Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Intervention
2.3. Transient Elastography and Controlled Attenuation Parameter
2.4. Cholesterol and Triglycerides
2.5. Statistical Analysis
3. Results
4. Discussions
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Shalitin, S.; Moreno, L.A. Obesity, Metabolic Syndrome, and Nutrition. World Rev. Nutr. Diet. 2021, 123, 38–58. [Google Scholar] [CrossRef]
- Chai, C.; Chen, L.; Deng, M.-G.; Liang, Y.; Liu, F.; Nie, J.-Q. Dietary Choline Intake and Non-Alcoholic Fatty Liver Disease (NAFLD) in U.S. Adults: National Health and Nutrition Examination Survey (NHANES) 2017–2018. Eur. J. Clin. Nutr. 2023, 77, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Chen, J.; Hou, R.; Sun, Y.; Xiao, Q.; Pan, X.; Zhu, X. Emerging Healthy Lifestyle Factors and All-Cause Mortality among People with Metabolic Syndrome and Metabolic Syndrome-like Characteristics in NHANES. J. Transl. Med. 2023, 21, 239. [Google Scholar] [CrossRef] [PubMed]
- Popovici, D.; Stanisav, C.; Pricop, M.; Dragomir, R.; Saftescu, S.; Ciurescu, D. Associations between Body Mass Index and Prostate Cancer: The Impact on Progression-Free Survival. Medicina 2023, 59, 289. [Google Scholar] [CrossRef]
- Roman, D.; Saftescu, S.; Timar, B.; Avram, V.; Braha, A.; Negru, Ș.; Bercea, A.; Serbulescu, M.; Popovici, D.; Timar, R. Diabetes Mellitus and Other Predictors for the Successful Treatment of Metastatic Colorectal Cancer: A Retrospective Study. Medicina 2022, 58, 872. [Google Scholar] [CrossRef] [PubMed]
- Popovici, D.; Stanisav, C.; Saftescu, S.; Negru, S.; Dragomir, R.; Ciurescu, D.; Diaconescu, R. Exploring the Influence of Age, Gender and Body Mass Index on Colorectal Cancer Location. Medicina 2023, 59, 1399. [Google Scholar] [CrossRef]
- Dragomir, R.; Dragomir, A.S.; Negru, A.; Săftescu, S.; Popovici, D.; Schenker, M.; Lupușoru, R.; Negru, Ș. Role of Combining Neutrophil-to-Lymphocyte Ratio and Pretreatment Body Mass Index in Predicting Progression-Free Survival in Patients with Non-Small Cell Lung Cancer Treated with Nivolumab. Exp. Ther. Med. 2021, 21, 526. [Google Scholar] [CrossRef]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Feng, G.; Valenti, L.; Wong, V.W.-S.; Fouad, Y.M.; Yilmaz, Y.; Kim, W.; Sebastiani, G.; Younossi, Z.M.; Hernandez-Gea, V.; Zheng, M.-H. Recompensation in Cirrhosis: Unravelling the Evolving Natural History of Nonalcoholic Fatty Liver Disease. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 46–56. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with Diet, Physical Activity and Exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Caldara, G.-F.; Nuzzo, D.; Baldassano, S.; Picone, P.; Rizzo, M.; Mulè, F.; Di Carlo, M. NAFLD and Atherosclerosis Are Prevented by a Natural Dietary Supplement Containing Curcumin, Silymarin, Guggul, Chlorogenic Acid and Inulin in Mice Fed a High-Fat Diet. Nutrients 2017, 9, 492. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, C.; Andreone, P.; Brisc, C.; Brisc, M.C.; Bugianesi, E.; Chiaramonte, M.; Cursaro, C.; Danila, M.; de Sio, I.; Floreani, A.; et al. Silybin Combined with Phosphatidylcholine and Vitamin E in Patients with Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial. Free Radic. Biol. Med. 2012, 52, 1658–1665. [Google Scholar] [CrossRef]
- Caliceti, C.; Franco, P.; Spinozzi, S.; Roda, A.; Cicero, A.F.G. Berberine: New Insights from Pharmacological Aspects to Clinical Evidences in the Management of Metabolic Disorders. Curr. Med. Chem. 2016, 23, 1460–1476. [Google Scholar] [CrossRef]
