.42) | −3.812(0.022) | ||||
t(p) | 12.035(0.000) | 15.460(0.000) | |||||
IST (kgf) | Pretest | 4.27(1.39) | 3.85(0.96) | 0.913(0.370) | 451.991(0.000) | 1.088(0.307) | 1.123(0.299) |
Post-test | 6.06(1.55) | 5.47(1.13) | |||||
Mean difference | 1.79(0.45) | 1.62(0.39) | −1.652(0.112) | ||||
t(p) | 14.763(0.000) | 15.428(0.000) |
Parameters | SASE Group (n = 14) | MUEE Group (n = 14) | t(p) | Time F(p) | Group F(p) | Time–Group F(p) | |
---|---|---|---|---|---|---|---|
Flexors (kg) | Pretest | 2.17(0.74) a | 2.23(0.48) | −0.273(0.787) | 236.665(0.000) | 0.767(0.389) | 13.211(0.001) |
Post-test | 3.78(1.08) | 3.23(0.63) | |||||
Mean difference | 1.61(0.57) | 0.99(0.26) | −3.271(0.006) | ||||
t(p) | 10.469(0.000) | 14.047(0.000) | |||||
Extensors (kg) | Pretest | 2.46(1.08) | 2.52(0.63) | −0.192(0.849) | 179.055(0.000) | 0.048(0.829) | 1.930(0.177) |
Post-test | 4.03(1.52) | 3.80(0.88) | |||||
Mean difference | 1.58(0.63) | 1.28(0.50) | −1.799(0.095) | ||||
t(p) | 9.372(0.000) | 9.461(0.000) | |||||
Abductors (kg) | Pretest | 2.22(0.72) | 2.30(0.42) | −0.319(0.752) | 128.769(0.000) | 0.346(0.561) | 4.974(0.035) |
Post-test | 3.70(1.22) | 3.28(0.72) | |||||
Mean difference | 1.48(0.70) | 0.99(0.41) | −2.289(0.039) | ||||
t(p) | 7.883(0.000) | 8.971(0.000) | |||||
Adductors (kg) | Pretest | 2.80(1.01) | 3.01(0.68) | −0.633(0.523) | 170.356(0.000) | 0.104(0.749) | 0.393(0.536) |
Post-test | 4.43(1.48) | 4.49(1.18) | |||||
Mean difference | 1.63(0.63) | 1.48(0.63) | −0.751(0.466) | ||||
t(p) | 9.703(0.000) | 8.758(0.000) | |||||
External rotators (kg) | Pretest | 1.73(0.70) | 1.83(0.36) | −0.474(0.640) | 125.739(0.000) | 0.394(0.536) | 9.674(0.004) |
Post-test | 2.98(1.14) | 2.54(0.61) | |||||
Mean difference | 1.25(0.50) | 0.70(0.42) | −5.378(0.000) | ||||
t(p) | 9.347(0.000) | 6.305(0.000) | |||||
Internal rotators (kg) | Pretest | 2.42(0.93) | 2.91(0.74) | −1.526(0.139) | 232.829(0.000) | 1.591(0.218) | 0.010(0.923) |
Post-test | 4.10(1.21) | 4.56(1.19) | |||||
Mean difference | 1.68(0.46) | 1.66(0.67) | −0.094(0.927) | ||||
t(p) | 13.524(0.000) | 9.208(0.000) |
Parameters | SASE Group (n = 14) | MUEE Group (n = 14) | t(p) | Time F(p) | Group F(p) | Time–Group F(p) | |
---|---|---|---|---|---|---|---|
FMA (score) | Pretest | 13.29(6.44) a | 9.64(3.36) | 1.876(0.076) | 262.785(0.000) | 5.805(0.023) | 13.243(0.001) |
Post-test | 19.71(6.74) | 13.71(4.10) | |||||
Mean difference | 6.43(1.95) | 4.07(1.44) | −3.100(0.008) | ||||
t(p) | 12.336(0.000) | 10.585(0.000) | |||||
MFT (score) | Pretest | 6.57(5.88) | 10.79(7.68) | −1.631(0.116) | 647.498(0.000) | 1.631(0.212) | 32.286(0.000) |
Post-test | 11.07(6.32) | 13.64(7.99) | |||||
Mean difference | 4.50(0.76) | 2.86(0.77) | −6.618(0.000) | ||||
t(p) | 22.168(0.000) | 13.878(0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; An, J.; Lee, B.-H. Effects of Sling-Suspension-Based Active Shoulder Joint Exercise on Shoulder Joint Subluxation, Pain, Muscle Strength, and Upper Limb Function in Patients with Subacute Stroke. Medicina 2024, 60, 1350. https://doi.org/10.3390/medicina60081350
Kim Y-J, An J, Lee B-H. Effects of Sling-Suspension-Based Active Shoulder Joint Exercise on Shoulder Joint Subluxation, Pain, Muscle Strength, and Upper Limb Function in Patients with Subacute Stroke. Medicina. 2024; 60(8):1350. https://doi.org/10.3390/medicina60081350
Chicago/Turabian StyleKim, Young-Jun, Jungae An, and Byoung-Hee Lee. 2024. "Effects of Sling-Suspension-Based Active Shoulder Joint Exercise on Shoulder Joint Subluxation, Pain, Muscle Strength, and Upper Limb Function in Patients with Subacute Stroke" Medicina 60, no. 8: 1350. https://doi.org/10.3390/medicina60081350
APA StyleKim, Y. -J., An, J., & Lee, B. -H. (2024). Effects of Sling-Suspension-Based Active Shoulder Joint Exercise on Shoulder Joint Subluxation, Pain, Muscle Strength, and Upper Limb Function in Patients with Subacute Stroke. Medicina, 60(8), 1350. https://doi.org/10.3390/medicina60081350