The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Size and Study Groups
2.3. Inclusion Criteria
2.4. Exlusion Criteria
2.5. Sample Collection and Measurements
2.6. Measurement of Serum Resolvin D1 (RvD1) Levels
2.7. Measurement of Serum Lipoxin A4 (LXA4) Levels
2.8. Measurement of Serum Leukotriene B4 (LTB4) Levels
2.9. Statistical Analysis
3. Results
4. Discussion
The Study’s Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandel, J.S. Acute pancreatitis. Curr. Opin. Gastroenterol. 2005, 21, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Avunduk, C. Manual of Gastroenterology, 3rd ed.; Lippincott Williams and Wilkins: Philedelphia, PA, USA, 2002. [Google Scholar]
- Haeggström, J.Z.; Funk, C.D. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem. Rev. 2011, 111, 5866–5898. [Google Scholar] [CrossRef]
- Chiang, N.; Fredman, G.; Bäckhed, F.; Oh, S.F.; Vickery, T.; Schmidt, B.A.; Serhan, C.N. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 2012, 484, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Zheng, C.; Yu, D.; Zhang, F.; Pan, R.; Ni, X.; Shi, Z.; Zhang, Z.; Xiang, Y.; Sun, H.; et al. Lipoxin A4 Ameliorates Acute Pancreatitis-Associated Acute Lung Injury through the Antioxidative and Anti-Inflammatory Effects of the Nrf2 Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 2197017. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Lv, C.; Yu, S.; Yang, Y.; Kong, H.; Xie, J.; Sun, H.; Andersson, R.; Xu, D.; Chen, B.; et al. Lipoxin A4 attenuation of endothelial inflammation response mimicking pancreatitis-induced lung injury. Exp. Biol. Med. (Maywood) 2013, 238, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chen, B.; Sun, H.; Deng, Z.; Andersson, R.; Zhang, Q. The protective effects of Lipoxin A4 during the early phase of severe acute pancreatitis in rats. Scand. J. Gastroenterol. 2011, 46, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, Y.; Ye, W.; Lin, Z.; Deng, T.; Zhang, T.; Zhao, J.; Tong, Y.; Shan, Y.; Chen, G. The LipoxinA4 receptor agonist BML-111 ameliorates intestinal disruption following acute pancreatitis through the Nrf2-regulated antioxidant pathway. Free Radic Biol. Med. 2021, 163, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Fredman, G.; Serhan, C.N. Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution. Biochem. J. 2011, 437, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Norling, L.V.; Dalli, J.; Flower, R.J.; Serhan, C.N.; Perretti, M. Resolvin D1 Limits Polymorphonuclear Leukocytes Recruitment to Inflammatory Loci: Receptor-Dependent Actions. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Fredman, G.; Ozcan, L.; Spolitu, S.; Hellmann, J.; Spite, M.; Backs, J.; Tabas, I. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl. Acad. Sci. USA 2014, 111, 14530–14535. [Google Scholar] [CrossRef] [PubMed]