- Fogacci, F.; Grassi, D.; Rizzo, M.; Cicero, A.F.G. Metabolic Effect of Berberine-Silymarin Association: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Clinical Trials. Phytother. Res. PTR 2019, 33, 862–870. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Sahebkar, A.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Effects of Phytosomal Curcumin on Anthropometric Parameters, Insulin Resistance, Cortisolemia and Non-Alcoholic Fatty Liver Disease Indices: A Double-Blind, Placebo-Controlled Clinical Trial. Eur. J. Nutr. 2020, 59, 477–483. [Google Scholar] [CrossRef]
- Hallajzadeh, J.; Milajerdi, A.; Mobini, M.; Amirani, E.; Azizi, S.; Nikkhah, E.; Bahadori, B.; Sheikhsoleimani, R.; Mirhashemi, S.M. Effects of Nigella Sativa on Glycemic Control, Lipid Profiles, and Biomarkers of Inflammatory and Oxidative Stress: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Phytother. Res. PTR 2020, 34, 2586–2608. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, A.; Rossi, M.C.; Petrelli, M. Effectiveness of Ascophyllum Nodosum and Fucus Vesiculosus on Metabolic Syndrome Components: A Real-World, Observational Study. J. Diabetes Res. 2021, 2021, 3389316. [Google Scholar] [CrossRef]
- Farsi, F.; Mohammadshahi, M.; Alavinejad, P.; Rezazadeh, A.; Zarei, M.; Engali, K.A. Functions of Coenzyme Q10 Supplementation on Liver Enzymes, Markers of Systemic Inflammation, and Adipokines in Patients Affected by Nonalcoholic Fatty Liver Disease: A Double-Blind, Placebo-Controlled, Randomized Clinical Trial. J. Am. Coll. Nutr. 2016, 35, 346–353. [Google Scholar] [CrossRef]
- Shinozaki, S.; Tahara, T.; Lefor, A.K.; Ogura, M. Pemafibrate Decreases Markers of Hepatic Inflammation in Patients with Non-Alcoholic Fatty Liver Disease. Clin. Exp. Hepatol. 2020, 6, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ye, Z.; Liu, M.; Zhang, Y.; Wu, Q.; Zhou, C.; Zhang, Z.; He, P.; Zhang, Y.; Li, H.; et al. Associations of Different Serum Folate Forms with Indices of Nonalcoholic Fatty Liver Disease and Advanced Fibrosis. Obes. Res. Clin. Pract. 2023, 17, 58–65. [Google Scholar] [CrossRef]
- Li, L.; Huang, Q.; Yang, L.; Zhang, R.; Gao, L.; Han, X.; Ji, L.; Zou, X. The Association between Non-Alcoholic Fatty Liver Disease (NAFLD) and Advanced Fibrosis with Serological Vitamin B12 Markers: Results from the NHANES 1999–2004. Nutrients 2022, 14, 1224. [Google Scholar] [CrossRef] [PubMed]
- Mitrovic, M.; Sistilli, G.; Horakova, O.; Rossmeisl, M. Omega-3 Phospholipids and Obesity-Associated NAFLD: Potential Mechanisms and Therapeutic Perspectives. Eur. J. Clin. Investig. 2022, 52, e13650. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.G.; Corey, K.E.; Cannon, C.P.; Blazing, M.; Park, J.-G.; O’Donoghue, M.L.; Chung, R.T.; Giugliano, R.P. The Nonalcoholic Fatty Liver Disease (NAFLD) Fibrosis Score, Cardiovascular Risk Stratification and a Strategy for Secondary Prevention with Ezetimibe. Int. J. Cardiol. 2018, 270, 245–252. [Google Scholar] [CrossRef]
- Petroff, D.; Blank, V.; Newsome, P.N.; Shalimar; Voican, C.S.; Thiele, M.; de Lédinghen, V.; Baumeler, S.; Chan, W.K.; Perlemuter, G.; et al. Assessment of Hepatic Steatosis by Controlled Attenuation Parameter Using the M and XL Probes: An Individual Patient Data Meta-Analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 185–198. [Google Scholar] [CrossRef]
- Chen, J.; Duan, S.; Ma, J.; Wang, R.; Chen, J.; Liu, X.; Xue, L.; Xie, S.; Yao, S. MRI-Determined Liver Fat Correlates with Risk of Metabolic Syndrome in Patients with Nonalcoholic Fatty Liver Disease. Eur. J. Gastroenterol. Hepatol. 2020, 32, 754–761. [Google Scholar] [CrossRef]
