Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Body Weight Changes in Spontaneous Hypertensive Rats (SHRs)
Groups | Week 0 (g) | Week 2 (g) | Week 4 (g) | Week 8 (g) |
---|---|---|---|---|
Control | 133 ± 10 | 189 ± 7 * | 269 ± 9 * | 300 ± 11 * |
10 mg/mL, Lasix | 131 ± 6 | 178 ± 12 * | 261 ± 7 * | 326 ± 5 * |
10% MgCl2 | 122 ± 13 | 167 ± 8 * | 255 ± 17 * | 312 ± 22 * |
0.1 × DSW (3.75 mg/kg/day) | 131 ± 4 | 175 ± 9 * | 260 ± 10 * | 320 ± 14 * |
1 × DSW (37.5 mg/kg/day) | 133 ± 8 | 179 ± 18 * | 264 ± 15 * | 312 ± 13 * |
2 × DSW (75 mg/kg/day) | 130 ± 7 | 167 ± 4 * | 255 ± 2 * | 313 ± 8 * |
2.2. DSW Lowers the Blood Pressures of Spontaneous Hypertensive Rats
Groups | Week 0 (mm Hg) | Week 2 (mm Hg) | Week 4 (mm Hg) | Week 8 (mm Hg) |
---|---|---|---|---|
Control | 127 ± 6 | 164 ± 8 * | 211 ± 8 * | 244 ± 22 * |
10 mg/mL, Lasix | 134 ± 10 | 162 ± 17 * | 193 ± 4 * | 178 ± 14 *,# |
10% MgCl2 | 135 ± 9 | 165 ± 11 * | 181 ± 12 *,# | 181 ± 3 *,# |
0.1 × DSW (3.75 mg/kg/day) | 131 ± 15 | 174 ± 7 * | 226 ± 7 * | 188 ± 12 *,# |
1 × DSW (37.5 mg/kg/day) | 125 ± 14 | 180 ± 8 * | 176 ± 7 *,# | 156 ± 16 *,# |
2 × DSW (75 mg/kg/day) | 126 ± 11 | 173 ± 7 * | 162 ± 6 *,# | 171 ± 18 *,# |
Groups | Week 0 (mm Hg) | Week 2 (mm Hg) | Week 4 (mm Hg) | Week 8 (mm Hg) |
---|---|---|---|---|
Control | 81 ± 8 | 137 ± 9 * | 150 ± 11 * | 177 ± 19 * |
10 mg/mL, Lasix | 84 ± 12 | 138 ± 10 * | 129 ± 5 * | 129 ± 14 *,# |
10% MgCl2 | 87 ± 11 | 115 ± 12 * | 107 ± 13 *,# | 124 ± 15 *,# |
0.1 × DSW (3.75 mg/kg/day) | 92 ± 12 | 132 ± 6 * | 143 ± 10 * | 121 ± 21 *,# |
1 × DSW (37.5 mg/kg/day) | 82 ± 6 | 128 ± 7 * | 105 ± 5 *,# | 112 ± 7 *,# |
2 × DSW (75 mg/kg/day) | 91 ± 9 | 134 ± 9 * | 103 ± 7 *,# | 120 ± 10 *,# |
2.3. Body Weight Changes in New Zealand White Rabbits
Group | Control | 0.5% Cholesterol | 0.01% Lovastatin | 10% MgCl2 | 0.1 × DSW | 1 × DSW | 2 × DSW |
---|---|---|---|---|---|---|---|
Initial weight (kg) | 2.37 ± 0.54 | 2.47 ± 0.48 | 2.46 ± 0.50 | 2.65 ± 0.32 | 2.21 ± 0.65 | 2.17 ± 0.46 | 2.23 ± 0.41 |
Final weight (kg) | 3.12 ± 0.33 | 3.19 ± 0.20 | 3.02 ± 0.34 | 3.23 ± 0.22 | 3.18 ± 0.48 | 2.99 ± 0.33 | 3.05 ± 0.25 |
2.4. Down-Regulatory Effect of Deep Sea Water (DSW) on Serum Total Cholesterol (TC)
2.5. Down-Regulatory Effect of DSW on Fatty Liver Status and Lipid Accumulation
2.6. Down-Regulatory Effect of DSW on Fatty Streak Lesions
2.7. Lipid-Modulating Effect of DSW and Lipid Metabolism-Associated Proteins
3. Experimental Section
3.1. Materials and Production of the DSW
Surface Sea Water (mg/L) | Deep Sea Water (DSW) LC-90K (mg/L) | |
---|---|---|
Na | 10,800 | 7240 |
K | 392 | 10,400 |
Ca | 411 | 39 |
Mg | 1290 | 96,100 |
Sr | 8.1 | 0.17 |
B | 4.45 | 320 |
Fe | 0.003 | 0.25 |
Li | 0.17 | 11.7 |
Cu | 0.0009 | 0.22 |
Co | 0.0004 | 0.26 |
Mo | 0.01 | 0.62 |
Ni | 0.0066 | 0.11 |
Cr | 0.0002 | 0.087 |
Rb | 0.12 | 1.2 |
Si | 2.9 | 0.5 |
V | 0.002 | 1.2 |
F | 13 | 21.8 |
Br | 67.3 | 5400 |
I | 0.064 | 5.5 |
3.2. Animal Experimental Design
3.2.1. Measurements of Blood Pressure and Heart Rate in SHRs
3.2.2. Lipid-Lowering Effects
3.3. Measurement of Serum Chemical Parameters
3.4. Cryosectioning of Liver Tissues
3.5. Aortic Fatty Streak Staining
3.6. Western Blot
