Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participant Selection
- Older than 65 years;
- Vulnerable or frail (a score of ≥4 on the Edmonton Frail Scale, EFS);
- Underwent open heart surgery;
- Able to walk independently (without supportive aids);
- Walked ≥ 150 m based on the 6 min walk test;
- Signed an informed consent form.
- Refusal to participate in the study;
- Disorders and pathologies of the musculoskeletal system;
- Cognitive impairment;
- Severe underlying conditions (mental, visional, and hearing impairments, heart failure, severe anemia, complications of postoperative wound healing);
- Other acute conditions that could limit active participation in exercise programs.
2.2. Participant Assessment and Assignment
2.3. Study Interventions
- Control group (CG), which only underwent a conventional rehabilitation program (Table 1, part A);
2.4. Study Measures
2.5. Statistical Analysis
3. Results
3.1. Effectiveness of Cardiac Rehabilitation on Fall Risk
3.2. Effectiveness of Cardiac Rehabilitation on Gait Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.E.; Schmid, J.-P.; Vigorito, C.; et al. Secondary Prevention through Comprehensive Cardiovascular Rehabilitation: From Knowledge to Implementation. 2020 Update. A Position Paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2021, 28, 460–495. [Google Scholar] [CrossRef] [PubMed]
- Delimanoli, E.; Muurlink, O.; Myrianthefs, P.; Korompeli, A. Cardiac Rehabilitation After Open Heart Surgery: A Narrative Systematic Review. J. Cardiovasc. Dev. Dis. 2024, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- MacEachern, E.; Quach, J.; Giacomantonio, N.; Theou, O.; Hillier, T.; Abel-Adegbite, I.; Gonzalez-Lara, M.; Kehler, D.S. Cardiac Rehabilitation and Frailty: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2024, 31, 1960–1976. [Google Scholar] [CrossRef] [PubMed]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Aboyans, V.; Vardas, P.; Townsend, N.; Torbica, A.; Kavousi, M.; Boriani, G.; Huculeci, R.; Kazakiewicz, D.; Scherr, D.; et al. European Society of Cardiology: The 2023 Atlas of Cardiovascular Disease Statistics. Eur. Heart J. 2024, 45, 4019–4062. [Google Scholar] [CrossRef] [PubMed]
- Damluji, A.A.; Chung, S.-E.; Xue, Q.-L.; Hasan, R.K.; Moscucci, M.; Forman, D.E.; Bandeen-Roche, K.; Batchelor, W.; Walston, J.D.; Resar, J.R.; et al. Frailty and Cardiovascular Outcomes in the National Health and Aging Trends Study. Eur. Heart J. 2021, 42, 3856–3865. [Google Scholar] [CrossRef]
- Leng, S.; Chen, X.; Mao, G. Frailty Syndrome: An Overview. Clin. Interv. Aging 2014, 9, 433–441. [Google Scholar] [CrossRef]
- Rodriguez-Mañas, L.; Fried, L.P. Frailty in the Clinical Scenario. Lancet 2015, 385, e7–e9. [Google Scholar] [CrossRef]
- Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 23 December 2024).