- Li, X.; Xia, M.; Ma, H.; Hu, Y.; Yan, H.; He, W.; Lin, H.; Zhao, N.; Gao, J.; Gao, X. Liver Fat Content, Evaluated through Semi-Quantitative Ultrasound Measurement, Is Associated with Impaired Glucose Profiles: A Community-Based Study in Chinese. PLoS ONE 2013, 8, e65210. [Google Scholar] [CrossRef]
- Ajmera, V.; Park, C.C.; Caussy, C.; Singh, S.; Hernandez, C.; Bettencourt, R.; Hooker, J.; Sy, E.; Behling, C.; Xu, R.; et al. Magnetic Resonance Imaging Proton Density Fat Fraction Associates with Progression of Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 307–310.e2. [Google Scholar] [CrossRef]
- Șerban, C.L.; Sima, A.; Hogea, C.M.; Chiriță-Emandi, A.; Perva, I.T.; Vlad, A.; Albai, A.; Nicolae, G.; Putnoky, S.; Timar, R.; et al. Assessment of Nutritional Intakes in Individuals with Obesity under Medical Supervision. A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 3036. [Google Scholar] [CrossRef]
- Castéra, L.; Foucher, J.; Bernard, P.-H.; Carvalho, F.; Allaix, D.; Merrouche, W.; Couzigou, P.; de Lédinghen, V. Pitfalls of Liver Stiffness Measurement: A 5-Year Prospective Study of 13,369 Examinations. Hepatology 2010, 51, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Karlas, T.; Petroff, D.; Sasso, M.; Fan, J.-G.; Mi, Y.-Q.; de Lédinghen, V.; Kumar, M.; Lupsor-Platon, M.; Han, K.-H.; Cardoso, A.C.; et al. Individual Patient Data Meta-Analysis of Controlled Attenuation Parameter (CAP) Technology for Assessing Steatosis. J. Hepatol. 2017, 66, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- EASL-ALEH Clinical Practice Guidelines: Non-Invasive Tests for Evaluation of Liver Disease Severity and Prognosis. J. Hepatol. 2015, 63, 237–264. [CrossRef]
- Singh, S.; Facciorusso, A.; Loomba, R.; Falck-Ytter, Y.T. Magnitude and Kinetics of Decrease in Liver Stiffness After Antiviral Therapy in Patients with Chronic Hepatitis C: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2018, 16, 27–38.e4. [Google Scholar] [CrossRef]
- Giuffrè, M.; Masutti, F.; Maria Crosato, I.; Luzzati, R.; Saveria Crocè, L. Behind the Decrease of Liver Stiffness After Successful Hepatitis C Virus Eradication with Direct-Acting Antiviral Agents. Turk. J. Gastroenterol. Off. J. Turk. Soc. Gastroenterol. 2022, 33, 169–170. [Google Scholar] [CrossRef]
- Gulumsek, E.; Sumbul, H.E.; Buyuksimsek, M.; Demir, K.; Koc, A.S.; Tas, A.; Bulut, Y.; Kara, B. Liver Stiffness Is Markedly Decreased After Chronic Hepatitis C Treatment. Ultrasound Q. 2022, 38, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-H.; Changchien, C.-S.; Hung, C.-H.; Tung, W.-C.; Kee, K.-M.; Chen, C.-H.; Hu, T.-H.; Lee, C.-M.; Lu, S.-N. Liver Stiffness Decrease after Effective Antiviral Therapy in Patients with Chronic Hepatitis C: Longitudinal Study Using FibroScan. J. Gastroenterol. Hepatol. 2010, 25, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Trabut, J.-B.; Thépot, V.; Nalpas, B.; Lavielle, B.; Cosconea, S.; Corouge, M.; Vallet-Pichard, A.; Fontaine, H.; Mallet, V.; Sogni, P.; et al. Rapid Decline of Liver Stiffness Following Alcohol Withdrawal in Heavy Drinkers. Alcohol. Clin. Exp. Res. 2012, 36, 1407–1411. [Google Scholar] [CrossRef]
- Gianni, E.; Forte, P.; Galli, V.; Razzolini, G.; Bardazzi, G.; Annese, V. Prospective Evaluation of Liver Stiffness Using Transient Elastography in Alcoholic Patients Following Abstinence. Alcohol Alcohol. 2017, 52, 42–47. [Google Scholar] [CrossRef]
