Impact of Exercise Manual Program on Biochemical Markers in Sedentary Prediabetic Patients: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Setting
2.2. Sample Size Calculation
2.3. Study Participants
2.4. Randomization and Blinding
2.5. Study Groups and Interventions
2.6. Supervised Group
2.7. Unsupervised Group
2.8. Control Group
2.9. Exercise Manual Program
2.10. Aerobic Component
2.11. Resistance Component
2.11.1. Exercise Progression
Aerobic (3 times/week) | Resistance (2 times/week) |
1–4 weeks: 2 sets with 10 repetitions, 40 s | 1–2 weeks:15 s hold with 4 reps |
5–10 weeks: 3 sets with 15 repetitions, 40 s rest | 3–4 weeks: 30 s hold with 8 reps |
11–16 weeks: 4 sets with 20 repetitions, 30 s rest | 5–8 week: 45 s hold with 12 reps |
9–12 weeks: 1 min hold with 16 reps | |
13–16 weeks: 1 min 30 s hold with 20 reps |
2.11.2. Outcome Variables
2.12. Statistical Analysis
3. Results
3.1. Participant Demographics and Biochemical Characteristics
3.2. Comparison of Biochemical Indicators at Baseline and 16 Weeks of Intervention in Supervised Group
3.3. Comparison of Biochemical Indicators at Baseline and 16 Weeks of Intervention in Unsupervised Group
3.4. Comparison of Biochemical Indicators at Baseline and 16 Weeks in Control Group
3.5. Intervention Effects on Biochemical Indicators
3.6. Mixed-Effects Model Results
3.7. Comparison of Glycemic Indicators of the Study Groups at Baseline and 16 Weeks of Intervention
3.8. Comparison of Lipid Profile of the Study Groups at Baseline and 16 Weeks of Intervention
3.9. Comparison of Beta-Cell Function and Insulin Resistance (HOMA Indicators) of the Study Groups at Baseline and 16 Weeks of Intervention
4. Discussion
Limitations
5. Strength of the Current Research Work
Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlesinger, S.; Neuenschwander, M.; Barbaresko, J.; Lang, A.; Maalmi, H.; Rathmann, W.; Roden, M.; Herder, C. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: Umbrella review of meta-analyses of prospective studies. Diabetologia 2022, 65, 275–285. [Google Scholar] [CrossRef]
- RezkAllah, S.S.; Takla, M.K. Effects of Different Dosages of Interval Training on Glycemic Control in People with Prediabetes: A Randomized Controlled Trial. Diabetes Spectr. 2019, 32, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kabadi, U.M. Major Pathophysiology in Prediabetes and Type 2 Diabetes: Decreased Insulin in Lean and Insulin Resistance in Obese. J. Endocr. Soc. 2017, 1, 742–750. [Google Scholar] [CrossRef]
- Hostalek, U. Global epidemiology of prediabetes—Present and future perspectives. Clin. Diabetes Endocrinol. 2019, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Echouffo-Tcheugui, J.B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health 2021, 42, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Hemmingsen, B.; Metzendorf, M.-I.; Takwoingi, Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst. Rev. 2018, 10, CD012661. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Aamir, A.H.; Ul-Haq, Z.; Mahar, S.A.; Qureshi, F.M.; Ahmad, I.; Jawa, A.; Sheikh, A.; Raza, A.; Fazid, S.; Jadoon, Z.; et al. Diabetes Prevalence Survey of Pakistan (DPS-PAK): Prevalence of type 2 diabetes mellitus and prediabetes using HbA1c: A population-based survey from Pakistan. BMJ Open 2019, 9, e025300. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/ (accessed on 5 June 2024).
- Annual Report-IDF—IDF Is the Leading Source of Scientific and Technical Expertise for All Stakeholders of the Dairy Chain. Available online: https://fil-idf.org/about-us/annual-report/ (accessed on 5 June 2024).
