Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Activity of CLCG
Treatments | Inhibition diameter (mm) after incubation of | ||
---|---|---|---|
12 h | 24 h | 48 h | |
B. multivorans PW99 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 20.0 ± 2.1 d | 19.8 ± 2.1 d | 19.6 ± 3.2 d |
B. stabilis M8 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 17.6 ± 1.5 c | 17.5 ± 1.5 c | 17.3 ± 1.5 c |
B. seminalis R456 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 15.5 ± 1.5 b | 15.3 ± 1.4 b | 15.0 ± 1.6 b |
B. seminalis S9 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 16.5 ± 1.6 bc | 16.3 ± 1.6 bc | 16.1 ± 2.0 bc |
B. vietnamiensis S23 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 16.6 ± 0.7 bc | 16.4 ± 0.9 bc | 16.1 ± 0.8 bc |
B. contaminans Y4 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 24.0 ± 1.2 g | 23.5 ± 1.4 f | 23.4 ± 1.6 f |
B. cenocepacia Y8 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 22.6 ± 2.0 f | 22.3 ± 2.0 ef | 22.1 ± 2.2 e |
B. cenocepacia Y17 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 20.3 ± 1.6 de | 20.0 ± 1.5 d | 19.9 ± 1.7 d |
B. seminalis 0901 | |||
Chitosan | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
CLCG | 21.3 ± 2.7 e | 21.0 ± 2.9 de | 20.9 ± 2.9 de |
2.2. Cross-Linking Degree of CLCG
2.3. SEM of CLCG
2.4. FITR Spectrum of CLCG
2.5. X-ray Diffraction Analysis
2.6. Elemental Analysis of CLCG
Substance | Element (%, w/w) | ||
---|---|---|---|
Carbon | Hydrogen | Nitrogen | |
Chitosan | 40.47 | 7.08 | 7.21 |
CLCG | 33.50 | 6.52 | 1.63 |
2.7. Thermo Gravimetric Analysis of CLCG
Temperature (°C) | % of weight loss (heating rate 20 °C/min) | |
---|---|---|
Chitosan | CLCG | |
100 | 10.13 | 47.42 |
200 | 11.25 | 54.53 |
300 | 35.06 | 68.99 |
400 | 59.27 | 76.59 |
500 | 60.08 | 87.80 |
600 | 68.39 | 89.07 |
700 | 70.21 | 89.50 |
800 | 71.43 | 89.81 |
3. Experimental Section
3.1. Chitosan, Glutaraldehyde and Bacteria
3.2. Cross-Linking of Chitosan and Glutaraldehyde
3.3. Antibacterial Activity
3.4. Determination of Cross-Linking Degree
3.5. Scan Electron Microscope
3.6. Fourier Transform Infrared Spectra
3.7. X-ray Diffraction Analysis
3.8. Elemental Analysis
3.9. Thermo Gravimetric Analysis
3.10. Statics Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Mahenthiralingam, E.; Baldwin, A.; Dowson, C.G. Burkholderia cepacia complex bacteria: Opportunistic pathogens with important natural biology. J. Appl. Microbiol. 2008, 104, 1539–1551. [Google Scholar] [CrossRef]
- Vanlaere, E.; Lipuma, J.J.; Baldwin, A.; Henry, D.; De Brandt, E.; Mahenthiralingam, E.; Speert, D.; Dowson, C.; Vandamme, P. Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int. J. Syst. Evol. Microbiol. 2008, 58, 1580–1590. [Google Scholar] [CrossRef]
- Vanlaere, E.; Baldwin, A.; Gevers, D.; Henry, D.; Brandt, E.D.; LiPuma, J.J. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species: Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int. J. Syst. Evol. Microbiol. 2009, 59, 102–111. [Google Scholar] [CrossRef]
- Fang, Y.; Lou, M.M.; Li, B.; Xie, G.L.; Wang, F.; Zhang, L.X.; Luo, Y.C. Characterization of Burkholderia cepacia complex from cystic fibrosis patients in China and their chitosan susceptibility. World J. Microbiol. Biotechnol. 2010, 26, 443–450. [Google Scholar] [CrossRef]
- Ibrahim, M.; Fang, Y.; Lou, M.M.; Xie, G.L.; Li, B.; Zhu, B.; Zhang, G.Q.; Liu, H.; Wareth, A. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria. J. Biosci. Bioeng. 2011, 112, 570–576. [Google Scholar] [CrossRef]
- Ibrahim, M.; Tang, Q.M.; Shi, Y.; Almoneafy, A.; Fang, Y.; Xu, L.; Li, W.; Li, B.; Xie, G.L. Diversity of potential pathogenicity and biofilm formation among Burkholderia cepacia complex water, clinical, and agricultural isolates in China. World J. Microbiol. Biotechnol. 2012, 28, 2113–2123. [Google Scholar] [CrossRef]
