New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne
Abstract
:1. Introduction
2. Results and Discussion
Carbon | 1 a | 2 a | 3 b | 4 b | 5 b |
---|---|---|---|---|---|
1 | 186.5 CH | 174.5 qC | 178.5 qC | 181.9 qC | 190.2 CH |
2 | 117.3 qC | 33.9 CH2 | 30.4 CH2 | 42.0 CH2 | 108.0 CH |
3 | 146.5 CH | 53.1 qC | 58.6 qC | 123.3 qC | 151.8 qC |
4 | 65.6 CH | 67.8 CH | 67.4 CH | 153.5 qC | 139.7 CH |
5 | 31.0 CH2 | 29.8 CH2 | 31.5 CH2 | 117.0 CH | 114.2 CH |
6 | 120.1 CH | 122.2 CH | 119.7 CH | 128.2 CH | 150.9 CH |
7 | 134.8 qC | 135.1 qC | 138.8 qC | 134.5 qC | 138.2 qC |
8 | 33.0 CH2 | 33.2 CH2 | 31.9 CH2 | 35.4 CH2 | 24.5 CH2 |
9 | 26.0 CH2 | 25.7 CH2 | 26.8 CH2 | 30.5 CH2 | 27.4 CH2 |
10 | 124.0 CH | 123.1 CH | 123.6 CH | 123.9 CH | 123.5 CH |
11 | 135.7 qC | 136.2 qC | 136.0 qC | 135.8 qC | 136.1 qC |
12 | 39.7 CH2 | 39.7 CH2 | 39.7 CH2 | 39.9 CH2 | 39.7 CH2 |
13 | 26.6 CH2 | 26.6 CH2 | 26.7 CH2 | 26.8 CH2 | 26.7 CH2 |
14 | 123.2 CH | 124.0 CH | 124.1 CH | 124.4 CH | 124.2 CH |
15 | 126.2 qC | 135.0 qC | 135.1 qC | 135.1 qC | 135.0 qC |
16 | 39.7 CH2 | 39.7 CH2 | 39.7 CH2 | 39.9 CH2 | 39.7 CH2 |
17 | 26.8 CH2 | 26.7 CH2 | 26.7 CH2 | 26.9 CH2 | 26.8 CH2 |
18 | 124.4 CH | 124.3 CH | 124.4 CH | 124.6 CH | 124.4 CH |
19 | 131.4 qC | 131.4 qC | 131.3 qC | 131.4 qC | 131.3 qC |
20 | 25.7 CH3 | 25.7 CH3 | 25.7 CH3 | 25.7 CH3 | 25.7 CH3 |
21 | 17.7 CH3 | 17.7 CH3 | 17.7 CH3 | 17.7 CH3 | 17.7 CH3 |
22 | 16.0 CH3 | 16.0 CH3 | 16.0 CH3 | 16.0 CH3 | 16.0 CH3 |
23 | 16.2 CH3 | 16.1 CH3 | 16.1 CH3 | 16.0 CH3 | 16.1 CH3 |
24 | 76.9 CH | 79.7 CH | 70.8 CH | 130.9 CH | 194.2 CH |
25 | 175.2 qC | 182.9 qC |
Position | 1 a | 2 a | 3 b | 4 b | 5 b |
---|---|---|---|---|---|
1 | 8.97, s | 9.75, d (3.5) | |||
2 | 2.93, d (18.0); 2.77, d (18.0) | 2.69, s | 3.53, s | ||
3 | 7.13, d (5.6) | 7.70, dt (3.5, 11.5) | |||
4 | 5.03, d (5.0) | 4.21, dd (7.0, 1.8) | 4.22, dd (9.5, 3.6) | 6.64, d (14.7) | |
5 | 2.64, dd (5.0, 20.0) 2.12, m | 2.46, m; 2.29, m | 2.39, m; 2.06, m | 6.78, d (8.0) | 6.66, m |
6 | 5.66, d (5.0) | 5.74, t (3.9) | 5.35, t (3.9) | 6.93, d (8.0) | 6.86, d (11.0) |
8 | 1.99, m | 2.19, m | 2.06, m | 2.51, t (8.0) | 2.39, t (7.5) |
9 | 2.13, m | 2.17, m | 2.06, m | 2.22, m | 2.12, m |
10 | 5.11, m | 5.09, m | 5.10, m | 5.17, t (6.8) | 5.16, t (7.5) |
12 | 1.97, m | 1.97, m | 2.69, m | 1.98, m | 1.96, m |
13 | 2.05, m | 2.07, m | 2.06, m | 2.06, m | 2.05, m |
14 | 5.10, m | 5.09, m | 5.10, m | 5.11, t (6.8) | 5.11, t (6.8) |
16 | 1.97, m | 1.97, m | 1.98, m | 1.98, m | 1.95, m |
17 | 2.05, m | 2.07, m | 2.06, m | 2.06, m | 2.05, m |
18 | 5.08, m | 5.09, m | 5.10, m | 5.10, t (6.3) | 5.09, t (6.5) |
20 | 1.68, s | 1.68, s | 1.68, s | 1.68, s | 1.68, s |
21 | 1.60, s | 1.60, s | 1.59, s | 1.60, s | 1.60, s |
22 | 1.60, s | 1.60, s | 1.59, s | 1.60, s | 1.58, s |
23 | 1.60, s | 1.60, s | 1.59, s | 1.57, s | 1.60, s |
24 | 5.06, d (4.1) | 5.14, s | 4.58, s | 6.89, br s | 9.37, s |