- Neira Álvarez, M.; Huertas-Hoyas, E.; Novak, R.; Sipols, A.E.; García-Villamil-Neira, G.; Rodríguez-Sánchez, M.C.; Del-Ama, A.J.; Ruiz-Ruiz, L.; De Villa, S.G.; Jiménez-Ruiz, A.R. Stratification of Older Adults According to Frailty Status and Falls Using Gait Parameters Explored Using an Inertial System. Appl. Sci. 2024, 14, 6704. [Google Scholar] [CrossRef]
- Harada, H.; Kai, H.; Niiyama, H.; Nishiyama, Y.; Katoh, A.; Yoshida, N.; Fukumoto, Y.; Ikeda, H. Effectiveness of Cardiac Rehabilitation for Prevention and Treatment of Sarcopenia in Patients with Cardiovascular Disease—A Retrospective Cross-Sectional Analysis. J. Nutr. Health Aging 2017, 21, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Molinero, A.; Herrero-Larrea, A.; Miñarro, A.; Narvaiza, L.; Gálvez-Barrón, C.; Gonzalo León, N.; Valldosera, E.; De Mingo, E.; Macho, O.; Aivar, D.; et al. The Spatial Parameters of Gait and Their Association with Falls, Functional Decline and Death in Older Adults: A Prospective Study. Sci. Rep. 2019, 9, 8813. [Google Scholar] [CrossRef]
- Sadjapong, U.; Yodkeeree, S.; Sungkarat, S.; Siviroj, P. Multicomponent Exercise Program Reduces Frailty and Inflammatory Biomarkers and Improves Physical Performance in Community-Dwelling Older Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 3760. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lin, C.; Wu, W.; Chiu, H.; Huang, H. Virtual Reality Exercise Programs Ameliorate Frailty and Fall Risks in Older Adults: A Meta-analysis. J. Am. Geriatr. Soc. 2023, 71, 2946–2955. [Google Scholar] [CrossRef]
- Costa, S.N.; Vieira, E.R.; Bento, P.C.B. Effects of Home- and Center-Based Exercise Programs on the Strength, Function, and Gait of Prefrail Older Women: A Randomized Control Trial. J. Aging Phys. Act. 2020, 28, 122–130. [Google Scholar] [CrossRef]
- Zak, M.; Sikorski, T.; Wasik, M.; Courteix, D.; Dutheil, F.; Brola, W. Frailty Syndrome—Fall Risk and Rehabilitation Management Aided by Virtual Reality (VR) Technology Solutions: A Narrative Review of the Current Literature. Int. J. Environ. Res. Public Health 2022, 19, 2985. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, M.; Sherrington, C.; Killington, M.; Smith, S.; Bongers, B.; Hassett, L.; Crotty, M. Video and Computer-Based Interactive Exercises Are Safe and Improve Task-Specific Balance in Geriatric and Neurological Rehabilitation: A Randomised Trial. J. Physiother. 2016, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Zhang, X.; Liu, J.; Li, M.; Liang, J.; Gao, Y. Management of Cognitive Frailty: A Network Meta-analysis of Randomized Controlled Trials. Int. J. Geriatr. Psychiatry 2023, 38, e5994. [Google Scholar] [CrossRef]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic Equivalents (METS) in Exercise Testing, Exercise Prescription, and Evaluation of Functional Capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef]
- Ruzzolini, M.; Ambrosetti, M. Cardiopulmonary Exercise Testing in Cardiac Rehabilitation: From the Reporting Form to Structured Exercise Prescription. A Proposal from the Italian Alliance for Cardiovascular Rehabilitation and Prevention (Itacare-P). Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 18, 200191. [Google Scholar] [CrossRef] [PubMed]
- Kabbadj, K.; Taiek, N.; El Hjouji, W.; El Karrouti, O.; El Hangouche, A.J. Cardiopulmonary Exercise Testing: Methodology, Interpretation, and Role in Exercise Prescription for Cardiac Rehabilitation. US Cardiol. Rev. 2024, 18, e22. [Google Scholar] [CrossRef]
- Zohman, L.R. Exercise Testing for Functional Evaluation and Exercise Prescription. Cardiol. Clin. 1984, 2, 403–413. [Google Scholar] [CrossRef]
- Mendelsohn, M.E.; Connelly, D.M.; Overend, T.J.; Petrella, R.J. Validity of Values for Metabolic Equivalents of Task During Submaximal All-Extremity Exercise and Reliability of Exercise Responses in Frail Older Adults. Phys. Ther. 2008, 88, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Raimundo, A.; Abreu, A.; Bravo, J. Exercise Intensity in Patients with Cardiovascular Diseases: Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3574. [Google Scholar] [CrossRef] [PubMed]
- The Edmonton Frail Scale|Faculty of Medicine & Dentistry. Available online: https://www.ualberta.ca/en/medicine/resources/education/learning-design-studio/featured-projects/the-efs.html (accessed on 23 December 2024).
- Klinisk-Resursmanual-for-BalanceSD.Pdf. Available online: https://mobilitysystems.se/edit/Klinisk-resursmanual-for-BalanceSD.pdf (accessed on 23 December 2024).
