Large Unstained Cells: A Predictive Biomarker for Recurrence and Survival in Resected Gastric Cancer
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patient Selection
2.2. Evaluation of MSI and Tumor Regression Status
- TRG1a: Complete pathological response, characterized by the absence of viable tumor cells;
- TRG1b: Major response, defined as less than 10% residual tumor tissue;
- TRG2: Partial regression, denoting 10–50% residual tumor tissue;
- TRG3: Minimal or no regression, with over 50% viable tumor cells and negligible signs of regression within the tumor bed.
2.3. LUC Definition, Analysis, and Sampling Timing
2.4. Determination of LUC Levels
2.5. Measurement and Cut-Off Value
2.6. Evaluation of Survival
2.7. Statistics
3. Results
Patients and Tumor Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Cheng, M.; Peng, W.; Liu, T.; Zhang, J.; Sheng, M.; Ren, R.; Chen, Q.; Gong, W.; Wu, Y. Incidence and risk of remnant gastric cancer after gastrectomy for gastric cancer: A population-based study from the SEER database. BMC Gastroenterol. 2024, 24, 35. [Google Scholar] [CrossRef]
- Lago, N.M.; Villar, M.V.; Ponte, R.V.; Nallib, I.A.; Alvarez, J.J.C.; López, J.R.A.; López, R.L.; Iruegas, M.E.P. Impact of HER2 status in resected gastric or gastroesophageal junction adenocarcinoma in a Western population. Ecancermedicalscience 2020, 14, 1020. [Google Scholar] [CrossRef]
- André, T.; Tougeron, D.; Piessen, G.; de la Fouchardière, C.; Louvet, C.; Adenis, A.; Jary, M.; Tournigand, C.; Aparicio, T.; Desrame, J.; et al. Neoadjuvant Nivolumab Plus Ipilimumab and Adjuvant Nivolumab in Localized Deficient Mismatch Repair/Microsatellite Instability-High Gastric or Esophagogastric Junction Adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J. Clin. Oncol. 2023, 41, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Allum William, H.; Stenning Sally, P.; Thompson Jeremy, N.; Van de Velde Cornelis, J.H.; Nicolson, M.; Scarffe, J.H.; Lofts Fiona, J.; Falk Stephen, J.; Iveson Timothy, J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, C.; Gretschel, S.; Lordick, F.; Reichardt, P.; Hohenberger, W.; Eisenberger, C.F.; Haag, C.; Mauer, M.E.; Hasan, B.; Welch, J.; et al. Neoadjuvant chemotherapy compared with surgery alone for locally advanced cancer of the stomach and cardia: European Organisation for Research and Treatment of Cancer randomized trial 40954. J. Clin. Oncol. 2010, 28, 5210–5218. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Terazawa, T.; Goto, M.; Tanaka, R.; Kato, T.; Fujitani, K.; Kawakami, H.; Sakai, D.; Kurokawa, Y.; Tsujinaka, T.; et al. Neoadjuvant docetaxel, oxaliplatin and S-1 therapy for the patients with large type 3 or type 4 gastric cancer (OGSG1902): Protocol of a multi-center, phase II study. BMC Cancer 2022, 22, 811. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Watanabe, K.; Noma, D.; Masuda, H.; Masuda, M. Preoperative inflammation-based scores predict early recurrence after lung cancer resection. J. Thorac. Dis. 2021, 13, 2812–2823. [Google Scholar] [CrossRef] [PubMed]