- Hubbard, D.; Colantonio, L.D.; Tanner, R.M.; Carson, A.P.; Sakhuja, S.; Jaeger, B.C.; Carey, R.M.; Cohen, L.P.; Shimbo, D.; Butler, M.; et al. Prediabetes and Risk for Cardiovascular Disease by Hypertension Status in Black Adults: The Jackson Heart Study. Diabetes Care 2019, 42, 2322–2329. [Google Scholar] [CrossRef]
- Haw, J.S.; Galaviz, K.I.; Straus, A.N.; Kowalski, A.J.; Magee, M.J.; Weber, M.B.; Wei, J.; Narayan, K.M.V.; Ali, M.K. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern. Med. 2017, 177, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Jonas, D.E.; Crotty, K.; Yun, J.D.Y.; Middleton, J.C.; Feltner, C.; Taylor-Phillips, S.; Barclay, C.; Dotson, A.; Baker, C.; Balio, C.P.; et al. Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the U.S. Preventive Services Task Force. Screening for Prediabetes and Type 2 Diabetes Mellitus: An Evidence Review for the US Preventive Services Task Force. JAMA 2021, 326, 736–743. [Google Scholar] [CrossRef]
- Kramer, M.K.; Kriska, A.M.; Venditti, E.M.; Miller, R.G.; Brooks, M.M.; Burke, L.E.; Siminerio, L.M.; Solano, F.X.; Orchard, T.J. Translating the Diabetes Prevention Program: A comprehensive model for prevention training and program delivery. Am. J. Prev. Med. 2009, 37, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Hemmingsen, B.; Gimenez-Perez, G.; Mauricio, D.; Figuls, M.R.I.; Metzendorf, M.-I.; Richter, B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2017, 12, CD003054. [Google Scholar] [CrossRef]
- Glechner, A.; Keuchel, L.; Affengruber, L.; Titscher, V.; Sommer, I.; Matyas, N.; Wagner, G.; Kien, C.; Klerings, I.; Gartlehner, G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018, 12, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Ivers, N.M.; Jiang, M.; Alloo, J.; Singer, A.; Ngui, D.; Casey, C.G.; Yu, C.H. Diabetes Canada 2018 clinical practice guidelines Key messages for family physicians caring for patients living with type 2 diabetes. Can. Fam. Physician 2019, 65, 14–24. [Google Scholar] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Kerrison, G.; Gillis, R.B.; Jiwani, S.I.; Alzahrani, Q.; Kok, S.; Harding, S.E.; Shaw, I.; Adams, G.G. The Effectiveness of Lifestyle Adaptation for the Prevention of Prediabetes in Adults: A Systematic Review. J. Diabetes Res. 2017, 2017, 8493145. [Google Scholar] [CrossRef] [PubMed]
- Kluding, P.M.; Pasnoor, M.; Singh, R.; D’Silva, L.J.; Yoo, M.; Billinger, S.A.; LeMaster, J.W.; Dimachkie, M.M.; Herbelin, L.; Wright, D.E. Safety of Aerobic Exercise in People with Diabetic Peripheral Neuropathy: Single-Group Clinical Trial. Phys. Ther. 2015, 95, 223–234. [Google Scholar] [CrossRef]
- World Health Organization. Fact Sheets: Physical Activity. Available online: http://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 5 June 2024).