- Manual_zebris_FDM_1.16.x_R1_EN_web.Pdf. Available online: https://www.zebris.de/fileadmin/Editoren/zebris-PDF-Manuals/Medizin/Software/Alte_Versionen/Manual_zebris_FDM_1.16.x_R1_EN_web.pdf (accessed on 23 December 2024).
- Afilalo, J. Evaluating and Treating Frailty in Cardiac Rehabilitation. Clin. Geriatr. Med. 2019, 35, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Caicedo-Pareja, M.; Espinosa, D.; Jaramillo-Losada, J.; Ordoñez-Mora, L.T. Physical Exercise Intervention Characteristics and Outcomes in Frail and Pre-Frail Older Adults. Geriatrics 2024, 9, 163. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Xu, L.; Liu, H.; Li, Y.; Song, X.; Bao, J.; Liao, S.; Xi, Y.; Guo, G. Effects of Multicomponent Exercise on Frailty Status and Physical Function in Frail Older Adults: A Meta-Analysis and Systematic Review. Exp. Gerontol. 2024, 197, 112604. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Smith, L.; Barbagallo, M.; Yang, L.; Zou, L.; Haro, J.M.; Koyanagi, A. Sarcopenia and Fall-Related Injury among Older Adults in Five Low- and Middle-Income Countries. Exp. Gerontol. 2021, 147, 111262. [Google Scholar] [CrossRef] [PubMed]
- Talar, K.; Hernández-Belmonte, A.; Vetrovsky, T.; Steffl, M.; Kałamacka, E.; Courel-Ibáñez, J. Benefits of Resistance Training in Early and Late Stages of Frailty and Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J. Clin. Med. 2021, 10, 1630. [Google Scholar] [CrossRef]
- Khadanga, S.; Savage, P.D.; Ades, P.A. Resistance Training for Older Adults in Cardiac Rehabilitation. Clin. Geriatr. Med. 2019, 35, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.; Van Rossum, E.; De Witte, L.; Kempen, G.I.; Van Den Heuvel, W. Interventions to Prevent Disability in Frail Community-Dwelling Elderly: A Systematic Review. BMC Health Serv. Res. 2008, 8, 278. [Google Scholar] [CrossRef]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Physical Frailty and Fall Risk in Community-Dwelling Older Adults: A Cross-Sectional Study. J. Aging Res. 2020, 2020, 3964973. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Min, L.; Xu, N.; Huang, L.; Li, X. The Effect of Exercise Intervention on Reducing the Fall Risk in Older Adults: A Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 12562. [Google Scholar] [CrossRef] [PubMed]
- Burton, E.; Cavalheri, V.; Adams, R.; Oakley Browne, C.; Bovery-Spencer, P.; Fenton, A.; Campbell, B.; Hill, K. Effectiveness of Exercise Programs to Reduce Falls in Older People with Dementia Living in the Community: A Systematic Review and Meta-Analysis. Clin. Interv. Aging 2015, 10, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Schoberer, D.; Breimaier, H.E. Meta-analysis and GRADE Profiles of Exercise Interventions for Falls Prevention in Long-term Care Facilities. J. Adv. Nurs. 2020, 76, 121–134. [Google Scholar] [CrossRef]
- Theou, O.; Stathokostas, L.; Roland, K.P.; Jakobi, J.M.; Patterson, C.; Vandervoort, A.A.; Jones, G.R. The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review. J. Aging Res. 2011, 2011, 569194. [Google Scholar] [CrossRef] [PubMed]
- Dermody, G.; Whitehead, L.; Wilson, G.; Glass, C. The Role of Virtual Reality in Improving Health Outcomes for Community-Dwelling Older Adults: Systematic Review. J. Med. Internet Res. 2020, 22, e17331. [Google Scholar] [CrossRef]