- Fang, Y.; Xie, G.L.; Lou, M.M.; Li, B.; Ibrahim, M. Diversity analysis of Burkholderia cepacia complex in the water bodies of west lake, Hangzhou, China. J. Microbiol. 2011, 49, 309–314. [Google Scholar] [CrossRef]
- Li, B.; Fang, Y.; Zhang, G.Q.; Yu, R.R.; Lou, M.M.; Xie, G.L.; Wang, Y.L.; Sun, G.C. Molecular characterization of Burkholderia cepacia complex isolates causing bacterial fruit rot of apricot. Plant Pathol. J. 2010, 26, 223–230. [Google Scholar] [CrossRef]
- Lou, M.M.; Fang, Y.; Zhang, G.Q.; Xie, G.L.; Zhu, B.; Muhammad, I. Diversity of Burkholderia cepacia complex from the moso bamboo (Phyllostachys edulis) rhizhosphere soil. Curr. Microbiol. 2011, 62, 650–658. [Google Scholar] [CrossRef]
- Zhang, L.X.; Xie, G.L. Diversity and distribution of Burkholderia cepacia complex in the rhizosphere of rice and maize. FEMS Microbiol. Lett. 2007, 266, 231–235. [Google Scholar] [CrossRef]
- Lou, M.M.; Zhu, B.; Ibrahim, M.; Li, B.; Xie, G.L.; Li, H.Y. Antibacterial activity and mechanism of action of chitosansolution against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr. Res. 2011, 346, 1294–1301. [Google Scholar] [CrossRef]
- Hadrami, A.E.; Adam, L.R.; Hadrami, I.E.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Chen, R.X.; Huangfu, W.G.; Xie, G.L. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr. Polym. 2008, 72, 287–292. [Google Scholar] [CrossRef]
- Badawy, M.E.I. Effect of depolymerization degree of the natural biopolymer chitosan on some plant pathogenic bacteria and fungi. J. Pest Control Environ. Sci. 2007, 15, 69–85. [Google Scholar]
- Badawy, M.E.I. Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci. 2010, 117, 960–969. [Google Scholar] [CrossRef]
- Li, B.; Liu, B.P.; Su, T.; Wang, F.; Tang, Q.M.; Fang, Y.; Xie, G.L.; Sun, G.C. Effect of chitosan solution on the inhibition of Pseudomonas fluorescens causing bacterial head rot of broccoli. Plant Pathol. J. 2010, 26, 189–193. [Google Scholar] [CrossRef]
- Li, B.; Su, T.; Chen, X.L.; Liu, B.P.; Zhu, B.; Fang, Y.; Xie, G.L.; Wang, G.F.; Wang, Y.L.; Sun, G.C. Effect of chitosan solution on the bacterial septicemia disease of Bombyx mori (Lepidoptera: Bombycidae) caused by Serratia marcescens. Appl. Entomol. Zool. 2010, 45, 145–152. [Google Scholar] [CrossRef]
- Li, B.; Yu, R.R.; Liu, B.P.; Tang, Q.M.; Zhang, G.Q.; Wang, Y.L.; Xie, G.L.; Sun, G.C. Characterization and comparison of Serratia marcescens isolated from edible cactus and from silkworm for virulence potential and chitosan susceptibility. Braz. J. Microbiol. 2011, 42, 96–104. [Google Scholar] [CrossRef]
- Khoushab, F.; Yamabhai, M. Chitin research revisited. Mar. Drugs 2010, 8, 1988–2012. [Google Scholar] [CrossRef]
- Trimukhe, K.D.; Varma, A.J. Metal complexes of crosslinked chitosans: Correlations between metal ion complexation values and thermal properties. Carbohydr. Polym. 2009, 75, 63–70. [Google Scholar] [CrossRef]
- Ge, H.C.; Chen, H.; Huang, S.Y. Microwave preparation and properties of O-crosslinked maleic acyl chitosan adsorbent for Pb2+ and Cu2+. J. Appl. Polym. Sci. 2012, 125, 2716–2723. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, Q.; Wang, A.Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym. 2007, 70, 166–173. [Google Scholar] [CrossRef]
- Chen, J.K.; Yeh, C.H.; Wang, L.C.; Liou, T.H.; Shen, C.R.; Liu, C.L. Chitosan, the marine functional food, is a potent adsorbent of humic acid. Mar. Drugs 2011, 9, 2488–2498. [Google Scholar] [CrossRef]
- Guo, L.; Liu, G.; Hong, R.Y.; Li, H.Z. Preparation and characterization of chitosan poly(acrylic acid) magnetic microspheres. Mar. Drugs 2010, 8, 2212–2222. [Google Scholar] [CrossRef]
- Mitra, T.; Sailakshmi, G.; Gnanamani, A.; Manda, A.B. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: An approach on non-covalent interactions. J. Mater. Sci. 2012, 23, 1309–1321. [Google Scholar]