- Fanelli, E.; Daga, F.A.; Pappaccogli, M.; Eula, E.; Astarita, A.; Mingrone, G.; Fasano, C.; Magnino, C.; Schiavone, D.; Rabbone, I.; et al. A structured physical activity program in an adolescent population with overweight or obesity: A prospective interventional study. Appl. Physiol. Nutr. Metab. 2022, 47, 253–260. [Google Scholar] [CrossRef]
- Amanat, S.; Sinaei, E.; Panji, M.; MohammadporHodki, R.; Bagheri-Hosseinabadi, Z.; Asadimehr, H.; Fararouei, M.; Dianatinasab, A. A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Front. Physiol. 2020, 11, 562895. [Google Scholar] [CrossRef] [PubMed]
- Compeán-Ortiz, L.G.; Trujillo-Olivera, L.E.; Valles-Medina, A.M.; Reséndiz-González, E.; García-Solano, B.; Pérez, B.D.A. Obesity, physical activity and prediabetes in adult children of people with diabetes 1. Rev. Latino-Am. Enferm. 2018, 25, e2981. [Google Scholar] [CrossRef] [PubMed]
- Azarbayjani, M.A.; Abedi, B.; Peeri, M.; Rasaee, M.J.; Stannard, S.R. Effects of combined aerobic and resistant training on lipid profile and glycemic control in sedentary men. Int. Med. J. 2014, 21, 132–136. [Google Scholar]
- Amaro-Gahete, F.J.; Ponce-González, J.G.; Corral-Pérez, J.; Velázquez-Díaz, D.; Lavie, C.J.; Jiménez-Pavón, D. Effect of a 12-Week Concurrent Training Intervention on Cardiometabolic Health in Obese Men: A Pilot Study. Front. Physiol. 2021, 12, 630831. [Google Scholar] [CrossRef] [PubMed]
- Schranz, N.; Tomkinson, G.; Olds, T. What is the effect of resistance training on the strength, body composition and psychosocial status of overweight and obese children and adolescents? A systematic review and meta-analysis. Sports Med. 2013, 43, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Schranz, N.; Tomkinson, G.; Parletta, N.; Petkov, J.; Olds, T. Can resistance training change the strength, body composition and self-concept of overweight and obese adolescent males? A randomised controlled trial. Br. J. Sports Med. 2013, 48, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef]
- Jung, M.E.; Bourne, J.E.; Beauchamp, M.R.; Robinson, E.; Little, J.P. High-Intensity Interval Training as an Efficacious Alternative to Moderate-Intensity Continuous Training for Adults with Prediabetes. J. Diabetes Res. 2015, 2015, 191595. [Google Scholar] [CrossRef]
- Dugan, J.A. Exercise recommendations for patients with type 2 diabetes. J. Am. Acad. Physician Assist. 2016, 29, 13–18. [Google Scholar] [CrossRef]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, R.A.; Hazari, A.; Monterio, A.; Kumar, S.; Maiya, A.G. Effect of Physical Activity Intervention in Prediabetes: A Systematic Review with Meta-analysis. J. Phys. Act. Health 2017, 14, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Khuwaja, A.K.; Kadir, M.M. Gender differences and clustering pattern of behavioural risk factors for chronic non-communicable diseases: Community-based study from a developing country. Chronic Illn. 2010, 6, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The CONSORT statement. Saudi J. Anaesth. 2019, 13 (Suppl. S1), S27–S30. [Google Scholar] [CrossRef]