25 | |||||
OH c | 4.99, br s | 11.04, s; 4.02, br s | |||
NH | 5.78, br s (in CDCl3) | 7.56 c, s; 7.26, s | 5.42 c, d (7.5) | 8.20 c, m |
3. Experimental Section
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. PTP1B Inhibitory Assay
3.5. Computational Details of Calculated ECD
3.6. Preparation of MTPA Esters
4. Conclusions
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, R.; Zeng, L.F.; He, Y.; Zhang, S.; Zhang, Z.Y. Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J. 2013, 280, 731–750. [Google Scholar] [CrossRef]
- Jiang, C.S.; Liang, L.F.; Guo, Y.W. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol. Sin. 2012, 33, 1217–1245. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Q.; Yu, Z.; Zhang, Y.; Guo, Y.; Chen, K.; Shen, X.; Jiang, H. Hyrtiosal, a PTP1B inhibitor from the marine sponge Hyrtios erectus, shows extensive cellular effects on PI3K/AKT activation, glucose transport, and TGFbeta/Smad2 signaling. Chembiochem 2007, 8, 187–193. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 30, 237–323. [Google Scholar]
- Bialy, L.; Waldmann, H. Inhibitors of protein tyrosine phosphatases: Next-generation drugs? Angew. Chem. Int. Ed. Engl. 2005, 44, 3814–3839. [Google Scholar] [CrossRef]
- Yamazaki, H.; Sumilat, D.A.; Kanno, S.I.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Ishikawa, M.; Mangindaan, R.E.; Namikoshi, M. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J. Nat. Med. 2013, 67, 730–735. [Google Scholar]
- Li, Y.; Zhang, Y.; Shen, X.; Guo, Y.W. A novel sesquiterpene quinone from Hainan sponge Dysidea villosa. Bioorg. Med. Chem. Lett. 2009, 19, 390–392. [Google Scholar] [CrossRef]
- Jiao, W.H.; Huang, X.J.; Yang, J.S.; Yang, F.; Piao, S.J.; Gao, H.; Li, J.; Ye, W.C.; Yao, X.S.; Chen, W.S.; et al. Dysidavarones A–D, new sesquiterpene quinones from the marine sponge Dysidea avara. Org. Lett. 2011, 14, 202–205. [Google Scholar]
- Kobayashi, J.; Naitoh, K.; Sasaki, T.; Shigemori, H. Metachromins D–H, new cytotoxic sesquiterpenoids from the Okinawan marine sponge Hippospongia metachromia. J. Org. Chem. 1992, 57, 5773–5776. [Google Scholar] [CrossRef]
- Shen, Y.C.; Chen, C.Y.; Kuo, Y.H. New sesquiterpene hydroquinones from a Taiwanese marine sponge, Hippospongia metachromia. J. Nat. Prod. 2001, 64, 801–803. [Google Scholar] [CrossRef]
- Oda, T.; Wang, W.; Ukai, K.; Nakazawa, T.; Mochizuki, M. A sesquiterpene quinone, 5-Epi-smenospongine, promotes TNF-alpha production in LPS-stimulated RAW 264.7 Cells. Mar. Drugs 2007, 5, 151–156. [Google Scholar] [CrossRef]
- Ishibashi, M.; Ohizumi, Y.; Cheng, J.F.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. Metachromins A and B, novel antineoplastic sesquiterpenoids from the Okinawan sponge Hippospongia cf. metachromia. J. Org. Chem. 1988, 53, 2855–2858. [Google Scholar] [CrossRef]