- Yu, Q.; Song, Y.N.; Shi, X.M.; Xu, C.Y.; Bin, Y.Z. Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend film crosslinked with glutaraldehyde. Carbohydr. Polym. 2011, 84, 465–470. [Google Scholar] [CrossRef]
- Zhao, J.H.; Han, W.Q.; Chen, H.D.; Tu, M.; Zeng, R.; Shi, Y.F.; Cha, Z.G.; Zhou, C.R. Preparation, structure and crystallinity of chitosan nano-fibers by a solid-liquid phase separation technique. Carbohydr. Polym. 2011, 83, 1541–1546. [Google Scholar] [CrossRef]
- Jabli, M.; Baouab, M.H.V.; Sintes-Zydowicz, N.; Hassine, B.B. [Dye Molecules/Copper(II)/Macroporous Glutaraldehyde-Chitosan] Microspheres complex: Surface characterization, kinetic, and thermodynamic investigations. J. Appl. Polym. Sci. 2012, 123, 3412–3424. [Google Scholar] [CrossRef]
- Suguna, M.; Kumar, N.S.; Reddy, A.S.; Boddu, V.M.; Krishnaiah, A. Biosorption of lead (II) from aqueous solution on glutaraldehyde cross-linked chitosan beads. Can. J. Chem. Eng. 2011, 89, 833–843. [Google Scholar] [CrossRef]
- Varmaa, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Tripathi, S.; Mehrotra, G.K.; Dutta, P.K. Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. Int. J. Biol. Macromol. 2009, 45, 372–376. [Google Scholar] [CrossRef]
- Saita, K.; Nagaoka, S.; Shirosaki, T.; Horikawa, M.; Matsuda, S.; Ihara, H. Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity. Carbohydr. Res. 2012, 349, 52–58. [Google Scholar] [CrossRef]
- Wiarachai, O.; Thongchul, N.; Kiatkamjornwong, S.; Hoven, V.P. Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloid Surface B 2012, 92, 121–129. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Chen, L.; Ji, J.M.; Huang, Y.L.; Chen, D.H. Antibacterial properties of cotton fabrics treated with chitosan. Text. Res. J. 2003, 73, 1103–1106. [Google Scholar] [CrossRef]
- Wang, C.C.; Yang, F.L.; Zhang, H.M. Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria. Sep. Purif. Technol. 2010, 75, 358–365. [Google Scholar] [CrossRef]
- Mcconnell, E.L.; Murdan, S.; Basit, A.W. An investigation into the digestion of CHITOSAN (noncrosslinked and crosslinked) by human colonic bacteria. J. Pharm. Sci. 2008, 97, 3820–3829. [Google Scholar] [CrossRef]
- Argüelles-Monal, W.; Goycoolea, F.M.; Peniche, C.; Higuera-Ciapara, I. Rheological study of the chitosan/glutaraldehyde chemical gel system. Polym. Gels Networks 1998, 6, 429–440. [Google Scholar] [CrossRef]
- Oyrton, A.C.; Monteiro, J.; Claudio, A. Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. Int. J. Biol. Macromol. 1999, 26, 119–128. [Google Scholar] [CrossRef]
- Ignatova, M.; Manolova, N.; Markova, N.; Rashkov, I. Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol. Biosci. 2009, 9, 102–111. [Google Scholar] [CrossRef]
- Gupta, K.C.; Jabrail, F.H. Glutaraldehyde and glyoxal cross-linked chitosan microspheres for controlled delivery of centchroman. Carbohydr. Res. 2006, 341, 744–756. [Google Scholar] [CrossRef]
- Gonçalves, V.L.; Laranjeira, M.C.M.; Fávere, V.T. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polímeros 2005, 15, 6–12. [Google Scholar]
- Dini, E.; Alexandridou, S.; Kiparissides, C. Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications. J. Microencapsul. 2003, 20, 375–385. [Google Scholar]
- Rodrigues, D.S.; Mendes, A.A.; Adriano, W.S.; Gonçalves, L.R.B.; Giordano, R.L.C. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B 2008, 51, 100–109. [Google Scholar] [CrossRef]
- Knaul, J.Z.; Hudson, S.M.; Creber, K.A.M. Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. J. Polym. Sci. Pol. Phys. 1999, 37, 1079–1094. [Google Scholar] [CrossRef]
- Trimukhe, K.D.; Varma, A.J. A morphological study of heavy metal complexes of chitosan and crosslinked chitosans by SEM and WAXRD. Carbohydr. Polym. 2008, 71, 698–702. [Google Scholar] [CrossRef]