- Gelsi, E.; Dainese, R.; Truchi, R.; Mariné-Barjoan, E.; Anty, R.; Autuori, M.; Burroni, S.; Vanbiervliet, G.; Evesque, L.; Cherikh, F.; et al. Effect of Detoxification on Liver Stiffness Assessed by FibroScan® in Alcoholic Patients. Alcohol. Clin. Exp. Res. 2011, 35, 566–570. [Google Scholar] [CrossRef]
- Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angullo-Martinez, E.; Zulet, M.Á.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 2223. [Google Scholar] [CrossRef]
- De Nucci, S.; Bonfiglio, C.; Donvito, R.; Di Chito, M.; Cerabino, N.; Rinaldi, R.; Sila, A.; Shahini, E.; Giannuzzi, V.; Pesole, P.L.; et al. Effects of an Eight Week Very Low-Calorie Ketogenic Diet (VLCKD) on White Blood Cell and Platelet Counts in Relation to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Subjects with Overweight and Obesity. Nutrients 2023, 15, 4468. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Nakahara, T.; Ando, Y.; Yamaoka, K.; Fujii, Y.; Uchikawa, S.; Fujino, H.; Ono, A.; Murakami, E.; Kawaoka, T.; et al. Sodium-Glucose Cotransporter-2 Inhibitors Improve FibroScan-Aspartate Aminotransferase Scores in Patients with Nonalcoholic Fatty Liver Disease Complicated by Type 2 Diabetes. Eur. J. Gastroenterol. Hepatol. 2023, 35, 989–996. [Google Scholar] [CrossRef]
- Manuc, T.; Preda, C.M.; Istratescu, D.; Gheorghe, L.; Cerban, R.; Ester, C.; Stroie, T.G.; Alecu, R.I.; Ciuciureanu, C.M.; Marin, A.I.; et al. Sylimarin Versus Essential Phospholipids in Metabolic Associated Steatotic Liver Disease (MASLD)—A Prospective Comparative Randomized Trial. Maedica 2024, 19, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.J.; Castro, É.; Oliveira, T.E.; Belchior, T.; Peixoto, A.S.; Chaves-Filho, A.B.; Moreno, M.F.; Lima, J.D.; Yoshinaga, M.; Miyamoto, S.; et al. Lipoatrophy-Associated Insulin Resistance and Hepatic Steatosis Are Attenuated by Intake of Diet Rich in Omega 3 Fatty Acids. Mol. Nutr. Food Res. 2020, 64, 1900833. [Google Scholar] [CrossRef]
- Sokal-Dembowska, A.; Jarmakiewicz-Czaja, S.; Ferenc, K.; Filip, R. Can Nutraceuticals Support the Treatment of MASLD/MASH, and Thus Affect the Process of Liver Fibrosis? Int. J. Mol. Sci. 2024, 25, 5238. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Xu, Q.; Chen, S.-S. Omega-3 Fatty Acids as a Treatment for Non-Alcoholic Fatty Liver Disease in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2018, 37, 516–521. [Google Scholar] [CrossRef]
- Argo, C.K.; Patrie, J.T.; Lackner, C.; Henry, T.D.; de Lange, E.E.; Weltman, A.L.; Shah, N.L.; Al-Osaimi, A.M.; Pramoonjago, P.; Jayakumar, S.; et al. Effects of N-3 Fish Oil on Metabolic and Histological Parameters in NASH: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Hepatol. 2015, 62, 190–197. [Google Scholar] [CrossRef]
- Tobin, D.; Brevik-Andersen, M.; Qin, Y.; Innes, J.K.; Calder, P.C. Evaluation of a High Concentrate Omega-3 for Correcting the Omega-3 Fatty Acid Nutritional Deficiency in Non-Alcoholic Fatty Liver Disease (CONDIN). Nutrients 2018, 10, 1126. [Google Scholar] [CrossRef]
- Dahlhoff, C.; Worsch, S.; Sailer, M.; Hummel, B.A.; Fiamoncini, J.; Uebel, K.; Obeid, R.; Scherling, C.; Geisel, J.; Bader, B.L.; et al. Methyl-Donor Supplementation in Obese Mice Prevents the Progression of NAFLD, Activates AMPK and Decreases Acyl-Carnitine Levels. Mol. Metab. 2014, 3, 565–580. [Google Scholar] [CrossRef]
- Pugsley, A.P. The Complete General Secretory Pathway in Gram-Negative Bacteria. Microbiol. Rev. 1993, 57, 50–108. [Google Scholar] [CrossRef]