- Perucci, L.O.; de Castro Pinto, K.M.; da Silva, S.P.G.; Lage, E.M.; Teixeira, P.G.; Barbosa, A.S.; Alpoim, P.N.; de Sousa, L.P.; Talvani, A.; Dusse, L.M.S. Longitudinal assessment of leukotriene B4, lipoxin A4, and resolvin D1 plasma levels in pregnant women with risk factors for preeclampsia. Clin. Biochem. 2021, 98, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Barnig, C.; Lutzweiler, G.; Giannini, M.; Lejay, A.; Charles, A.L.; Meyer, A.; Geny, B. Resolution of Inflammation after Skeletal Muscle Ischemia-Reperfusion Injury: A Focus on the Lipid Mediators Lipoxins, Resolvins, Protectins and Maresins. Antioxidants 2022, 11, 1213. [Google Scholar] [CrossRef]
- Wang, B.; Hu, C.; Mei, Y.; Bao, J.; Ding, S.; Liu, X.; Mei, Q.; Xu, J. Resolvin D1 Resolve Inflammation in Experimental Acute Pancreatitis by Restoring Autophagic Flux. Dig. Dis. Sci. 2018, 63, 3359–3366. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, D.; Long, F.W.; Chen, K.-L.; Yang, H.-W.; Lv, Z.-Y.; Zhou, B.; Peng, Z.-H.; Sun, X.-F.; Li, Y.; et al. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G303–G309. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Wang, F.Y.; Liu, Z.Y.; Liu, Y. Resolvin D1 Reduces Cerulein and Lipopolysaccharide-induced Severe Acute Pancreatitis in Mice Fracture Patients. Sichuan Da Xue Xue Bao Yi Xue Ban 2019, 50, 215–218. [Google Scholar]
- Feng, Q.-X.; Feng, F.; Feng, X.-Y.; Li, S.-J.; Wang, S.-Q.; Liu, Z.-X.; Zhang, X.-J.; Zhao, Q.-C.; Wang, W. Resolvin D1 reverses chronic pancreatitis-induced mechanical allodynia, phosphorylation of NMDA receptors, and cytokines expression in the thoracic spinal dorsal horn. BMC Gastroenterol. 2012, 12, 148. [Google Scholar]
- Zhao, X.W.; Bao, J.J.; Hu, C.; Ding, H.; Liu, X.-C.; Mei, Q.; Xu, J.-M. Effect of diclofenac on the levels of lipoxin A4 and Resolvin D1 and E1 in the post-ERCP pancreatitis. Dig. Dis. Sci. 2014, 59, 2992–2996. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Yokoe, M.; Hata, J.; Takada, T.; Strasberg, S.M.; Asbun, H.J.; Wakabayashi, G.; Kozaka, K.; Endo, I.; Deziel, D.J.; Miura, F.; et al. Tokyo Guidelines 2018: Diagnostic criteria severity grading of acute cholecystitis (with videos). J. Hepatobiliary Pancreat. Sci. 2018, 25, 41–54. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Hsu, J.; Bawazeer, M.; Marshall, J.; Friedrich, J.O.; Nathens, A.; Coburn, N.; May, G.R.; Pearsall, E.; McLeod, R.S. Clinical practice guideline: Management of acute pancreatitis. Can. J. Surg. J. Can. De Chir. 2016, 59, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Recchiuti, A. Resolvin D1 and its GPCRs in resolution circuits of inflammation. Prostaglandins Other Lipid Mediat. 2013, 107, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Gundala, N.K.V.; Rhenghachar, P.; Polavarapu, S.; Hari, A.D.; Sadananda, M.; Das, U.N. Resolvin D1 Ameliorates Nicotinamide-streptozotocin-induced Type 2 Diabetes Mellitus by its Anti-inflammatory Action and Modulating PI3K/Akt/mTOR Pathway in the Brain. Arch. Med. Res. 2020, 51, 492–503. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Resolvin D1 Decreases Severity of Streptozotocin-Induced Type 1 Diabetes Mellitus by Enhancing BDNF Levels, Reducing Oxidative Stress, and Suppressing Inflammation. Int. J. Mol. Sci. 2021, 22, 1516. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Rattner, D.W.; Lewandrowski, K.; Compton, C.C.M.; Mandavilli, U.M.; Knoefel, W.T.; Warshaw, A.L. A better model of acute pancreatitis for evaluating therapy. Ann. Surg. 1992, 215, 44–56. [Google Scholar] [CrossRef]
