Immersive Virtual Reality as Computer-Assisted Cognitive–Motor Dual-Task Training in Patients with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Instruments Used
2.5. Intervention
- Hanging laundry (laundry)—range of motion support;
- Watering flowers (flowers)—focus on precision;
- Catching butterflies (butterflies)—developing range of motion;
- Opening doors with keys (keys)—training fine motor skills;
- Chopping wood (chopping)—focus on range of motion;
- Folding mugs (mugs)—focus on the shape and color of the mug.
- Stomping in puddles (puddles)—agility of movement;
- Kicking the ball (kicking)—focus on control of movement;
- Walking on tracks without obstacles (steps)—education of walking;
- Walking on tracks with obstacles (steps—obstacles)—gait education and fall prevention.
2.6. Statistical Methods
3. Results
4. Discussion
Limits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
10MWT | 10 Meter Walk Test |
ACE III | Addenbrooke’s Cognitive Examination |
ADLs | Activities of daily living |
BBS | Berg Balance Scale |
CACMDT | Computer-assisted cognitive–motor dual task |
CMDT | Cognitive–motor dual task |
DT | Dual task |
IVR | Immersive virtual reality |
M | Arithmetic mean |
p | Probability value |
PD | Parkinson’s Disease |
PDQ | Parkinson’s Disease Questionnaire |
PDSI | Summary Index of Parkinson’s Disease |
SD | Standard deviation |
ST | Single Task |
TUG | Timed Up and Go |
References
- Xiao, Y.; Yang, T.; Shang, H. The impact of motor-cognitive dual-task training on physical and cognitive functions in Parkinson’s disease. Brain Sci. 2023, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Hereitová, I.; Krobot, A. Cognitive-motor interference after stroke. Czech Slovak. Neurol. Neurosurg. 2020, 83, 520–525. [Google Scholar] [CrossRef]
- McIsaac, T.L.; Lamberg, E.M.; Muratori, L.M. Building a framework for a dual task taxonomy. Biomed. Res. Int. 2015, 2015, 591475. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Folkerts, A.K.; Hammarström, I.; Kalbe, E.; Leavy, B. Effects of motor–cognitive training on dual-task performance in people with Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. 2023, 270, 2890–2907. [Google Scholar] [CrossRef]
- Rochester, L.; Galna, B.; Lord, S.; Burn, D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience 2014, 265, 83–94. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Giladi, N.; Gruendlinger, L.; Hausdorff, J.M. The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp. Brain Res. 2013, 226, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Stegemöller, E.L.; Wilson, J.P.; Hazamy, A.; Shelley, M.C.; Okun, M.S.; Altmann, L.J.; Hass, C.J. Associations between cognitive and gait performance during single-and dual-task walking in people with Parkinson disease. Phys. Ther. 2014, 94, 757–766. [Google Scholar] [CrossRef]
- Tuena, C.; Borghesi, F.; Bruni, F.; Cavedoni, S.; Maestri, S.; Riva, G.; Tettamanti, M.; Liperoti, R.; Rossi, L.; Ferrarin, M.; et al. Technology-Assisted Cognitive Motor Dual-Task Rehabilitation in Chronic Age-Related Conditions: Systematic Review. J. Med. Internet Res. 2023, 25, e44484. [Google Scholar] [CrossRef]
- Quintas, J.; Pais, J.; Martins, A.I.; Santos, H.; Neves, L.; Sousa, S.; Benhsain, D.; Dierick, F.; Callén, A.; Cunha, A.; et al. CogniViTra, a digital solution to support dual-task rehabilitation training. Electronics 2021, 10, 1304. [Google Scholar] [CrossRef]