- Obeid, R. The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway. Nutrients 2013, 5, 3481–3495. [Google Scholar] [CrossRef]
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial Effects of Betaine: A Comprehensive Review. Biology 2021, 10, 456. [Google Scholar] [CrossRef]
- Lyall, M.J.; Cartier, J.; Richards, J.A.; Cobice, D.; Thomson, J.P.; Meehan, R.R.; Anderton, S.M.; Drake, A.J. Methyl Donor Deficient Diets Cause Distinct Alterations in Lipid Metabolism but Are Poorly Representative of Human NAFLD. Wellcome Open Res. 2017, 2, 67. [Google Scholar] [CrossRef]
- Olthof, M.R.; van Vliet, T.; Verhoef, P.; Zock, P.L.; Katan, M.B. Effect of Homocysteine-Lowering Nutrients on Blood Lipids: Results from Four Randomised, Placebo-Controlled Studies in Healthy Humans. PLoS Med. 2005, 2, e135. [Google Scholar] [CrossRef]
- Wallace, J.M.W.; McCormack, J.M.; McNulty, H.; Walsh, P.M.; Robson, P.J.; Bonham, M.P.; Duffy, M.E.; Ward, M.; Molloy, A.M.; Scott, J.M.; et al. Choline Supplementation and Measures of Choline and Betaine Status: A Randomised, Controlled Trial in Postmenopausal Women. Br. J. Nutr. 2012, 108, 1264–1271. [Google Scholar] [CrossRef]
- Della Torre, S. Non-Alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front. Endocrinol. 2020, 11, 572490. [Google Scholar] [CrossRef]
- Corbin, K.D.; Zeisel, S.H. Choline Metabolism Provides Novel Insights into Nonalcoholic Fatty Liver Disease and Its Progression. Curr. Opin. Gastroenterol. 2012, 28, 159–165. [Google Scholar] [CrossRef]
- Kempson, S.A.; Vovor-Dassu, K.; Day, C. Betaine Transport in Kidney and Liver: Use of Betaine in Liver Injury. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2013, 32, 32–40. [Google Scholar] [CrossRef]
- Sid, V.; Siow, Y.L.; Karmin, O. Role of Folate in Nonalcoholic Fatty Liver Disease. Can. J. Physiol. Pharmacol. 2017, 95, 1141–1148. [Google Scholar] [CrossRef]
- Patanwala, I.; King, M.J.; Barrett, D.A.; Rose, J.; Jackson, R.; Hudson, M.; Philo, M.; Dainty, J.R.; Wright, A.J.; Finglas, P.M.; et al. Folic Acid Handling by the Human Gut: Implications for Food Fortification and Supplementation. Am. J. Clin. Nutr. 2014, 100, 593–599. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Niculescu, M.D. Perinatal Choline Influences Brain Structure and Function. Nutr. Rev. 2006, 64, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Alwayn, I.P.J.; Gura, K.; Nosé, V.; Zausche, B.; Javid, P.; Garza, J.; Verbesey, J.; Voss, S.; Ollero, M.; Andersson, C.; et al. Omega-3 Fatty Acid Supplementation Prevents Hepatic Steatosis in a Murine Model of Nonalcoholic Fatty Liver Disease. Pediatr. Res. 2005, 57, 445–452. [Google Scholar] [CrossRef]
- Xin, Y.-N.; Xuan, S.-Y.; Zhang, J.-H.; Zheng, M.-H.; Guan, H.-S. Omega-3 Polyunsaturated Fatty Acids: A Specific Liver Drug for Non-Alcoholic Fatty Liver Disease (NAFLD). Med. Hypotheses 2008, 71, 820–821. [Google Scholar] [CrossRef]
- Spooner, M.H.; Jump, D.B. Nonalcoholic Fatty Liver Disease and Omega-3 Fatty Acids: Mechanisms and Clinical Use. Annu. Rev. Nutr. 2023, 43, 199–223. [Google Scholar] [CrossRef]
- Masterton, G.S.; Plevris, J.N.; Hayes, P.C. Review Article: Omega-3 Fatty Acids—A Promising Novel Therapy for Non-Alcoholic Fatty Liver Disease. Aliment. Pharmacol. Ther. 2010, 31, 679–692. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006; ISBN 978-0-309-15742-1. [Google Scholar]
- Dietary Reference Values for Nutrients Summary Report|EFSA. Available online: https://www.efsa.europa.eu/en/supporting/pub/e15121 (accessed on 25 July 2024).