- Jafri, S.H.; Shi, R.; Mills, G. Advance lung cancer inflammation index (ALI) at diagnosis is a prognostic marker in patients with metastatic non-small cell lung cancer (NSCLC): A retrospective review. BMC Cancer 2013, 13, 158. [Google Scholar] [CrossRef]
- Li, Q.Q.; Lu, Z.H.; Yang, L.; Lu, M.; Zhang, X.T.; Li, J.; Zhou, J.; Wang, X.C.; Gong, J.F.; Gao, J.; et al. Neutrophil count and the inflammation-based glasgow prognostic score predict survival in patients with advanced gastric cancer receiving first-line chemotherapy. Asian Pac. J. Cancer Prev. 2014, 15, 945–950. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, M.M.; Fu, S.; Li, L.L.; Liu, Y.S.; Liu, Z.P.; Liu, T.; Wang, R.T.; Yu, K.J. Platelet distribution width correlates with prognosis of gastric cancer. Oncotarget 2017, 8, 20213–20219. [Google Scholar] [CrossRef] [PubMed]
- Lotfinejad, P.; Asghari Jafarabadi, M.; Abdoli Shadbad, M.; Kazemi, T.; Pashazadeh, F.; Sandoghchian Shotorbani, S.; Jadidi Niaragh, F.; Baghbanzadeh, A.; Vahed, N.; Silvestris, N.; et al. Prognostic Role and Clinical Significance of Tumor-Infiltrating Lymphocyte (TIL) and Programmed Death Ligand 1 (PD-L1) Expression in Triple-Negative Breast Cancer (TNBC): A Systematic Review and Meta-Analysis Study. Diagnostics 2020, 10, 704. [Google Scholar] [CrossRef] [PubMed]
- Fornarini, G.; Rebuzzi, S.E.; Banna, G.L.; Calabrò, F.; Scandurra, G.; De Giorgi, U.; Masini, C.; Baldessari, C.; Naglieri, E.; Caserta, C.; et al. Immune-inflammatory biomarkers as prognostic factors for immunotherapy in pretreated advanced urinary tract cancer patients: An analysis of the Italian SAUL cohort. ESMO Open 2021, 6, 100118. [Google Scholar] [CrossRef]
- Thirup, P. LUC, what is that? Large unstained cells. Clin. Chem. 1999, 45, 1100. [Google Scholar] [CrossRef]
- Martin, P.J.; Anderson, C.C.; Jones, H.M.; Lai, A.P.; Linch, D.C.; Goldstone, A.H. A rise in the percentage of large unstained cells in the peripheral blood determined by the Hemalog D90 automated differential counter is a feature of impending myeloid engraftment following bone marrow transplantation. Clin. Lab. Haematol. 1986, 8, 1–8. [Google Scholar] [CrossRef]
- Lanza, F.; Moretti, S.; Latorraca, A.; Scapoli, G.; Rigolin, F.; Castoldi, G. Flow cytochemical analysis of peripheral lymphocytes in chronic B-lymphocytic leukemia. Prognostic role of the blast count determined by the H*1 system and its correlation with morphologic features. Leuk. Res. 1992, 16, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Fortes, C.; Mastroeni, S.; Zappalà, A.R.; Passarelli, F.; Ricci, F.; Abeni, D.; Michelozzi, P. Early inflammatory biomarkers and melanoma survival. Int. J. Dermatol. 