- Saranpää, P.; Höll, W. Soluble carbohydrates of Pinus sylvestris L. sapwood and heartwood. Trees 1989, 3, 138–143. [Google Scholar] [CrossRef]
- Glauber, H.; Vollmer, W.M.; Nichols, G.A. A Simple Model for Predicting Two-Year Risk of Diabetes Development in Individuals with Prediabetes. Perm. J. 2018, 22, 17–050. [Google Scholar] [CrossRef]
- Janssen, I.; Katzmarzyk, P.T.; Ross, R. Body Mass Index, Waist Circumference, and Health Risk: Evidence in Support of Current National Institutes of Health Guidelines. Arch. Intern. Med. 2002, 162, 2074–2079. [Google Scholar] [CrossRef]
- Ma, W.-Y.; Yang, C.-Y.; Shih, S.-R.; Hsieh, H.-J.; Hung, C.S.; Chiu, F.-C.; Lin, M.-S.; Liu, P.-H.; Hua, C.-H.; Hsein, Y.-C.; et al. Measurement of Waist Circumference: Midabdominal or Iliac Crest? Diabetes Care 2013, 36, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Dai, X.; Liu, L.; Hsue, C.; Miller, J.D.; Fang, Z.; Li, J.; Feng, J.; Huang, Y.; Liu, C.; et al. Comparing the effects of 6 months aerobic exercise and resistance training on metabolic control and β-cell function in Chinese patients with prediabetes: A multicenter randomized controlled trial. J. Diabetes 2020, 12, 25–37. [Google Scholar] [CrossRef]
- Kang, S.-J.; Kim, J.-H.; Gang, Z.; Yook, Y.-S.; Yoon, J.-R.; Ha, G.-C.; Ko, K.-J. Effects of 12-week circuit exercise program on obesity index, appetite regulating hormones, and insulin resistance in middle-aged obese females. J. Phys. Ther. Sci. 2018, 30, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Gilbertson, N.M.; Eichner, N.Z.M.; Heiston, E.; Miller, S.; Weltman, A. Impact of Short-Term Continuous and Interval Exercise Training on Endothelial Function and Glucose Metabolism in Prediabetes. J. Diabetes Res. 2019, 2019, 4912174. [Google Scholar] [CrossRef]
- Yoon, H.; Jeon, D.J.; Park, C.E.; You, H.S.; Moon, A.E. Relationship between homeostasis model assessment of insulin resistance and beta cell function and serum 255hydroxyvitamin D in nonndiabetic Korean adults. J. Clin. Biochem. Nutr. 2016, 59, 139–144. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Bannell, D.J.; France-Ratcliffe, M.; Buckley, B.J.R.; Crozier, A.; Davies, A.P.; Hesketh, K.L.; Jones, H.; Cocks, M.; Sprung, V.S.; MOTIVATE Team. Adherence to unsupervised exercise in sedentary individuals: A randomised feasibility trial of two mobile health interventions. Digit. Health 2023, 9, 20552076231183552. [Google Scholar] [CrossRef]
- Malin, S.K.; Solomon, T.P.J.; Blaszczak, A.; Finnegan, S.; Filion, J.; Kirwan, J.P. Pancreatic β-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E1248–E1254. [Google Scholar] [CrossRef] [PubMed]
- Romacho, T.; Sell, H.; Indrakusuma, I.; Roehrborn, D.; Castañeda, T.R.; Jelenik, T.; Markgraf, D.; Hartwig, S.; Weiss, J.; Al-Hasani, H.; et al. DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E590–E599. [Google Scholar] [CrossRef] [PubMed]