- Ruiz-Ruiz, L.; Jimenez, A.R.; Garcia-Villamil, G.; Seco, F. Detecting Fall Risk and Frailty in Elders with Inertial Motion Sensors: A Survey of Significant Gait Parameters. Sensors 2021, 21, 6918. [Google Scholar] [CrossRef] [PubMed]
- Soto, R.; Díaz, L.A.; Rivas, V.; Fuentes-López, E.; Zalaquett, M.; Bruera, M.J.; González, C.; Mezzano, G.; Benítez, C. Frailty and Reduced Gait Speed Are Independently Related to Mortality of Cirrhotic Patients in Long-Term Follow-Up. Ann. Hepatol. 2021, 25, 100327. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Nathalie, J.; Nguyenhuy, M.; Xu, R.; Virk, S.A.; Saxena, A. Slow Gait Speed Is Associated with Worse Postoperative Outcomes in Cardiac Surgery: A Systematic Review and Meta-analysis. J. Card. Surg. 2022, 37, 197–204. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Bosch, J.; Vicente-Rodríguez, G.; Gorczakowska, D.; Araluze-Arizti, P.; Pérez-Bellmunt, A. Effectiveness of Multicomponent Training on Physical Performance in Older Adults: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2023, 104, 104838. [Google Scholar] [CrossRef] [PubMed]
- Carnavale, B.F.; Da Silva Santos, V.R.; Farche, A.C.S.; Rossi, P.G.; Fiogbé, E.; De Souza Buto, M.S.; De Vassimon-Barroso, V.; De Medeiros Takahashi, A.C. Effects of a Multicomponent Training and Detraining on Frailty Status, Physical Activity Level, Sedentary Behavior Patterns and Physical Performance of Pre-Frail Older Adults: A Randomized Controlled Trial. Eur. Geriatr. Med. 2024, 15, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.; Locks, R.R.; Lopes, P.B.; Bento, P.C.B.; Rodacki, A.L.F.; Carraro, A.N.; Pereira, G. Multicomponent Exercise Training Improves Gait Ability of Older Women Rather than Strength Training: A Randomized Controlled Trial. J. Aging Res. 2020, 2020, 6345753. [Google Scholar] [CrossRef] [PubMed]
- Bortone, I.; Sardone, R.; Lampignano, L.; Castellana, F.; Zupo, R.; Lozupone, M.; Moretti, B.; Giannelli, G.; Panza, F. How Gait Influences Frailty Models and Health-related Outcomes in Clinical-based and Population-based Studies: A Systematic Review. J. Cachexia Sarcopenia Muscle 2021, 12, 274–297. [Google Scholar] [CrossRef] [PubMed]
- Beigienė, A.; Petruševičienė, D.; Barasaitė, V.; Kubilius, R.; Macijauskienė, J. Frailty and Different Exercise Interventions to Improve Gait Speed in Older Adults after Acute Coronary Syndrome. Medicina 2021, 57, 1344. [Google Scholar] [CrossRef] [PubMed]
- García-de-Villa, S.; Neira, G.G.-V.; Álvarez, M.N.; Huertas-Hoyas, E.; Ruiz, L.R.; del-Ama, A.J.; Sánchez, M.C.R.; Jiménez, A.R. A Database with Frailty, Functional and Inertial Gait Metrics for the Research of Fall Causes in Older Adults. Sci. Data 2023, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Oh, S.-L. What Is the Optimal Tool to Measure Gait Speed in a Clinical Setting? Ann. Geriatr. Med. Res. 2019, 23, 155–156. [Google Scholar] [CrossRef]
Type of Activity | Characteristics | Description |
---|---|---|
(A) Conventional rehabilitation program | ||