2023, 62, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, M.S.; Kim, D.Y.; Lee, M.G.; Kim, D.S. Increased large unstained cells value in varicella patients: A valuable parameter to aid rapid diagnosis of varicella infection. J. Dermatol. 2015, 42, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Burcak Polat, S.; Ateş, I.; Izdeş, S.; Rahmet Güner, H.; Topaloğlu, O.; Ersoy, R.; Çakir, B. Are neutrophil-to-lymphocyte ratios and large unstained cells different in hospitalized COVID-19 PCR-positive patients with and without diabetes mellitus? Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5963–5970. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Mueller, J.D.; Schulmacher, C.; Ott, K.; Fink, U.; Busch, R.; Böttcher, K.; Siewert, J.R.; Höfler, H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003, 98, 1521–1530. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, G.; Liu, X.; Liu, X.; Chen, C.; Yu, H.; Huang, X.; Zhang, Q.; Yu, J. Blood neutrophil-lymphocyte ratio predicts survival for stages III-IV gastric cancer treated with neoadjuvant chemotherapy. World J. Surg. Oncol. 2013, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhao, L.; Dong, Z.; Dou, Y.; Liu, Y.; Ma, C.; Qu, X. After neoadjuvant chemotherapy platelet/lymphocyte ratios negatively correlate with prognosis in gastric cancer patients. J. Clin. Lab. Anal. 2018, 32, e22364. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Yang, J.; Wu, J.; Wu, H.; Sun, C.; Chen, S.; Yang, P.; Tian, Y.; Guo, H.; Liu, Y.; et al. Combined systemic inflammatory immune index and prognostic nutrition index as chemosensitivity and prognostic markers for locally advanced gastric cancer receiving neoadjuvant chemotherapy: A retrospective study. BMC Cancer 2024, 24, 1014. [Google Scholar] [CrossRef]
- Chew, V.; Tow, C.; Teo, M.; Wong, H.L.; Chan, J.; Gehring, A.; Loh, M.; Bolze, A.; Quek, R.; Lee, V.K.; et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J. Hepatol. 2010, 52, 370–379. [Google Scholar] [CrossRef]
- Yu, X.; Hu, F.; Li, C.; Yao, Q.; Zhang, H.; Xue, Y. Clinicopathologic characteristics and prognosis of proximal and distal gastric cancer. OncoTargets Ther. 2018, 11, 1037–1044. [Google Scholar] [CrossRef]
- Tan, Z. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 3537. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Du, X.; Wang, J.; Wang, Q.; Zhu, X.; Xiang, G.; Nie, C.; Han, X.; Zhu, L.; Zhou, H.; et al. Risk and Prognosis of Subsequent Primary Gastric Cancer. Oncol. Res. Treat. 2022, 45, 186–196. [Google Scholar] [CrossRef]
- Zheng, Z.F.; Lin, G.T.; Zhong, Q.; Wu, D.; Lu, J.; Wang, J.B.; Chen, Q.Y.; Lin, J.X.; Cao, L.L.; Lin, M.; et al. Effect of sarcopenia on short-term and long-term outcomes of older patients with locally advanced gastric cancer: A multicenter study. Surg. Endosc. 2024, 38, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, D.; Piccioni, S.A.; Carbone, L.; Petrioli, R.; Costantini, M.; Malagnino, V.; Bagnacci, G.; Rizzoli, G.; Calomino, N.; Piagnerelli, R.; et al. Posterior and Para-Aortic (D2plus) Lymphadenectomy after Neoadjuvant/Conversion Therapy for Locally Advanced/Oligometastatic Gastric Cancer. Cancers 2024, 16, 1376. [Google Scholar] [CrossRef]