- König, D.; Hörmann, J.; Predel, H.-G.; Berg, A. A 12-Month Lifestyle Intervention Program Improves Body Composition and Reduces the Prevalence of Prediabetes in Obese Patients. Obes. Facts 2018, 11, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Maharani, A. Participation in community-based healthcare interventions and non-communicable diseases early detection of general population in Indonesia. SSM-Popul. Health 2022, 19, 101236. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- DiMenna, F.J.; Arad, A.D. The acute vs. chronic effect of exercise on insulin sensitivity: Nothing lasts forever. Cardiovasc. Endocrinol. Metab. 2021, 10, 149–161. [Google Scholar] [CrossRef] [PubMed]
Biochemical Variable | Reference Range | Interpretation |
---|---|---|
Fasting Blood Glucose (FBG) | 70–99 mg/dL | Normal fasting glucose level |
100–125 mg/dL | Prediabetes (impaired fasting glucose) | |
≥126 mg/dL | Diabetes mellitus (requires confirmation) | |
HbA1c | <5.7% | Normal glycemic control |
5.7–6.4% | Prediabetes | |
≥6.5% | Diabetes mellitus (requires confirmation) | |
Triglyceride | <150 mg/dL | Normal |
150–199 mg/dL | Borderline high | |
200–499 mg/dL | High | |
≥500 mg/dL | Very high | |
Low-Density Lipoprotein (LDL) | <100 mg/dL | Optimal |
100–129 mg/dL | Near optimal | |
130–159 mg/dL | Borderline high | |
160–189 mg/dL | High | |
≥190 mg/dL | Very high | |
High-Density Lipoprotein (HDL) | >40 mg/dL (men), >50 mg/dL (women) | Recommended level |
<40 mg/dL (men), <50 mg/dL (women) | Low, associated with increased cardiovascular risk | |
HOMA-B (Beta-Cell Function) | 100% (varies by population) | Indicates pancreatic beta-cell function; no strict “normal” range as it varies with study population |
HOMA-IR (Insulin Resistance) | <1.0 | Optimal insulin sensitivity |
1.0–1.9 | Indicates mild insulin resistance | |
2.0–2.9 | Moderate insulin resistance | |
≥3.0 | Significant insulin resistance |
Variables | Supervised Group (n = 36) Mean ± SD, % | Unsupervised Group (n = 36) Mean ± SD, % | Control Group (n = 36) Mean ± SD, % | F/χ2 | p | |
---|---|---|---|---|---|---|
Gender | M | 15 (41.7%) | 20 (56.6%) | 19 (52.8%) | 1.7 | >0.05 b |
F | 21 (58.3%) | 16 (44.4%) | 17 (47.2%) | 1.3 | >0.05 b | |
Age (years) | 32.25 ± 5.69 | 30.58 ± 3.30 | 30.75 ± 4.14 | 1.50 | >0.05 a | |
Weight (kg) | 85.03 ± 4.7 | 81.08 ± 3.95 | 86.83 ± 4.33 | 16.54 | <0.05 | |
Height (cm) | 166.16 ± 3.60 | 168.58 ± 4.42 | 170.08 ± 4.43 | 8.07 | <0.05 a | |
BMI (kg/m2) | 30.58 ± 1.25 | 28.60 ± 1.58 | 30.58 ± 6.02 | 14.50 | <0.05 a | |
FBG (mg/dL) | 106.35 ± 2.56 | 107.68 ± 2.11 | 105.6 ± 2.02 | 7.9 | <0.05 a | |
HbA1C (%) | 6.02 ± 0.19 | 6.11 ± 0.16 | 6.18 ± 0.16 | 7.32 | <0.05 a | |
TGs (mmol/L) | 2.06 ± 0.05 | 1.95 ± 0.07 | 2.47 ± 0.04 | 786.3 | <0.05 a | |
LDL (mg/dL) | 131.20 ± 10.15 | 125.11 ± 5.90 | 127.65 ± 5.98 | 5.8 | <0.05 a | |
HDL (mg/dL) | 36.81 ± 3.32 | 36.33 ± 2.36 | 39.98 ± 2.51 | 18.55 | >0.05 a | |
HOMA-B | 69.03 ± 1.20 | 71.46 ± 2.31 | 79.28 ± 3.55 | 18.46 | <0.05 a | |
HOMA-IR | 1.00 ± 0.04 | 0.99 ± 0.02 | 1.03 ± 0.02 | 494.02 | >0.05 a |
Variables | Baseline (M ± SD) | 16 Weeks (M ± SD) | t (35), p | Cohen’s d |
---|---|---|---|---|
FBG | 106.26 ± 2.59 | 93.44 ± 2.17 | 38.41, p < 0.001 | 5.35 |
HbA1C | 6.02 ± 0.19 | 5.34 ± 0.14 | 25.31, p < 0.001 | 0.71 |