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef]
- Fruchart, J.C.; Duriez, P. High-density lipoproteins and coronary heart disease. Future prospects in gene therapy. Biochimie 1998, 80, 167–172. [Google Scholar] [CrossRef]
- Steinberg, D.; Parthasarathy, S.; Carew, T.E.; Khoo, J.C.; Witztum, J.L. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 1989, 320, 915–924. [Google Scholar] [CrossRef]
- Yamada, Y.; Doi, T.; Hamakubo, T.; Kodama, T. Scavenger receptor family proteins: Roles for atherosclerosis, host defence and disorders of the central nervous system. Cell. Mol. Life Sci. 1998, 54, 628–640. [Google Scholar] [CrossRef]
- Escobar, E. Hypertension and coronary heart disease. J. Hum. Hypertens. 2002, 16, S61–S63. [Google Scholar] [CrossRef]
- Sacks, F.M.; Pfeffer, M.A.; Moye, L.A.; Rouleau, J.L.; Rutherford, J.D.; Cole, T.G.; Brown, L.; Warnica, J.W.; Arnold, J.M.; Wun, C.C.; et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels cholesterol and recurrent events trial investigators. N. Engl. J. Med. 1996, 335, 1001–1009. [Google Scholar] [CrossRef]
- Hardie, D.G.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 1998, 67, 821–855. [Google Scholar] [CrossRef]
- Kemp, B.E.; Stapleton, D.; Campbell, D.J.; Chen, Z.P.; Murthy, S.; Walter, M.; Gupta, A.; Adams, J.J.; Katsis, F.; van Denderen, B.; et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Biochem. Soc. Trans. 2003, 31, 162–168. [Google Scholar]
- Towler, M.C.; Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 2007, 100, 328–341. [Google Scholar] [CrossRef]
- Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol. 2007, 8, 774–785. [Google Scholar] [CrossRef]
- Hardie, D.G.; Pan, D.A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans. 2002, 30, 1064–1070. [Google Scholar] [CrossRef]
- Clarke, P.R.; Hardie, D.G. Regulation of HMG-CoA reductase: Identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 1990, 9, 2439–2446. [Google Scholar]
- An, Z.; Wang, H.; Song, P.; Zhang, M.; Geng, X.; Zou, M.H. Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: A role for oxidant stress. J. Biol. Chem. 2007, 282, 26793–26801. [Google Scholar]
- Fu, Z.Y.; Yang, F.L.; Hsu, H.W.; Lu, Y.F. Drinking deep seawater decreases serum total and low-density lipoprotein—Cholesterol in hypercholesterolemic subjects. J. Med. Food 2012, 15, 535–541. [Google Scholar] [CrossRef]
- Katsuda, S.; Yasukawa, T.; Nakagawa, K.; Miyake, M.; Yamasaki, M.; Katahira, K.; Mohri, M.; Shimizu, T.; Hazama, A. Deep-sea water improves cardiovascular hemodynamics in Kurosawa and Kusanagi-Hypercholesterolemic (KHC) rabbits. Biol. Pharm. Bull. 2008, 31, 38–44. [Google Scholar] [CrossRef]
- Hataguchi, Y.; Tai, H.; Nakajima, H.; Kimata, H. Drinking deep-sea water restores mineral imbalance in atopic eczema/dermatitis syndrome. Eur. J. Clin. Nutr. 2005, 59, 1093–1096. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Hamada, A.; Gue, T.; Yokota, J.; Yamamoto, S.; Kusunose, M.; Miyamura, M.; Kyotani, S.; Kameda, R.; Tsutsui, Y.; et al. Pharmacological activity of deep-sea water: Examination of hyperlipemia prevention and medical treatment effect. Biol. Pharm. Bull. 2003, 26, 1552–1559. [Google Scholar] [CrossRef]