- Mirzaei, B.E.; Ramazani, S.A.A.; Shafiee, M.; Danaei, M. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int. J. Polym. Mater. 2013, 62, 605–611. [Google Scholar] [CrossRef]
- Wang, L.Y.; Gu, Y.H.; Zhou, Q.Z.; Ma, G.H.; Wan, Y.H.; Su, Z.G. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surfaces B 2006, 50, 126–135. [Google Scholar] [CrossRef]
- Kulkarni, V.H.; Kulkarni, P.V.; Keshavayya, J. Glutaraldehyde-crosslinked chitosan beads for controlled release of diclofenac sodium. J. Appl. Polym. Sci. 2007, 103, 211–217. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, D.D. Cross-linking of chitosan with glutaraldehyde in the presence of citric acid—A new gelling system. Chin. J. Polym. Sci. 1999, 17, 551–556. [Google Scholar]
- Aranaz, I.; Mengíbar, M.; Harris, R.; Paños, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, Á. Functional characterization of chitin and chitosan. Curr. Chem. Biol. 2009, 3, 203–230. [Google Scholar]
- Yao, W.J.; Jiao, Y.; Luo, J.; Du, M.Z.; Li, Z. Practical synthesis and characterization of mannose-modified chitosan. Int. J. Biol. Macromol. 2012, 50, 821–825. [Google Scholar] [CrossRef]
- Ramachandran, S.; Nandhakumar, S.; Dhanaraju, M.D. Formulation and characterization of glutaraldehyde cross-linked chitosan biodegradable microspheres loaded with famotidine. Trop. J. Pharm. Res. 2011, 10, 309–316. [Google Scholar]
- Mohamed, N.A.; Fahmy, M.M. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int. J. Mol. Sci. 2012, 13, 11194–11209. [Google Scholar] [CrossRef]
- Zhao, X.F.; Li, Z.J.; Wang, L.; Lai, X.J. Synthesis, characterization, and adsorption capacity of crosslinked starch microspheres with N,N′-methylene Bisacrylamide. J. Appl. Polym. Sci. 2008, 109, 2571–2575. [Google Scholar] [CrossRef]
- Li, B.; Xu, L.H.; Lou, M.M.; Li, F.; Zhang, Y.D.; Xie, G.L. Isolation and characterization of antagonistic bacteria against bacterial leaf spot of Euphorbia pulcherrima. Lett. Appl. Microbiol. 2008, 46, 450–455. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, L.P.; Li, B.; Wu, G.X.; Tang, Q.M.; Muhammad, I.; Liu, H.; Xie, G.L.; Sun, G.C. Action of chitosan against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Molecules 2012, 17, 7028–7041. [Google Scholar] [CrossRef]
- Garip, S.; Cetin, G.A.; Severcan, F. Use of fourier transforms infrared spectroscopy for rapid comparative analysis of Bacillus and Micrococcus isolates. Food Chem. 2009, 113, 1301–1307. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Shen, Y.G.; Li, X.Q.; Cai, S.J.; Liu, M.Z. Synthesis and characterization of thermo and pH-sensitive poly(vinyl alcohol)/poly (N,N-diethylacrylamide-co-itaconic acid) semi-IPN hydrogels. Biomed. Mater. 2012, 7, 1748–6041. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, B.; Shan, C.-L.; Zhou, Q.; Fang, Y.; Wang, Y.-L.; Xu, F.; Han, L.-R.; Ibrahim, M.; Guo, L.-B.; Xie, G.-L.; et al. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde. Mar. Drugs 2013, 11, 1534-1552. https://doi.org/10.3390/md11051534
Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L, et al. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde. Marine Drugs. 2013; 11(5):1534-1552. https://doi.org/10.3390/md11051534
Chicago/Turabian StyleLi, Bin, Chang-Lin Shan, Qing Zhou, Yuan Fang, Yang-Li Wang, Fei Xu, Li-Rong Han, Muhammad Ibrahim, Long-Biao Guo, Guan-Lin Xie, and et al. 2013. "Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde" Marine Drugs 11, no. 5: 1534-1552. https://doi.org/10.3390/md11051534
APA StyleLi, B., Shan, C. -L., Zhou, Q., Fang, Y., Wang, Y. -L., Xu, F., Han, L. -R., Ibrahim, M., Guo, L. -B., Xie, G. -L., & Sun, G. -C. (2013). Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde. Marine Drugs, 11(5), 1534-1552. https://doi.org/10.3390/md11051534