TGs | 2.06 ± 0.06 | 1.81 ± 0.07 | 41.48, p < 0.001 | 3.95 |
LDL | 131.32 ± 10.18 | 112.00 ± 1.96 | 19.64, p < 0.001 | 2.65 |
HDL | 36.88 ± 0.57 | 49.48 ± 0.64 | −22.46, p < 0.001 | 21.56 |
HOMA-B | 69.03 ± 1.24 | 81.10 ± 2.23 | −11.23, p < 0.001 | 6.70 |
HOMA-IR | 1.01 ± 0.04 | 1.16 ± 0.02 | −31.96, p < 0.001 | 4.63 |
Variables | Baseline (M ± SD) | 16 Weeks (M ± SD) | t (34), p | Cohen’s d |
---|---|---|---|---|
FBG | 107.68 ± 2.11 | 96.32 ± 1.94 | 42.04, p < 0.001 | 5.60 |
HbA1C | 6.11 ± 0.17 | 5.42 ± 0.16 | 24.96, p < 0.001 | 0.41 |
Triglyceride | 1.95 ± 0.70 | 1.86 ± 0.06 | 31.77, p < 0.001 | 0.18 |
LDL | 125.11 ± 5.90 | 114.60 ± 6.28 | 56.97, p < 0.001 | 1.72 |
HDL | 36.33 ± 2.37 | 44.35 ± 4.25 | −9.42, p < 0.001 | 2.33 |
HOMA-B | 71.46 ± 2.31 | 77.46 ± 1.83 | −26.84, p < 0.001 | 2.87 |
HOMA-IR | 0.99 ± 0.02 | 1.05 ± 0.04 | −15.80, p < 0.001 | 1.94 |
Variables | Baseline (Mean ± SD) | 16 Weeks (Mean ± SD) | t (32), p | Cohen’s d |
---|---|---|---|---|
FBG | 105.60 ± 2.02 | 105.50 ± 1.88 | 0.392, >0.05 | 0.00 |
HbA1C | 6.18 ± 0.16 | 6.04 ± 0.195 | 8.171, >0.05 | 0.09 |
Triglyceride | 2.47 ± 0.045 | 2.36 ± 0.053 | 48.062, >0.05 | 2.23 |
LDL | 127.65 ± 5.98 | 125.17 ± 5.26 | 56.974, >0.05 | 0.44 |
HDL | 39.98 ± 2.51 | 41.47 ± 3.37 | −4.437, >0.05 | 0.50 |
HOMA-B | 79.28 ± 3.55 | 78.16 ± 2.39 | 3.602, >0.05 | 2.67 |
HOMA-IR | 1.034 ± 0.023 | 1.262 ± 0.024 | −46.11, <0.001 | 9.62 |
Biochemical Variables | Group | Before Mean (SD) | After Mean (SD) | p-Value * | Cohen’s d | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|---|
HbA1C | Supervised | 6.02 (0.19) | 5.35 (0.13) | 0.00 | −4.44 | −5.54 | −3.35 |
Unsupervised | 6.12 (0.17) | 5.43 (0.16) | 0.00 | −4.16 | −5.19 | −3.13 | |
Control | 6.18 (0.16) | 6.04 (0.20) | 0.00 | −1.36 | −1.82 | −0.91 | |
FBG | Supervised | 106.36 (2.57) | 93.41 (2.12) | 0.00 | −6.57 | −8.14 | −5.00 |
Unsupervised | 107.69 (2.11) | 96.32 (1.95) | 0.00 | −7.01 | −8.68 | −5.33 | |
Control | 105.61 (2.03) | 105.51 (1.89) | 0.70 | −0.07 | −0.39 | 0.26 | |
HOMA-B | Supervised | 69.03 (1.21) | 81.09 (2.17) | 0.00 | 5.26 | 3.98 | 6.53 |
Unsupervised | 71.47 (2.32) | 77.47 (1.84) | 0.00 | 4.47 | 3.38 | 5.57 | |
Control | 79.28 (3.56) | 78.16 (2.40) | 0.00 | −0.60 | −0.96 | −0.24 | |
HOMA-IR | Supervised | 1.01 (0.04) | 1.16 (0.02) | 0.00 | 5.33 | 4.04 | 6.62 |
Unsupervised | 0.99 (0.02) | 1.05 (0.04) | 0.00 | 2.63 | 1.93 | 3.33 | |
Control | 1.03 (0.02) | 1.26 (0.02) | 0.00 | 7.68 | 5.85 | 9.51 | |
Triglyceride | Supervised | 2.06 (0.06) | 1.81 (0.07) | 0.00 | −7.31 | −9.06 | −5.57 |
Unsupervised | 1.96 (0.07) | 1.86 (0.06) | 0.00 | −5.30 | −6.58 | −4.01 | |
Control | 2.48 (0.05) | 2.37 (0.05) | 0.00 | −8.01 | −9.92 | −6.11 | |
LDL | Supervised | 131.21 (10.16) | 111.51 (11.26) | 0.00 | −3.14 | −3.94 | −2.33 |
Unsupervised | 125.12 (5.91) | 114.60 (6.29) | 0.00 | −9.50 | −11.74 | −7.25 | |
Control | 127.65 (5.98) | 125.16 (5.26) | 0.00 | −1.01 | −1.42 | −0.61 | |
HDL | Supervised | 36.82 (3.32) | 49.50 (3.74) | 0.00 | 3.97 | 2.98 | 4.95 |
Unsupervised | 36.33 (2.37) | 44.36 (4.25) | 0.00 | 1.57 | 1.08 | 2.06 | |