- Pedroli, E.; Cipresso, P.; Greci, L.; Arlati, S.; Boilini, L.; Stefanelli, L.; Rossi, M.; Goulene, K.; Sacco, M.; Stramba-Badiale, M.; et al. An immersive motor protocol for frailty rehabilitation. Front. Neurol. 2019, 10, 1078. [Google Scholar] [CrossRef]
- Riva, G.; Wiederhold, B.K.; Chirico, A.; Di Lernia, D.; Mantovani, F.; Gaggioli, A. Brain and virtual reality: What do they have in common and how to exploit their potential. Annu. Rev. Cyberther. Telemed. 2018, 16, 3–7. [Google Scholar]
- Tuena, C.; Serino, S.; Pedroli, E.; Stramba-Badiale, M.; Riva, G.; Repetto, C. Building embodied spaces for spatial memory neurorehabilitation with virtual reality in normal and pathological aging. Brain Sci. 2021, 11, 1067. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Wang, K.; Sun, W.; Li, X.; Wang, W.; Tian, F. A Review of Recent Advances in Cognitive-Motor Dual-Tasking for Parkinson’s Disease Rehabilitation. Sensors 2024, 24, 6353. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.H.; Del Tredici, K.; Braak, H. A timeline for Parkinson’s disease. Park. Relat. Disord. 2010, 16, 79–84. [Google Scholar] [CrossRef]
- Bartoš, A.; Raisová, M.; Kopeček, M. Novelizace české verze Addenbrookského kognitivního testu (ACE-CZ). Česká Slov. Neurol. Neurochir. 2011, 74/107, 681–684. [Google Scholar]
- Lindholm, B.; Nilsson, M.H.; Hansson, O.; Hagell, P. The clinical significance of 10-m walk test standardizations in Parkinson’s disease. J. Neurol. 2018, 265, 1829–1835. [Google Scholar] [CrossRef]
- Morris, S.; Morris, M.E.; Iansek, R. Reliability of Measurements Obtained with the Timed “Up & Go” Test in People with Parkinson Disease. Phys. Ther. 2001, 81, 810–819. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public. Health. 1992, 83 (Suppl. S2), 7–11. [Google Scholar] [CrossRef]
- Peto, V.; Jenkinson, C.; Fitzpatrick, R. PDQ-39: A review of the development, validation and application of a Parkinson’s disease quality of life questionnaire and its associated measures. J. Neurol. 1998, 245 (Suppl. S1), 10–14. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 1 December 2024).
- Cohen, J. A power prime. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Ferrazzoli, D.; Ortelli, P.; Cucca, A.; Bakdounes, L.; Canesi, M.; Volpe, D. Motor-Cognitive Approach and Aerobic Training: A Synergism for Rehabilitative Intervention in Parkinson’s Disease. Neurodegener. Dis. Manag. 2020, 10, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The Interaction between Cognition and Motor Control: A Theoretical Framework for Dual-Task Interference Effects on Posture, Gait Initiation, Gait and Turning. Neurophysiol. Clin. 2018, 48, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.K.; Chung, Y.C.; Bellard, D.; Swan, L.; Gobreial, N.; Romano, A.; Glatt, R.; Bonaguidi, M.A.; Lee, D.J.; Jin, Y.; et al. Gamified Dual-Task Training for Individuals with Parkinson Disease: An Exploratory Study on Feasibility, Safety, and Efficacy. Int. J. Environ. Res. Public Health 2021, 18, 12384. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, T.; Liu, H.; Jiang, Y.; Wang, Z.; Zhuang, J. Dual-Task Training on Gait, Motor Symptoms, and Balance in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2020, 34, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Strouwen, C.; Molenaar, E.A.L.M.; Münks, L.; Keus, S.H.J.; Zijlmans, J.C.M.; Vandenberghe, W.; Bloem, B.R.; Nieuwboer, A. Training Dual Tasks Together or Apart in Parkinson’s Disease: Results from the DUALITY Trial. Mov. Disord. 