Aerobic endurance training with a cycle ergometer | Frequency: six times/week Intensity: light-moderate (Borg 9–13) Duration: up to 40–45 min Type: aerobic endurance | Warm-up phase: <50% target intensity 2 min, gradually increasing load by 1–10 W/min up to target intensity within 5–10 min. Exercise phase: workload was started at a light intensity, 37–45% VO2max, peak heart rate (HRpeak) 57–63%, and heart rate reserve from 30–39%, with an initial duration of 5 min, gradually increasing the duration up to 30 min and the intensity to moderate. Recovery phase: gradual reduction of the load within 5 min. |
Stretching exercises | Frequency: seven times/week Intensity: light-to-moderate (Borg 9–13) Duration: 10 min Type: passive stretching and ROM | Exercises were performed for major muscle groups after aerobic activities. A static stretch was held for 30 s followed by relaxation up to 30 s. |
Breathing exercises | Frequency: seven times/week Intensity: light (Borg 9–11) Duration: 10 min Type: diaphragmatic breathing | Diaphragmatic, supervised exercises combined with hand movements for each patient. |
(B) Multicomponent dynamic training | ||
Aerobic activity | Frequency: three times/week Intensity: moderate (Borg 12–13) Duration: 20–30 min Type: aerobic endurance | Stair climbing, walking, cycling, or other cyclic aerobic activity. |
Sensorimotor training | Frequency: three times/week Intensity: light-to-moderate (Borg 9–13) Duration: 15–20 min Type: sensorimotor, balance, coordination | Included postural control, dynamic balance, and coordination. At the beginning, exercises were performed by decreasing the surface of a support base, and later, by using unstable surfaces. |
Muscle strength | Frequency: three times/week Intensity: starting from light (30% of 1RM) and increasing to moderate-vigorous (Borg 9–17) Extent: 8–10 exercises (3 sessions, 10 repetitions) Type: strength | Training with elastic resistance bands to increase muscle strength (a band of a particular color based on the resistance level was chosen for each patient individually) and with weights to exercise the major muscle groups of the upper and lower extremities (gradually increasing the weight from 0.5 to 2 kg). |
Flexibility | Frequency: three times/week Intensity: light (Borg 9–11) Duration: 5–10 min Type: ROM, stretching | Stretching exercises for the major muscle groups of the upper and lower extremities to increase the range of motion (ROM). |
(C) Combined computer-based interactive cardiac program | ||
Gait improvement and aerobic activity | Frequency: three times/week Intensity: moderate (Borg 12–13) Duration: 20–30 min Type: gait training, aerobic endurance | For gait improvement, we used training with a Biodex GaitTrainer™3 treadmill (Shirley, NY, USA) 10–15 min with audio and visual feedback (the walking speed was selected individually according to the T0 test data; range 0.5–3.3 km/h). For gait, endurance, and reaction time improvements, we used the Zebris FDMT training platform (1.9.162; Isny, Germany) for 10–15 min. This platform allows for the virtual creation of obstacles thus simulating the real environment for a patient and at the same time providing them with cognitive tasks (the walking speed was selected individually according to the T0 test data; range 0.5–3.3 km/h). These devices complement each other, and the Zebris FDMT platform further improves patients’ cognitive function. |