- Miyamura, M.; Yoshioka, S.; Hamada, A.; Takuma, D.; Yokota, J.; Kusunose, M.; Kyotani, S.; Kawakita, H.; Odani, K.; Tsutsui, Y.; et al. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 2004, 27, 1784–1787. [Google Scholar] [CrossRef]
- Ma, J.; Folsom, A.R.; Melnick, S.L.; Eckfedlt, J.H.; Sharrett, A.R.; Nabulsi, A.A.; Hutchinson, R.G.; Metcalf, P.A. Association of serum and dietary magnesium with cardiovascular disease, hypertension, diabetes, insulin, and carotid arterial wall thickness: The ARIC study. J. Clin. Epidemiol. 1995, 48, 927–940. [Google Scholar] [CrossRef]
- Altura, B.T.; Brust, M.; Bloom, S.; Barbour, R.L.; Stempak, J.G.; Altura, B.M. Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proc. Natl. Acad. Sci. USA 1990, 87, 1840–1844. [Google Scholar]
- Olatunji, L.A.; Soladoye, A.O. Increased magnesium intake prevents hyperlipidemia and insulin resistance and reduces lipid peroxidation in fructose-fed rats. Pathophysiology 2007, 14, 11–15. [Google Scholar]
- Ouchi, Y.; Tabata, R.E.; Stergiopoulos, K.; Sato, F.; Hattori, A.; Orimo, H. Effects of dietary magnesium on development of atherosclerosis in cholesterol-fed rabbits. Arteriosclerosis 1990, 10, 732–737. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Tani, M.; Uto-Kondo, H.; Saita, E.; Iizuka, M.; Sone, H.; Yokota, K.; Kondo, K. Effects of magnesium on postprandial serum lipid responses in healthy human subjects. Br. J. Nutr. 2010, 103, 469–472. [Google Scholar] [CrossRef]
- Vaskonen, T.; Mervaala, E.; Seppänen-Laakso, T.; Karppanen, H. Diet enrichment with calcium and magnesium enhances the cholesterol-lowering effect of plant sterols in obese Zucker rats. Nutr. Metab. Cardiovasc. Dis. 2001, 11, 158–167. [Google Scholar]
- Kass, L.; Weekes, J.; Carpenter, L. Effect of magnesium supplement on blood pressure: A meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 411–418. [Google Scholar] [CrossRef]
- Itoh, K.; Kawasaka, T.; Nakamura, M. The effects of high oral magnesium supplement on blood pressure, serum lipids and related variables inapparently healthy Japanese subjects. Br. J. Nutr. 1997, 78, 737–750. [Google Scholar] [CrossRef]
- Laurant, P.; Kantelip, J.P.; Berthlot, A. Dietary magnesium supplement modifies blood pressure and cardiovascular function in mineralocorticoid-salt hypertensive rats but not in normotensive rats. J. Nutr. 1995, 125, 830–841. [Google Scholar]
- Chung, I.M.; Yeo, M.A.; Kim, S.J.; Moon, H.I. Neuroprotective effects of resveratrol derivatives from the roots of Vitis thunbergii var. sinuate against glutamate-induced neurotoxicity in primary cultured rat cortical cells. Hum. Exp. Toxicol. 2011, 30, 404–408. [Google Scholar]
- Pan, C.H.; Tsai, C.H.; Lin, W.H.; Chen, G.Y.; Wu, C.H. Ethanolic extract of Vitis thunbergii exhibits lipid lowering properties via modulation of the AMPK-ACC pathway in hypercholesterolemic rabbits. Evid. Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kitagawa, S.; Kunitomo, M.; Fujiwara, M. Preventive effects of magnesium on raised serum lipid peroxide levels and aortic cholesterol deposition in mice fed an atherogenic diet. Magnes. Res. 1994, 7, 31–37. [Google Scholar]