- Tenner, S.; Dubner, H.; Steinberg, W. Predicting gallstone pancreatitiswith laboratory parameters. A meta-analysis. Am. J. Gastroenterol. 1994, 89, 1863. [Google Scholar]
- Ros, E.; Navarro, S.; Bru, C.; Garcia-Pugés, A.; Valderrama, R. Occult microlithiasis in idiopathic acute pancreatitis: Prevention of relapses by cholecystectomy or ursodeoxycholic acid therapy. Gastroenterology 1991, 101, 1701. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, X.; Liu, S.; Shen, D.; Zhu, J.; Liu, K. Role of Resolvins in the Inflammatory Resolution of Neurological Diseases. Front. Pharmacol. 2020, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 2000, 192, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Clish, C.B.; Gronert, K.; Petasis, N.; Serhan, C.N. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J. Clin. Investig. 1998, 101, 819–826. [Google Scholar] [CrossRef]
- Levy, B.D.; Clish, C.B.; Schmidt, B.; Gronert, K.; Serhan, C.N. Lipid mediator class switching during acute inflammation: Signals in resolution. Nat. Immunol. 2001, 2, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Bandeira-Melo, C.; Serra, M.F.; Diaz, B.L.; Cordeiro, R.S.B.; Silva, P.M.R.; Lenzi, H.L.; Bakhle, Y.S.; Serhan, C.N.; Martins, M.A. Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: Relationship with concurrent eosinophilia. J. Immunol. 2000, 164, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Closa, D.; Rosello-Catafau, J.; Hotter, G.; Bulbena, O.; Fernandez-Cruz, L.; Gelpi, E. Cyclooxygenase and lipoxygenase metabolism in sodium taurocholate induced acute hemorrhagic pancreatitis in rats. Prostaglandins 1993, 45, 315–322. [Google Scholar] [CrossRef]
- Ortiz-Placín, C.; Castillejo-Rufo, A.; Estarás, M.; González, A. Membrane Lipid Derivatives: Roles of Arachidonic Acid and Its Metabolites in Pancreatic Physiology and Pathophysiology. Molecules 2023, 28, 4316. [Google Scholar] [CrossRef] [PubMed]
- Shahid, R.A.; Vigna, S.R.; Layne, A.C.; Romac, J.M.; Liddle, R.A. Acinar Cell Production of Leukotriene B4 Contributes to Development of Neurogenic Pancreatitis in Mice. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Vigna, S.R.; Shahid, R.A.; Nathan, J.D.; McVey, D.C.; Liddle, R.A. Leukotriene B4 mediates inflammation via TRPV1 in duct obstruction-induced pancreatitis in rats. Pancreas 2011, 40, 708–714. [Google Scholar] [CrossRef]
- Wang, M.; Tong, K.; Chen, Z.; Wen, Z. Mechanisms of 15-Epi-LXA4-Mediated HO-1 in Cytoprotection Following Inflammatory Injury. J. Surg. Res. 2023, 281, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Verras, G.I.; Mulita, F. Butyrylcholinesterase levels correlate with surgical site infection risk and severity after colorectal surgery: A prospective single-center study. Front. Surg. 2024, 11, 1379410. [Google Scholar] [CrossRef] [PubMed]