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on Alpha-Linolenic Acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef]
- Burron, S.; Richards, T.; Krebs, G.; Trevizan, L.; Rankovic, A.; Hartwig, S.; Pearson, W.; Ma, D.W.L.; Shoveller, A.K. The Balance of N-6 and n-3 Fatty Acids in Canine, Feline, and Equine Nutrition: Exploring Sources and the Significance of Alpha-Linolenic Acid. J. Anim. Sci. 2024, 102, skae143. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-Inflammatory and Insulin-Sensitizing Effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Yang, L.; Lei, X.-T.; Huang, Q.; Wang, T.; Sun, H.-B.; Wang, H.-Y. A Novel GPR120-Selective Agonist Promotes Insulin Secretion and Improves Chronic Inflammation. Life Sci. 2021, 269, 119029. [Google Scholar] [CrossRef]
- Zwierz, M.; Chabowski, A.; Sztolsztener, K. α-Lipoic Acid—A Promising Agent for Attenuating Inflammation and Preventing Steatohepatitis in Rats Fed a High-Fat Diet. Arch. Biochem. Biophys. 2023, 750, 109811. [Google Scholar] [CrossRef]
- Lee, C.-H.; Fu, Y.; Yang, S.-J.; Chi, C.-C. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2769. [Google Scholar] [CrossRef]
- Yang, J.; Fernández-Galilea, M.; Martínez-Fernández, L.; González-Muniesa, P.; Pérez-Chávez, A.; Martínez, J.A.; Moreno-Aliaga, M.J. Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients 2019, 11, 872. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, Y.; Zhu, Y.; Gao, Y.; Chen, H.; Zhang, Y.; Yin, W.; Li, Y.; Wang, K.; Xiao, J. Protective Effect of the ω-3 Polyunsaturated Fatty Acids on the Schistosomiasis Liver Fibrosis in Mice. Int. J. Clin. Exp. Med. 2015, 8, 9470–9476. [Google Scholar]
- Yang, Y.; Shao, C.; Zhang, W.; Wang, G.; Lu, D.-C.; Han, W.; Wu, Z.-S.; Chen, C.-B. Omega-3 Polyunsaturated Fatty Acids Prevent Progression of Liver Fibrosis and Promote Liver Regeneration after Partial Hepatectomy in Cirrhotic Rats. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10151–10160. [Google Scholar] [CrossRef]
Characteristic | N | Treatment N = 84 (54%) | Placebo N = 71 (46%) | p-Value | q-Value |
---|---|---|---|---|---|
Cholesterol (mg/dL) | 155 | 193 (154, 216) | 188 (160, 233) | 0.58 | 0.60 |
Triglycerides (mg/dL) | 155 | 168 (126, 232) | 177 (140, 224) | 0.60 | 0.60 |
Body mass index (kg/m2) | 154 | 35.0 (31.4, 40.6) | 33.7 (30.7, 36.9) | 0.084 | 0.17 |
Abdominal circumference (cm) | 154 | 118 (111, 126) | 118 (108, 126) | 0.44 | 0.60 |
CAP (dB/m) | 103 | 359 (323, 384) | 317 (286, 353) | 0.004 | 0.011 |
Transient elastography (kPa) | 103 | 7.2 (5.9, 9.9) | 5.5 (4.3, 7.3) | <0.001 | 0.002 |
Characteristic | N 1 | Initial Value 2 | Final Value | p-Value |
---|---|---|---|---|