- Musman, M.; Ohtani, I.I.; Nagaoka, D.; Tanaka, J.; Higa, T. Hipposulfates A and B, new sesterterpene sulfates from an Okinawan sponge, Hippospongia cf. metachromia. J. Nat. Prod. 2001, 64, 350–352. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, T.H.; Yang, S.H.; Shin, H.J.; Shin, J.; Oh, K.B. Sesterterpene sulfates as isocitrate lyase inhibitors from tropical sponge Hippospongia sp. Bioorg. Med. Chem. Lett. 2007, 17, 2483–2486. [Google Scholar] [CrossRef]
- Piao, S.J.; Zhang, H.J.; Lu, H.Y.; Yang, F.; Jiao, W.H.; Yi, Y.H.; Chen, W.S.; Lin, H.W. Hippolides A–H, acyclic manoalide derivatives from the marine sponge Hippospongia lachne. J. Nat. Prod. 2011, 74, 1248–1254. [Google Scholar] [CrossRef]
- Rochfort, S.J.; Atkin, D.; Hobbs, L.; Capon, R.J. Hippospongins A–F: New furanoterpenes from a Southern Australian marine sponge Hippospongia sp. J. Nat. Prod. 1996, 59, 1024–1028. [Google Scholar] [CrossRef]
- Craig, K.S.; Williams, D.E.; Hollander, I.; Frommer, E.; Mallon, R.; Collins, K.; Wojciechowicz, D.; Tahir, A.; van Soest, R.; Andersen, R.J. Novel sesterterpenoid and norsesterterpenoid RCE-protease inhibitors isolated from the marine sponge Hippospongia sp. Tetrahedron Lett. 2002, 43, 4801–4804. [Google Scholar] [CrossRef]
- Piao, S.J.; Song, Y.L.; Jiao, W.H.; Yang, F.; Liu, X.F.; Chen, W.S.; Han, B.N.; Lin, H.W. Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org. Lett. 2013, 15, 3526–3529. [Google Scholar] [CrossRef]
- Berova, N.; di Bari, L.; Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 2007, 36, 914–931. [Google Scholar] [CrossRef]
- Menna, M.; Imperatore, C.; D’Aniello, F.; Aiello, A. Meroterpenes from marine invertebrates: Structures, occurrence, and ecological implications. Mar. Drugs 2013, 11, 1602–1643. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, B.; Lin, X.P.; Zhou, X.F.; Liu, Y. Sesterterpenoids. Nat. Prod. Rep. 2013, 30, 455–473. [Google Scholar] [CrossRef]
- Zou, Y.; Hamann, M.T. Atkamine: A new pyrroloiminoquinone scaffold from the cold water Aleutian Islands Latrunculia sponge. Org. Lett. 2013, 15, 1516–1519. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Piao, S.-J.; Jiao, W.-H.; Yang, F.; Yi, Y.-H.; Di, Y.-T.; Han, B.-N.; Lin, H.-W. New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne. Mar. Drugs 2014, 12, 4096-4109. https://doi.org/10.3390/md12074096
Piao S-J, Jiao W-H, Yang F, Yi Y-H, Di Y-T, Han B-N, Lin H-W. New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne. Marine Drugs. 2014; 12(7):4096-4109. https://doi.org/10.3390/md12074096
Chicago/Turabian StylePiao, Shu-Juan, Wei-Hua Jiao, Fan Yang, Yang-Hua Yi, Ying-Tong Di, Bing-Nan Han, and Hou-Wen Lin. 2014. "New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne" Marine Drugs 12, no. 7: 4096-4109. https://doi.org/10.3390/md12074096
APA StylePiao, S. -J., Jiao, W. -H., Yang, F., Yi, Y. -H., Di, Y. -T., Han, B. -N., & Lin, H. -W. (2014). New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne. Marine Drugs, 12(7), 4096-4109. https://doi.org/10.3390/md12074096