Control | 39.99 (2.52) | 41.47 (3.37) | 0.00 | 0.74 | 0.37 | 1.11 |
Variable | Effect | Estimate | Std Error | SS | p-Value | Significance |
---|---|---|---|---|---|---|
HbA1C | Baseline Mean | 6.181 | 0.028 | 38.19 | 0.00 | *** |
Time Effect | −0.138 | 0.039 | 0.019 | 0.00 | *** | |
Unsupervised vs. Supervised | −0.064 | 0.039 | 0.004 | 0.10 | ||
Time × Unsupervised Interaction | −0.554 | 0.056 | 0.30 | 0.00 | *** | |
FBG | Baseline Mean | 105.605 | 0.349 | 11,152.41 | 0.00 | *** |
Time Effect | −0.098 | 0.493 | 0.01 | 0.84 | ||
Unsupervised vs. Supervised | 2.081 | 0.493 | 4.33 | 0.00 | *** | |
Time × Unsupervised Interaction | −11.267 | 0.697 | 126.93 | 0.00 | *** | |
HOMA-B | Baseline Mean | 79.281 | 0.387 | 6285.45 | 0.00 | *** |
Time Effect | −1.118 | 0.548 | 1.25 | 0.04 | * | |
Unsupervised vs. Supervised | −7.813 | 0.548 | 61.04 | 0.00 | *** | |
Time × Unsupervised Interaction | 7.116 | 0.775 | 50.63 | 0.00 | *** | |
HOMA-IR | Baseline Mean | 1.034 | 0.005 | 1.07 | 0.00 | *** |
Time Effect | 0.227 | 0.007 | 0.05 | 0.00 | *** | |
Unsupervised vs. Supervised | −0.043 | 0.007 | 0.002 | 0.00 | *** | |
Time × Unsupervised Interaction | −0.168 | 0.01 | 0.02 | 0.00 | *** | |
Triglyceride | Baseline Mean | 2.477 | 0.01 | 6.13 | 0.00 | *** |
Time Effect | −0.11 | 0.014 | 0.01 | 0.00 | *** | |
Unsupervised vs. Supervised | −0.518 | 0.014 | 0.26 | 0.00 | *** | |
Time × Unsupervised Interaction | 0.011 | 0.02 | 0 | 0.59 | ||
LDL | Baseline Mean | 127.651 | 1.287 | 16,294.73 | 0.00 | *** |
Time Effect | −2.486 | 1.821 | 6.179 | 0.17 | ||
Unsupervised vs. Supervised | −2.534 | 1.82 | 6.422 | 0.16 | ||
Time × Unsupervised Interaction | −8.028 | 2.575 | 64.45 | 0.00 | ** | |
HDL | Baseline Mean | 39.989 | 0.547 | 1599.13 | 0.00 | *** |
Time Effect | 1.483 | 0.774 | 2.2 | 0.06 | ||
Unsupervised vs. Supervised | −3.659 | 0.774 | 13.39 | 0.00 | *** | |
Time × Unsupervised Interaction | 6.542 | 1.094 | 42.80 | 0.00 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, S.; Rehman, S.S.U.; Riaz, S.; Hafeez, I.; Hafeez, Z.; Mumtaz, H. Impact of Exercise Manual Program on Biochemical Markers in Sedentary Prediabetic Patients: A Randomized Controlled Trial. Medicina 2025, 61, 190. https://doi.org/10.3390/medicina61020190
Hafeez S, Rehman SSU, Riaz S, Hafeez I, Hafeez Z, Mumtaz H. Impact of Exercise Manual Program on Biochemical Markers in Sedentary Prediabetic Patients: A Randomized Controlled Trial. Medicina. 2025; 61(2):190. https://doi.org/10.3390/medicina61020190
Chicago/Turabian StyleHafeez, Sana, Syed Shakil Ur Rehman, Saima Riaz, Imran Hafeez, Zarwa Hafeez, and Hassan Mumtaz. 2025. "Impact of Exercise Manual Program on Biochemical Markers in Sedentary Prediabetic Patients: A Randomized Controlled Trial" Medicina 61, no. 2: 190. https://doi.org/10.3390/medicina61020190
APA StyleHafeez, S., Rehman, S. S. U., Riaz, S., Hafeez, I., Hafeez, Z., & Mumtaz, H. (2025). Impact of Exercise Manual Program on Biochemical Markers in Sedentary Prediabetic Patients: A Randomized Controlled Trial. Medicina, 61(2), 190. https://doi.org/10.3390/medicina61020190