Control | Acute Cholecystitis | Acute Pancreatitis | Acute Pancreatitis+ Acute Cholecystitis | p-Value | |
---|---|---|---|---|---|
Gender (Female) | 27 (55%) | 27 (55%) | 31 (63%) | 26 (53%) | 0.338 ¶ |
Age (Year) | 64.98 ± 11.32 | 66.2 ± 10.42 | 63.67 ± 11.83 | 63.71 ± 12.43 | 0.659 † |
NAFLD (n, %) | 0 (0%) a | 0 (0%) a | 25 (51%) b | 29 (59.2%) b | <0.001 Ω |
DM (n, %) | 0 (0%) a | 0 (0%) a | 43 (87.8%) b | 34 (69.4%) b | <0.001 Ω |
HT (n, %) | 0 (0%) a | 13 (26.5%) b | 21 (42.9%) b | 25 (51%) b | <0.001 Ω |
BMI (kg/m2) | 24.01 ± 2.11 a | 26.66 ± 4.04 b | 26.98 ± 4.31 b | 26.83 ± 3.75 b | <0.001 † |
FBG (mg/dL) | 80.02 ± 9.75 a | 88.01 ± 6.49 a | 144.53 ± 42.63 b | 169.04 ± 76.45 c | <0.001 † |
Amylase (U/L) | 68 (56–78) a | 70 (57–76) a | 346 (236–564) b | 425 (345–954) b | <0.001 * |
Lipase (U/L) | 34.58 (23–48.54) a | 42 (23.65–48.54) a | 102.56 (86–145) b | 132 (86.45–213.9) b | <0.001 * |
T.Cholesterol (mg/dL) | 168.2 (159.8–180.4) a | 213 (203–220.4) b | 213 (203–219.6) b | 212.4 (199–220.4) b | <0.001 * |
LDL (mg/dL) | 103 (94–109) a | 145 (137–154) b | 146 (138–153) b | 146 (137–153) b | <0.001 * |
HDL (mg/dL) | 46 (43–51) a | 38 (36–46) b | 42 (34–48) b | 41 (36–45) b | <0.001 * |
Triglyceride (mg/dL) | 110 (97–115) a | 120 (110–180) b | 115 (108–150) b | 112 (93–135) a,b | 0.003 * |
AST (U/L) | 23 (16–26) a | 20.3 (16–23)a | 23 (16–55) a | 145 (102–302) b | <0.001 * |
ALT (U/L) | 24.1 (18.4–33) a | 23.1 (18.5–31 a | 34 (22–47.4) a | 122 (76–206) b | <0.001 * |
LDH (U/L) | 98 (86–134) a | 177 (155–203) c | 123 (92–162) a,b | 124 (96–268) b | <0.001 * |
WBC (103/µL) | 8.1 (6.8–8.9) a | 10.2 (8.6–14.3) b | 10.2 (8.4–14.5) b | 13.1 (9.7–17.5) b | <0.001 * |
CRP (mg/L) | 2.7 (2.1–4) a | 58.6 (46.5–78.6) b | 58.6 (46.1–78.1) b | 59.1 (46.5–132.5) b | <0.001 * |
RvD1 (ng/L) | 1249.26 (976.95–1549.26) a | 316.42 (228.45–416.12) b | 269.24 (216.45–356.12) b,c | 238.45 (205.56–313.65) c | <0.001 * |
LXA4 (ng/L) | 312.36 (256.45–489) a | 262.45 (245.24–396.56) a | 256.45 (236.42–285.56) a | 145.24 (135.56–156.45) b | <0.001 * |
LTB4 (ng/L) | 65.56 (56.23–76.42) a | 162.45 (145.24–176.42) b | 165.65 (145.65–335.56) b | 335.56 (175.56–362.45) c | <0.001 * |
All Groups | Control | Acute Cholecystitis | Acute Pancreatitis | Acute Pancreatitis + Cholecystitis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | RvD1 (ng/L) | LXA4 (ng/L) | LTB4 (ng/L) | RvD1 (ng/L) | LXA4 (ng/L) | LTB4 (ng/L) | RvD1 (ng/L) | LXA4 (ng/L) | LTB4 (ng/L) | RvD1 (ng/L) | LXA4 (ng/L) | LTB4 (ng/L) | RvD1 (ng/L) | LXA4 (ng/L) | LTB4 (ng/L) | |
RvD1 (ng/L) | r | 1.000 | 0.563 ** | −0.676 ** | 1.000 | 0.383 ** | 0.086 | 1.000 | 0.338 * | 0.202 | 1.000 | 0.717 ** | −0.712 ** | 1.000 | 0.014 | 0.010 |
p | <0.001 | <0.001 | 0.007 | 0.556 | 0.018 | 0.165 | <0.001 | <0.001 | <0.001 | 0.924 | 0.947 | |||||
LXA4 (ng/L) | r | 0.563 ** | 1.000 | −0.518 ** | 0.383 ** | 1.000 | −0.067 | 0.338 * | 1.000 | 0.330 * | 0.717 ** | 1.000 | −0.539 ** | 0.014 | 1.000 | −0.005 |