- Alyami, M.; Bonnot, P.-E.; Mercier, F.; Laplace, N.; Villeneuve, L.; Passot, G.; Bakrin, N.; Kepenekian, V.; Glehen, O. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for unresectable peritoneal metastasis from gastric cancer. Eur. J. Surg. Oncol. 2021, 47, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Vasconcelos, F.; Gomes, R.; Bouça-Machado, R.; Aral, M.; Nogueiro, J.; Bouça-Machado, T.; Sousa-Pinto, B.; Santos-Sousa, H. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) in the Treatment of Gastric Cancer: Feasibility, Efficacy and Safety-A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3320. [Google Scholar] [CrossRef] [PubMed]
- Lamb, A.; Chen, L.F. Role of the Helicobacter pylori-induced inflammatory response in the development of gastric cancer. J. Cell Biochem. 2013, 114, 491–497. [Google Scholar] [CrossRef]
- Usui, Y.; Taniyama, Y.; Endo, M.; Koyanagi Yuriko, N.; Kasugai, Y.; Oze, I.; Ito, H.; Imoto, I.; Tanaka, T.; Tajika, M.; et al. Helicobacter pylori, Homologous-Recombination Genes, and Gastric Cancer. N. Engl. J. Med. 2023, 388, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
Whole (n = 180) | ||
---|---|---|
Age, Median, IQR | 59 (51–66) | |
Gender, Male | 137 (76%) | |
ECOG | 0 | 70 (39%) |
1 | 107 (59%) | |
2 | 3 (2%) | |
Localization | GEJ | 60 (33%) |
Gastric | 120 (67%) | |
Histology | Adenocarcinoma | 146 (81%) |
Poorly cohesive | 34 (19%) | |
Grading according to the WHO | Unknown | 47 (26%) |
Grade 1 | 18 (10%) | |
Grade 2 | 42 (23%) | |
Grade 3 | 73 (41%) | |
Stage T | T1 | 0 (0%) |
T2 | 12 (7%) | |
T3 | 124 (69%) | |
T4 | 44 (24%) | |
Stage N | N0 | 34 (19%) |
N1 | 86 (48%) | |
N2 | 45 (25%) | |
N3 | 15 (8%) | |
Stage | 2 | 36 (20%) |
3 | 133 (74%) | |
4 | 11 (6%) | |
Microsatellite Status | Unknown | 58 (32%) |
pMMR | 101 (56%) | |
dMMR | 21 (12%) | |
Charlson Comorbidity Index | <4 | 82 (46%) |
≥4 | 98 (54%) | |
Family History | 51 (28%) | |
Smoking | 84 (47%) | |
Alcohol | 9 (5%) | |
Chief Complaint | Dyspepsia | 74 (42%) |
Abdominal pain | 62 (35%) | |
Weight Loss | 11 (6%) | |
Hematemesis/Melena | 14 (8%) | |
Dysphagia | 28 (16%) | |
Diagnostic Laparoscopy | 139 (77%) | |
Surgery | Total gastrectomy | 127 (71%) |
Subtotal gastrectomy | 53 (29%) | |
Dissection | D1 | 15 (8%) |
D2 | 165 (92%) | |
Resection | R0 | 172 (96%) |
R1 | 8 (4%) | |
Use of HIPEC | 15 (8%) | |
Number of Lymph Nodes Excised, Median, IQR | 26 (20–34) | |
ypT | ypT0 | 18 (10%) |
ypT1 | 25 (14%) | |
ypT2 | 17 (9%) | |
ypT3 | 90 (50%) | |
ypT4 | 30 (17%) | |
ypN | ypN0 | 86 (48%) |
ypN1 | 35 (19%) | |
ypN2 | 29 (16%) | |
ypN3 | 30 (17%) | |
Metastases | M1 | 11 (6%) |