2017, 32, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Canning, C.G.; Ada, L.; Johnson, J.J.; McWhirter, S. Walking Capacity in Mild to Moderate Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2006, 87, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Raffegeau, T.E.; Krehbiel, L.M.; Kang, N.; Thijs, F.J.; Altmann, L.J.; Cauraugh, J.H.; Hass, C.J. A meta-analysis: Parkinson’s disease and dual-task walking. Park. Relat. Disord. 2019, 62, 28–35. [Google Scholar] [CrossRef]
- Caligiore, D.; Mustile, M.; Fineschi, A.; Romano, L.; Piras, F.; Assogna, F.; Pontieri, F.E.; Spalletta, G.; Baldassarre, G. Action Observation with Dual Task for Improving Cognitive Abilities in Parkinson’s Disease: A Pilot Study. Front. Syst. Neurosci. 2019, 13, 7. [Google Scholar] [CrossRef]
Monitored Parameter | M1 (Q1; Q2) | M2 (Q1; Q2) | p | r |
---|---|---|---|---|
10 MWT comfortable [s] | 9.0 (8.5; 9.8) | 9.2 (7.8; 10.3) | 0.409 | 0.19 |
10MWT fast [s] | 6.6 (6.0; 8.0) | 6.3 (5.8; 7.9) | 0.006 | 0.63 |
TUG [s] | 9.2 (8.8; 12.7) | 8.7 (8.1; 10.7) | <0.001 | 0.80 |
TUG+DT [s] | 11.2 (9.8; 15.3) | 10.2 (8.7; 14.1) | 0.243 | 0.27 |
BBS [score] | 54.0 (52.0; 56.0) | 56.0 (54.0; 56.0) | 0.016 | 0.55 |
PDQ-39 Scales | M1 (Q1; Q2) | M2 (Q1; Q2) | p | r |
---|---|---|---|---|
Mobility | 30.0 (12.5; 37.5) | 17.5 (10.0; 27.5) | 0.027 | 0.51 |
ADLs | 29.2 (8.3; 45.8) | 16.7 (8.3; 37.5) | 0.053 | 0.44 |
Emotional Well-Being | 20.8 (8.3; 29.2) | 12.5 (4.17; 29.2) | 0.011 | 0.58 |
Stigma | 6.3 (0.0; 31.3) | 6.3 (0.0; 25.0) | 0.304 | 0.24 |
Social support | 8.3 (0.0; 25.0) | 0.0 (0.0; 25.0) | 0.160 | 0,32 |
Cognition | 18.8 (6.3; 37.5) | 18.8 (12.5; 37.5) | 0.477 | 0.16 |
Communication | 16.7 (0.0; 25.0) | 16.7 (0.0; 33.3) | 0.959 | 0.01 |
Bodily discomfort | 25.0 (16.7; 41.7) | 41.7 (16.7; 41.7) | 0.329 | 0.22 |
PDSI | 4.6 (2.3; 6.1) | 3.2 (2.0; 6.4) | 0.051 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honzíková, L.; Dąbrowská, M.; Skřinařová, I.; Mullerová, K.; Čecháčková, R.; Augste, E.; Trdá, J.; Baníková, Š.; Filip, M.; Školoudík, D.; et al. Immersive Virtual Reality as Computer-Assisted Cognitive–Motor Dual-Task Training in Patients with Parkinson’s Disease. Medicina 2025, 61, 248. https://doi.org/10.3390/medicina61020248
Honzíková L, Dąbrowská M, Skřinařová I, Mullerová K, Čecháčková R, Augste E, Trdá J, Baníková Š, Filip M, Školoudík D, et al. Immersive Virtual Reality as Computer-Assisted Cognitive–Motor Dual-Task Training in Patients with Parkinson’s Disease. Medicina. 2025; 61(2):248. https://doi.org/10.3390/medicina61020248
Chicago/Turabian StyleHonzíková, Lucie, Marcela Dąbrowská, Irena Skřinařová, Kristýna Mullerová, Renáta Čecháčková, Eva Augste, Jana Trdá, Šárka Baníková, Michal Filip, David Školoudík, and et al. 2025. "Immersive Virtual Reality as Computer-Assisted Cognitive–Motor Dual-Task Training in Patients with Parkinson’s Disease" Medicina 61, no. 2: 248. https://doi.org/10.3390/medicina61020248
APA StyleHonzíková, L., Dąbrowská, M., Skřinařová, I., Mullerová, K., Čecháčková, R., Augste, E., Trdá, J., Baníková, Š., Filip, M., Školoudík, D., Štefková, I., & Štula, V. (2025). Immersive Virtual Reality as Computer-Assisted Cognitive–Motor Dual-Task Training in Patients with Parkinson’s Disease. Medicina, 61(2), 248. https://doi.org/10.3390/medicina61020248