p | <0.001 | <0.001 | 0.007 | 0.647 | 0.018 | 0.021 | <0.001 | <0.001 | 0.924 | 0.972 | ||||||
LTB4 (ng/L) | r | −0.676 ** | −0.518 ** | 1.000 | 0.086 | −0.067 | 1.000 | 0.202 | 0.330 * | 1.000 | −0.712 ** | −0.539 ** | 1.000 | 0.010 | −0.005 | 1.000 |
p | <0.001 | <0.001 | 0.556 | 0.647 | 0.165 | 0.021 | <0.001 | <0.001 | 0.947 | 0.972 | ||||||
Amilase (U/L) | r | −0.564 ** | −0.554 ** | 0.609 ** | 0.062 | −0.018 | 0.202 | −0.057 | −0.011 | −0.058 | −0.441 ** | −0.242 | 0.371 ** | −0.256 | −0.044 | 0.231 |
p | <0.001 | <0.001 | <0.001 | 0.674 | 0.904 | 0.164 | 0.700 | 0.943 | 0.690 | 0.002 | 0.093 | 0.009 | 0.076 | 0.761 | 0.111 | |
Lipase (U/L) | r | −0.623 ** | −0.544 ** | 0.608 ** | −0.225 | −0.010 | 0.063 | −0.218 | −0.072 | 0.068 | −0.482 ** | −0.398 ** | 0.531 ** | −0.432 ** | −0.009 | 0.062 |
p | <0.001 | <0.001 | <0.001 | 0.120 | 0.946 | 0.668 | 0.132 | 0.624 | 0.644 | <0.001 | 0.005 | <0.001 | 0.002 | 0.949 | 0.673 | |
CRP (mg/L) | r | −0.637 ** | −0.323 ** | 0.660 ** | −0.023 | −0.044 | 0.028 | 0.086 | 0.271 | 0.164 | −0.399 ** | −0.230 | 0.248 | −0.408 ** | 0.024 | 0.106 |
p | <0.001 | <0.001 | <0.001 | 0.875 | 0.764 | 0.849 | 0.559 | 0.060 | 0.259 | 0.004 | 0.112 | 0.086 | 0.004 | 0.870 | 0.467 |
Variable | AUC | 95% CI | p-Value | Cutoff | Sensitivity | Specificity | |
---|---|---|---|---|---|---|---|
AC vs. combined AP + AC | RvD1 | 0.995 | 0.987–1.000 | <0.001 | 375 * | 95.9% | 95.9% |
LXA4 | 1 | 1–1 | <0.001 | 200 * | 100% | 100% | |
LTB4 | 1 | 1–1 | <0.001 | 125 † | 100% | 100% | |
AC vs. combined AP + AC | RvD1 | 0.717 | 0.617–0.817 | <0.001 | 333 * | 91.8% | 44.9% |
LXA4 | 1 | 1–1 | <0.001 | 200 * | 100% | 100% | |
LTB4 | 0.815 | 0.732–0.898 | <0.001 | 185 † | 73.5% | 79.6% | |
AP vs. combined AP + AC | RvD1 | 0.610 | 0.498–0.723 | 0.060 | |||
LXA4 | 1 | 1–1 | <0.001 | 195 * | 100% | 100% | |
200 | 100% | 98% | |||||
LTB4 | 0.717 | 0.616–0.818 | <0.001 | 185 † | 73.5% | 65.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mısırlıoglu, N.F.; Ergun, S.; Kucuk, S.H.; Himmetoglu, S.; Ozen, G.D.; Sayili, U.; Uzun, N.; Uzun, H. The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones. Medicina 2025, 61, 239. https://doi.org/10.3390/medicina61020239
Mısırlıoglu NF, Ergun S, Kucuk SH, Himmetoglu S, Ozen GD, Sayili U, Uzun N, Uzun H. The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones. Medicina. 2025; 61(2):239. https://doi.org/10.3390/medicina61020239
Chicago/Turabian StyleMısırlıoglu, Naile Fevziye, Sefa Ergun, Suat Hayri Kucuk, Solen Himmetoglu, Gulenay Defne Ozen, Ugurcan Sayili, Nedim Uzun, and Hafize Uzun. 2025. "The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones" Medicina 61, no. 2: 239. https://doi.org/10.3390/medicina61020239
APA StyleMısırlıoglu, N. F., Ergun, S., Kucuk, S. H., Himmetoglu, S., Ozen, G. D., Sayili, U., Uzun, N., & Uzun, H. (2025). The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones. Medicina, 61(2), 239. https://doi.org/10.3390/medicina61020239