ypM | ypM1 | 9 (5%) |
Tumor Regression Score | TRG X | 43 (23%) |
TRG 1a | 14 (8%) | |
TRG 1b | 23 (13%) | |
TRG 2 | 34 (19%) | |
TRG 3 | 66 (37%) | |
Adjuvant Chemotherapy | 143 (84%) | |
Relapse | 58 (32%) | |
Death | 34 (19%) |
LUCs ≤ 0.14 (n = 113) | LUCs > 0.14 (n = 58) | p | ||
---|---|---|---|---|
Age, Median, IQR | 59 (49–65) | 61 (53–68) | 0.113 | |
Gender, Male | 83 (74%) | 48 (83%) | 0.173 | |
ECOG | 0 | 44 (39%) | 24 (41%) | 0.280 |
1 | 66 (58%) | 34 (59%) | ||
2 | 3 (3%) | 0 (0%) | ||
Localization | GEJ | 39 (35%) | 19 (33%) | 0.819 |
Gastric | 74 (65%) | 39 (67%) | ||
Histology | Adenocarcinoma | 87 (77%) | 54 (93%) | 0.009 |
Poorly cohesive | 26 (23%) | 4 (7%) | ||
Grading according to the WHO | Unknown | 30 (26%) | 16 (27%) | 0.162 |
Grade 1 | 12 (11%) | 5 (9%) | ||
Grade 2 | 21 (19%) | 19 (33%) | ||
Grade 3 | 50 (44%) | 18 (31%) | ||
Stage T | T1 | 0 (0%) | 0 (0%) | 0.068 |
T2 | 4 (4%) | 7 (12%) | ||
T3 | 82 (72%) | 35 (60%) | ||
T4 | 27 (24%) | 16 (28%) | ||
Stage N | N0 | 22 (20%) | 12 (21%) | 0.138 |
N1 | 59 (52%) | 24 (41%) | ||
N2 | 26 (23%) | 13 (22%) | ||
N3 | 6 (5%) | 9 (16%) | ||
Stage | 2 | 22 (19%) | 13 (22%) | 0.194 |
3 | 81 (72%) | 44 (76%) | ||
4 | 10 (9%) | 1 (2%) | ||
Microsatellite Status | Unknown | 37 (33%) | 21 (36%) | 0.201 |
pMMR | 64 (56%) | 28 (48%) | ||
dMMR | 12 (11%) | 9 (16%) | ||
Charlson Comorbidity Index | <4 | 57 (50%) | 21 (36%) | 0.077 |
≥4 | 56 (50%) | 37 (64%) | ||
Family History | 33 (29%) | 15 (26%) | 0.645 | |
Smoking | 50 (44%) | 29 (50%) | 0.475 | |
Alcohol | 3 (3%) | 6 (10%) | 0.063 | |
Chief Complaint | Dyspepsia | 49 (44%) | 22 (39%) | 0.521 |
Abdominal pain | 35 (31%) | 22 (39%) | 0.340 | |
Weight loss | 7 (6%) | 4 (7%) | 1.000 | |
Hematemesis/Melena | 4 (4%) | 10 (18%) | 0.005 | |
Dysphagia | 21 (19%) | 6 (10%) | 0.162 | |
Diagnostic Laparoscopy | 93 (82%) | 45 (78%) | 0.460 | |
Surgery | Total gastrectomy | 82 (73%) | 38 (66%) | 0.340 |
Subtotal gastrectomy | 31 (27%) | 20 (34%) | ||
Dissection | D1 | 8 (7%) | 5 (9%) | 0.764 |
D2 | 105 (93%) | 53 (91%) | ||
Resection | R0 | 109 (97%) | 56 (97%) | 1.000 |
R1 | 4 (3%) | 2 (3%) | ||
Use of HIPEC | 13 (12%) | 2 (3%) | 0.078 | |
Number of Lymph Nodes Excised, Median, IQR | 25 (19–34) | 28 (23–38) | ||
ypT | ypT0 | 12 (11%) | 6 (10%) | 0.658 |
ypT1 | 14 (12%) | 11 (19%) | ||
ypT2 | 10 (9%) | 7 (12%) | ||
ypT3 | 57 (50%) | 27 (47%) | ||
ypT4 | 20 (18%) | 7 (12%) | ||
ypN | ypN0 | 50 (44%) | 35 (60%) | 0.020 |
ypN1 | 30 (27%) | 4 (7%) | ||
ypN2 | 18 (16%) | 9 (16%) | ||
ypN3 | 15 (13%) | 10 (17%) | ||
Metastases | M1 | 10 (9%) | 1 (2%) | 0.101 |
ypM | ypM1 | 6 (5%) | 3 (5%) | 1.000 |
Tumor Regression Score (TRG) | TRG X | 28 (25%) | 10 (17%) | 0.511 |
TRG 1a | 9 (8%) | 5 (9%) | ||
TRG 1b | 14 (12%) | 9 (16%) | ||
TRG 2 | 18 (16%) | 15 (26%) | ||
TRG 3 | 44 (39%) | 19 (33%) | ||
Adjuvant Chemotherapy | 88 (85%) | 50 (88%) | 0.590 | |