Cholesterol (mg/dL) 3 | 51 | 188 (160, 233) | 222 (176,256) | 0.167 |
AC (cm) 3 | 46 | 118 (108, 126) | 113 (108, 122) | 0.003 |
Triglycerides (mg/dL) 3 | 51 | 177 (140, 224) | 179 (120, 264) | 0.729 |
BMI (kg/m2) 3 | 45 | 33.7 (30.7, 36.9) | 32 (30.7, 36.7) | 0.121 |
CAP (dB/m) 3 | 18 | 317 (286, 353) | 336 (300, 367) | 0.177 |
TE (kPa) 3 | 18 | 5.5 (4.3, 7.3) | 6.9 (4.7, 9.5) | 0.523 |
Characteristic | N 1 | Initial Value 2 | Final Value | p-Value |
---|---|---|---|---|
Cholesterol (mg/dL) 3 | 59 | 193 (154, 216) | 190 (154, 234) | 0.803 |
AC (cm) 3 | 58 | 118 (111, 126) | 118 (109 126) | 0.081 |
Triglycerides (mg/dL) 3 | 59 | 168 (126, 232) | 177 (119, 235) | 0.966 |
BMI (kg/m2) 3 | 58 | 35.0 (31.4, 40.6) | 34.0 (30.6, 39.8) | <0.001 |
CAP (dB/m) 3 | 21 | 359 (323, 384) | 342 (290, 376) | 0.037 |
TE (kPa) 3 | 21 | 7.2 (5.9, 9.9) | 6.2 (5.3, 9.7) | 0.079 |
N 2 | Treatment 3 | Placebo 3 | WSRT 4 | FDR 5 | |
---|---|---|---|---|---|
Cholesterol 1 (%) | 110 | −22.5 −3.6 31.6 | −7.3 2.0 21.6 | p = 0.31 | 0.41 |
Triglycerides 1 (%) | 110 | −32.9 −1.2 52.9 | −31.9 3.0 43.1 | p = 0.91 | 0.91 |
AC 1 (%) | 104 | −2.7 0.0 0.9 | −4.0 −1.8 0.9 | p = 0.15 | 0.34 |
BMI 1 (%) | 103 | −4.4 −2.0 1.2 | −3.4 −1.3 1.1 | p = 0.21 | 0.3 |
CAP 1 (%) | 39 | −10.0 −4.0 1.4 | −4.6 5.4 15.5 | p = 0.01 | 0.05 |
TE 1 (%) | 39 | −33.4 −7.8 1.7 | −14.8 8.6 30.5 | p = 0.04 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perva, I.T.; Simina, I.E.; Bende, R.; Motofelea, A.C.; Chirita Emandi, A.; Andreescu, N.; Sima, A.; Vlad, A.; Sporea, I.; Zimbru, C.; et al. Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. Medicina 2024, 60, 1366. https://doi.org/10.3390/medicina60081366
Perva IT, Simina IE, Bende R, Motofelea AC, Chirita Emandi A, Andreescu N, Sima A, Vlad A, Sporea I, Zimbru C, et al. Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. Medicina. 2024; 60(8):1366. https://doi.org/10.3390/medicina60081366
Chicago/Turabian StylePerva, Iulia Teodora, Iulia Elena Simina, Renata Bende, Alexandru Cătălin Motofelea, Adela Chirita Emandi, Nicoleta Andreescu, Alexandra Sima, Adrian Vlad, Ioan Sporea, Cristian Zimbru, and et al. 2024. "Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial" Medicina 60, no. 8: 1366. https://doi.org/10.3390/medicina60081366
APA StylePerva, I. T., Simina, I. E., Bende, R., Motofelea, A. C., Chirita Emandi, A., Andreescu, N., Sima, A., Vlad, A., Sporea, I., Zimbru, C., Tutac, P. C., Puiu, M., & Niculescu, M. D. (2024). Use of a Micronutrient Cocktail to Improve Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in Adults with Obesity: A Randomized, Double-Blinded Pilot Clinical Trial. Medicina, 60(8), 1366. https://doi.org/10.3390/medicina60081366