Sensorimotor training | Frequency: three times/week Intensity: light-to-moderate (Borg 9–13) Duration: ~20 min, each training mode lasted for 3 min Type: sensorimotor, balance, coordination | For sensorimotor, balance, coordination improvements we used a computerized system Biodex Balance SD (v3.06; Shirley, NY, USA) with an integrated platform monitoring the changes in the body’s center of gravity. We included the following programs: postural stability, maze control, limits of stability, random control, weight shift, percent weight-bearing, catch game-based program that improves reaction speed. |
Muscle strength | Frequency: three times/week Intensity: starting from light (30% of 1RM) and increasing to moderate-vigorous (Borg 9–17) Extent: 8–10 exercises (3 sessions, 10 repetitions) Type: strength | For muscle strength training, a smart pneumatic technology-based HUR training device was used. During the program involving the major muscle groups of the upper and lower extremities. |
Characteristic | CG | IG-1 | IG-2 | p * |
---|---|---|---|---|
Age, years, median (range) | 71 (65; 88) | 71 (65; 87) | 71 (65; 81) | 0.808 |
Sex, n (%) | ||||
Male | 26 (74) | 18 (51) | 24 (69) | 0.114 |
Female | 9 (26) | 17 (49) | 11 (31) | |
Height, m, mean ± SD | 1.68 ± 0.08 | 1.65 ± 0.08 a | 1.70 ± 0.08 a | 0.042 |
Weight, kg, mean ± SD | 80.35 ± 15.94 | 72.36 ± 14.09 a | 82.30 ± 13.52 a | 0.016 |
BMI, kg/m2, mean ± SD | 28.22 ± 4.27 | 26.51 ± 4.84 | 28.60 ± 4.71 | 0.151 |
LVEF, %, median (range) | 50 (30; 55) | 50 (30; 58) | 50 (34; 60) | 0.482 |
Surgery type, n (%) | ||||
Coronary artery bypass graft surgery | 20 (57) | 19 (54) | 21 (60) | 0.901 |
Heart valve surgery | 8 (23) | 6 (17) | 6 (17) | |
AVR-CABG surgery | 7 (20) | 10 (29) | 8 (23) | |
EFS, score, median (range) | 6 (4; 10) | 5 (4; 9) | 6 (4; 11) | 0.843 |
Variable | Time Point | CG | IG-1 | IG-2 | p * |
---|---|---|---|---|---|
Fall risk, score | T0 T1 | 1.30 (0.60; 2.50) 1.10 (0.60; 2.40) a | 1.30 (0.80; 4.30) 1.00 (0.70; 2.10) b | 1.15 (0.6; 2.5) 0.85 (0.6; 1.3) a,b | 0.330 <0.001 |
p ** | 0.001 | 0.019 | <0.001 | ||
SPPB, score | T0 T1 | 10 (5; 12) 11 (9; 12) | 10 (7; 12) 11 (7; 12) | 10 (6; 12) 11 (8; 12) | 0.090 0.260 |
p ** | <0.001 | <0.001 | <0.001 |
Gait Parameter | Time Point | CG | IG-1 | IG-2 | p * |
---|---|---|---|---|---|
Geometry | |||||
Foot rotation, degree | T0 T1 | 12.36 (−0.65; 18.05) a 9 (2.45; 21.40) | 6.80 (−4.40; 15.15) ab 6.90 (−5.20; 16.75) | 9.75 (2.75; 20) b 9 (2.45; 21.40) | 0.003 0.096 |
p ** | 0.273 | 0.353 | 0.048 | ||
Step length, cm | T0 T1 | 28.25 (12; 47) a 32.25 (17.5; 54.50) a | 19 (9; 41) ab 22 (10; 42) ab | 35 (17.5; 56) b 39 (23.50; 57) b | 0.001 0.001 |
p ** | 0.004 | 0.004 | 0.001 | ||
Stride length, cm | T0 T1 | 56 (23; 95) a 64.50 (35; 110) a | 40 (18; 83) ab 44 (20; 84) ab | 69.50 (35; 112) b 78 (46; 114) b | 0.001 0.001 |
p ** | 0.006 | 0.004 | 0.001 | ||
Step width, cm | T0 T1 | 8.5 (1; 20) a 9 (2; 20) a | 13 (8; 23) ab 12 (7; 23) ab | 11 (4; 19) b 9 (3; 17) b | 0.001 0.001 |
p ** | 0.549 | 0.162 | 0.072 | ||
Phase | |||||
Stance phase, % | T0 T1 | 68.50 (64.10; 80.50) 66.85 (62.15; 75.15) | 70.85 (64.90; 80) 68.28 (64.15; 79.65) | 68.35 (63.70; 79.10) 67.10 (61.70; 74.15) | 0.098 0.063 |
p ** | 0.001 | 0.016 | 0.001 | ||
Load response, % | T0 T1 | 18.50 (13.95; 30.40) 16.83 (12.15; 25.15) | 20.75 (14.95; 30.15) 18.30 (14.10; 29.70) a | 18.05 (13.75; 29.15) 16.83 (11.70; 24.10) a | 0.096 0.039 |