Relapse | 38 (34%) | 13 (24%) | 0.129 | |
Death | 22 (20%) | 5 (9%) | 0.065 |
Univariate Analyses | |||
---|---|---|---|
HR | 95% CI | p | |
Age < 65 vs. ≥65 | 0.88 | 0.51–1.52 | 0.645 |
Male to Female | 1.01 | 0.53–1.91 | 0.986 |
Presence of Family History | 1.04 | 0.59–1.86 | 0.883 |
High CCI (>4 vs. ≤4) | 1.09 | 0.65–1.83 | 0.742 |
GEJ vs. gastric | 1.23 | 0.72–2.10 | 0.442 |
Adenocarcinoma vs. Poorly Cohesive Cancer | 1.54 | 0.85–2.77 | 0.154 |
Well and Intermediate vs. Poorly Differentiated | 1.05 | 0.59–1.87 | 0.881 |
MSS or not | 0.80 | 0.35–1.84 | 0.606 |
Stage 3 vs. 2 | 2.35 | 1.00–5.52 | 0.050 |
Stage 4 vs. 2 | 6.13 | 2.05–18.33 | 0.001 |
Subtotal vs. Total Gastrectomy | 0.72 | 0.39–1.31 | 0.279 |
D2 vs. D1 Dissection | 0.64 | 0.29–1.42 | 0.274 |
TRG 1a-1b-2 vs. 3 | 0.16 | 0.07–0.38 | <0.001 |
ECOG 0 vs. 1–2 | 0.68 | 0.39–1.18 | 0.169 |
LUC Low (≤0.14) vs. LUC High (>0.14) | 2.12 | 1.12–4.01 | 0.020 |
Univariate Analyses | |||
---|---|---|---|
HR | 95% CI | p | |
Age <65 vs. ≥65 | 0.93 | 0.45–1.91 | 0.847 |
Male to Female | 0.51 | 0.25–1.05 | 0.067 |
Presence of Family History | 1.07 | 0.50–2.29 | 0.870 |
High CCI (>4 vs. ≤4) | 1.08 | 0.55–2.12 | 0.832 |
GEJ vs. Gastric | 0.84 | 0.40–1.76 | 0.642 |
Adenocarcinoma vs. Poorly Cohesive Cancer | 0.36 | 0.18–0.74 | 0.005 |
Well and Intermediate vs. Poorly Differentiated | 0.78 | 0.37–1.66 | 0.518 |
MSS or not | 1.14 | 0.44–2.94 | 0.790 |
Stage 3 vs. 2 | 2.27 | 0.69–7.53 | 0.180 |
Stage 4 vs. 2 | 8.71 | 2.15–35.26 | 0.002 |
Subtotal vs. Total Gastrectomy | 0.51 | 0.22–1.17 | 0.111 |
D2 vs. D1 Dissection | 0.49 | 0.19–1.26 | 0.138 |
TRG 1a-1b-2 vs. 3 | 0.13 | 0.04–0.43 | 0.001 |
ECOG 0 vs. 1–2 | 0.81 | 0.40–1.62 | 0.543 |
LUC Low (≤0.14) vs. LUC High (>0.14) | 3.37 | 1.26–9.03 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceylan, F.; Tenekeci, A.K.; Bilgin, B.; Şendur, M.A.N.; Hızal, M.; Köş, F.T.; Dede, D.Ş. Large Unstained Cells: A Predictive Biomarker for Recurrence and Survival in Resected Gastric Cancer. Medicina 2025, 61, 208. https://doi.org/10.3390/medicina61020208
Ceylan F, Tenekeci AK, Bilgin B, Şendur MAN, Hızal M, Köş FT, Dede DŞ. Large Unstained Cells: A Predictive Biomarker for Recurrence and Survival in Resected Gastric Cancer. Medicina. 2025; 61(2):208. https://doi.org/10.3390/medicina61020208
Chicago/Turabian StyleCeylan, Furkan, Ateş Kutay Tenekeci, Burak Bilgin, Mehmet Ali Nahit Şendur, Mutlu Hızal, Fahriye Tuba Köş, and Didem Şener Dede. 2025. "Large Unstained Cells: A Predictive Biomarker for Recurrence and Survival in Resected Gastric Cancer" Medicina 61, no. 2: 208. https://doi.org/10.3390/medicina61020208
APA StyleCeylan, F., Tenekeci, A. K., Bilgin, B., Şendur, M. A. N., Hızal, M., Köş, F. T., & Dede, D. Ş. (2025). Large Unstained Cells: A Predictive Biomarker for Recurrence and Survival in Resected Gastric Cancer. Medicina, 61(2), 208. https://doi.org/10.3390/medicina61020208