- King, J.L.; Miller, R.J.; Blue, J.P., Jr.; O’Brienm, W.D., Jr.; Erdman, J.W., Jr. Inadequate dietary magnesium intake increases atherosclerotic plaque development in rabbits. Nutr. Res. 2009, 29, 343–349. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Choi, J.H.; Kim, H.G.; Khanal, T.; Song, G.Y.; Nam, M.S.; Lee, H.S.; Chung, Y.C.; Lee, Y.C.; Jeong, H.G. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells. Toxicol. Appl. Pharmacol. 2013, 267, 174–183. [Google Scholar] [CrossRef]
- Alberdi, G.; Rodríguez, V.M.; Macarulla, M.T.; Miranda, J.; Churruca, I.; Portillo, M.P. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet. Nutrition 2012, 29, 562–567. [Google Scholar]
- Si, M.; Yan, Y.; Tang, L.; Wu, H.; Yang, B.; He, Q.; Wu, H. A novel indole derivative compound GY3 improves glucose and lipid metabolism via activation of AMP-activated protein kinase pathway. Eur. J. Pharmacol. 2013, 698, 480–488. [Google Scholar] [CrossRef]
- Das, S.; Cordis, G.A.; Maulik, N.; Das, D.K. Pharmacological preconditioning with resveratrol: Role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H328–H335. [Google Scholar]
- Das, S.; Das, D.K. Resveratrol: A therapeutic promise for cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 2007, 2, 133–138. [Google Scholar]
- Kirk, R.I.; Deitch, J.A.; Wu, J.M.; Lerea, K.M. Resveratrol decreases early signaling events in washed platelets but has little effect on platelet aggregation in whole blood. Blood Cells Mol. Dis. 2000, 26, 144–150. [Google Scholar]
- Rudney, H.; Sexton, R.C. Regulation of cholesterol biosynthesis. Annu. Rev. Nutr. 1986, 6, 245–272. [Google Scholar] [CrossRef]
- Das, B.C.; Zhao, X.; Tang, X.Y.; Yang, F. Design, synthesis and biological study of pinacolyl boronate-substituted stilbenes as novel lipogenic inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 5638–5641. [Google Scholar] [CrossRef]
- Sheu, M.J.; Lin, H.Y.; Yang, Y.H.; Chou, C.J.; Chien, Y.C.; Wu, T.S.; Wu, C.H. Demethoxycurcumin, a major active curcuminoid from Curcuma longa, suppresses balloon injury induced vascular smooth muscle cell migration and neointima formation: An in vitro and in vivo study. Mol. Nutr. Food Res. 2013. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sheu, M.-J.; Chou, P.-Y.; Lin, W.-H.; Pan, C.-H.; Chien, Y.-C.; Chung, Y.-L.; Liu, F.-C.; Wu, C.-H. Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study. Mar. Drugs 2013, 11, 2183-2202. https://doi.org/10.3390/md11062183
Sheu M-J, Chou P-Y, Lin W-H, Pan C-H, Chien Y-C, Chung Y-L, Liu F-C, Wu C-H. Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study. Marine Drugs. 2013; 11(6):2183-2202. https://doi.org/10.3390/md11062183
Chicago/Turabian StyleSheu, Ming-Jyh, Pei-Yu Chou, Wen-Hsin Lin, Chun-Hsu Pan, Yi-Chung Chien, Yun-Lung Chung, Fon-Chang Liu, and Chieh-Hsi Wu. 2013. "Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study" Marine Drugs 11, no. 6: 2183-2202. https://doi.org/10.3390/md11062183
APA StyleSheu, M. -J., Chou, P. -Y., Lin, W. -H., Pan, C. -H., Chien, Y. -C., Chung, Y. -L., Liu, F. -C., & Wu, C. -H. (2013). Deep Sea Water Modulates Blood Pressure and Exhibits Hypolipidemic Effects via the AMPK-ACC Pathway: An in Vivo Study. Marine Drugs, 11(6), 2183-2202. https://doi.org/10.3390/md11062183