p ** | 0.001 | 0.023 | 0.001 | ||
Single limb support, % | T0 T1 | 31.50 (19.65; 36.10) 33.20 (24.80; 37.85) | 29.30 (20.15; 35.10) 31.75 (20.35; 35.90) a | 32.03 (20.90; 36.25) 33.25 (25.85; 38.20) a | 0.086 0.045 |
p ** | 0.002 | 0.016 | 0.001 | ||
Pre-swing, % | T0 T1 | 18.53 (14; 30.30) 16.80 (12.15; 25.15) | 20.75 (14.90; 29.90) 18.30 (14.10; 29.70) a | 18.03 (13.70; 29.05) 16.78 (11.75; 25.15) a | 0.099 0.039 |
p ** | 0.001 | 0.016 | 0.001 | ||
Swing phase, % | T0 T1 | 31.50 (19.50; 35.90) 33.15 (24.85; 37.85) | 29.25 (20; 35.10) 31.65 (20.35; 35.85) a | 31.90 (20.90; 36.30) 33.18 (25.85; 38.30) a | 0.098 0.039 |
p ** | 0.001 | 0.023 | 0.001 | ||
Double stance phase, % | T0 T1 | 37.00 (27.90; 60.80) 33.65 (24.30; 50.30) | 41.60 (29.80; 59.80) 36.60 (28.20; 59.30) a | 36.10 (27.50; 58.20) 33.55 (23.50; 48.30) a | 0.094 0.037 |
p ** | 0.001 | 0.001 | 0.001 | ||
Timing | |||||
Step time, s | T0 T1 | 0.83 (0.49; 1.41) a 0.71 (0.42; 1.07) a | 0.64 (0.49; 1.04) ab 0.59 (0.44; 0.80) ab | 0.89 (0.59; 1.18) b 0.73 (0.55; 1.10) b | 0.001 0.001 |
p ** | 0.001 | 0.095 | 0.001 | ||
Stride time, s | T0 T1 | 1.66 (0.97; 2.81) a 1.41 (0.84; 2.14) a | 1.28 (0.97; 2.07) ab 1.18 (0.89; 1.61) ab | 1.77 (1.17; 2.35) b 1.46 (1.10; 2.18) b | 0.001 0.001 |
p ** | 0.001 | 0.095 | 0.001 | ||
Cadence, steps/min | T0 T1 | 72.50 (43.00; 124.00) a 85.00 (56.00; 143.00) a | 98.00 (58.00; 124.00) ab 102.00 (75.00; 139.00) ab | 67.50 (52.00; 103.00) b 82.50 (55.00; 109.00) b | 0.001 0.001 |
p ** | 0.001 | 0.095 | 0.001 | ||
Gait speed, km/h | T0 T1 | 1.20 (0.5; 2.10) 1.70 (0.80; 3.00) | 0.90 (0.50; 1.70) a 1.30 (0.60; 3.30) a | 1.40 (0.80; 2.50) a 2.00 (0.90; 2.90) a | 0.002 0.001 |
p ** | 0.001 | 0.001 | 0.001 |
Gait Parameter | CG T1–T0 | IG-1 T1–T0 | IG-2 T1–T0 | p * |
---|---|---|---|---|
Foot rotation, degree | −0.75 (−4.20; 5.95) | 0.03 (−3.85; 4.30) | −0.93 (−5.25; 3.20) | 0.628 |
Step length, cm | 2 (−8; 19) | 5.25 (−9; 18.5) | −3 (−36; 21,5) | 0.069 |
Stride length, cm | 4 (−16; 38) | 10.5 (−18; 38) | 7 (−87; 27) | 0.805 |
bStep width, cm | −1 (−7; 6) | 1 (−6; 7) | −1 (−11; 5) | 0.117 |
Step time, s | −0.05 (−0.33; 0.23) ab | −0.14 (−0.49; 0.03) a | −0.13 (−0.52; 0.09) b | 0.030 |
Stride time, s | −0.10 (−0.65; 0.47) ab | −0.29 (−0.98; 0.06) a | −0.28 (−1.72; 0.16) b | 0.012 |
Cadence, steps/min | 11 (−31; 36) | 12.50 (−3; 44) | 12 (−84; 42) | 0.730 |
Gait speed, km/h | 0.40 (−0.10; 1.70) | 0.40 (−0.10; 1.30) | 0.40 (−1.80; 1.30) | 0.486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stonkuvienė, V.; Kubilius, R.; Lendraitienė, E. Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study. Medicina 2025, 61, 206. https://doi.org/10.3390/medicina61020206
Stonkuvienė V, Kubilius R, Lendraitienė E. Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study. Medicina. 2025; 61(2):206. https://doi.org/10.3390/medicina61020206
Chicago/Turabian StyleStonkuvienė, Vitalija, Raimondas Kubilius, and Eglė Lendraitienė. 2025. "Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study" Medicina 61, no. 2: 206. https://doi.org/10.3390/medicina61020206
APA StyleStonkuvienė, V., Kubilius, R., & Lendraitienė, E. (2025). Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study. Medicina, 61(2), 206. https://doi.org/10.3390/medicina61020206