Recent Advances in the Synthesis of 2-Pyrones
Abstract
:1. Introduction
2. Synthesis of 2-Pyrones
2.1. Metal-Catalyzed Syntheses
2.1.1. Palladium-Catalyzed Synthesis of 2-Pyrones
2.1.2. Gold-Catalyzed Cyclo-Isomerization Strategy
2.1.3. Rhodium-Catalyzed Synthesis of 2-Pyrones
2.1.4. Ruthenium-Catalyzed Synthesis of 2-Pyrones
2.1.5. Nickel-Catalyzed Synthesis of 2-Pyrones
2.2. 2-Pyrone Synthesis Using an Organo Catalyst
2.3. Phosphine-Catalyzed Synthesis of 2-Pyrones
2.4. Synthesis of 2-Pyrones via Iodolactonization
2.5. Synthesis of 2-Pyrones via Baylis-Hillman Reaction
2.6. Miscellaneous
2.6.1. Ring Expansion Strategy
2.6.2. Condensation
2.6.3. Rearrangement-Cyclization Strategy
3. Synthetic Application of Substituted 2-Pyrones
3.1. Synthetic Application of 3,5-Dibromo-2-Pyrone
3.2. Synthetic Application of 4-Bromo-6-Methyl-2-Pyrone
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Cavalieri, L.F. The chemistry of the monocyclic alpha- and gamma-pyrones. Chem. Rev. 1947, 41, 525–584. [Google Scholar] [CrossRef] [PubMed]
- Ellis, G.P. 2.23-pyrans and fused pyrans: (ii) reactivity. In Comprehensive Heterocyclic Chemistry; Rees, A.R.K.W., Ed.; Pergamon: Oxford, UK, 1984; pp. 647–736. [Google Scholar]
- Moreno-Mañas, M.; Pleixats, R. Dehydroacetic acid, triacetic acid lactone, and related pyrones. In Advances in Heterocyclic Chemistry; Alan, R.K., Ed.; Academic Press: Waltham, MA, USA, 1992; Volume 53, pp. 1–84. [Google Scholar]
- McGlacken, G.P.; Fairlamb, I.J.S. 2-Pyrone natural products and mimetics: Isolation, characterisation and biological activity. Nat. Prod. Rep. 2005, 22, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Kamigiri, K.; Matsumoto, H.; Kawano, Y.; Yamaoka, M.; Shimoi, H.; Watanabe, M.; Suzuki, K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J. Antibiot. 2002, 55, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Novel antiinsectan oxalicine alkaloids from two undescribed fungicolous Penicillium spp. Org. Lett. 2003, 5, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.G.; Chandra, A.; Thorogood, D.L. Griseulin, a new nitro-containing bioactive metabolite produced by Streptomyces spp. J. Antibiot. 1993, 46, 1762–1763. [Google Scholar] [CrossRef] [PubMed]
- Sitachitta, N.; Gadepalli, M.; Davidson, B.S. New α-pyrone-containing metabolites from a marine-derived actinomycete. Tetrahedron 1996, 52, 8073–8080. [Google Scholar] [CrossRef]
- Kalaitzis, J.A.; Cheng, Q.; Thomas, P.M.; Kelleher, N.L.; Moore, B.S. In vitro biosynthesis of unnatural enterocin and wailupemycin polyketides. J. Nat. Prod. 2009, 72, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.R.; Carey, S.T. Metabolites of phyrenomycetes II: Nectriapyrone, an antibiotic monoterpenoid. Tetrahedron Lett. 1975, 16, 1655–1658. [Google Scholar]
- Fu, P.; Liu, P.; Qu, H.; Wang, Y.; Chen, D.; Wang, H.; Li, J.; Zhu, W. α-Pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J. Nat. Prod. 2011, 74, 2219–2223. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Kwon, O.W.; Park, J.S.; Kim, S.Y.; Kwon, H.C. Nocapyrones H-J, 3,6-disubstituted α-pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem. Pharm. Bull. 2013, 61, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ogura, H.; Akasaka, K.; Oikawa, T.; Matsuura, N.; Imada, C.; Yasuda, H.; Igarashi, Y. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar. Drugs 2014, 12, 4110–4125. [Google Scholar] [CrossRef] [PubMed]
- Graziani, E.I.; Ritacco, F.V.; Bernan, V.S.; Telliez, J.-B. Phaeochromycins A–E, anti-inflammatory polyketides isolated from the soil actinomycete Streptomyces phaeochromogenes LL-P018. J. Nat. Prod. 2005, 68, 1262–1265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, Y.; Cao, Y.; Liu, J.; Zheng, D.; Chen, X.; Han, L.; Jiang, C.; Huang, X. Violapyrones A–G, α-pyrone derivatives from Streptomyces violascens isolated from Hylobates hoolock feces. J. Nat. Prod. 2013, 76, 2126–2130. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Lee, H.S.; Lee, J.S.; Shin, J.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Yun, J.; Kang, J.S. Violapyrones H and I, new cytotoxic compounds isolated from Streptomyces sp. associated with the marine starfish Acanthaster planci. Mar. Drugs 2014, 12, 3283–3291. [Google Scholar] [CrossRef] [PubMed]
- Stout, E.P.; Hasemeyer, A.P.; Lane, A.L.; Davenport, T.M.; Engel, S.; Hay, M.E.; Fairchild, C.R.; Prudhomme, J.; le Roch, K.; Aalbersberg, W.; et al. Antibacterial neurymenolides from the fijian red alga Neurymenia fraxinifolia. Org. Lett. 2008, 11, 225–228. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.M.; Meng, L.; Li, C.S.; Gao, S.S.; Shang, Z.; Proksch, P.; Huang, C.G.; Wang, B.G. Nigerapyrones A–H, alpha-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J. Nat. Prod. 2011, 74, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Larock, R.C. Synthesis of isocoumarins and alpha-pyrones via electrophilic cyclization. J. Org. Chem. 2003, 68, 5936–5942. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Burton, D.J. A facile, general synthesis of 3,4-difluoro-6-substituted-2-pyrones. J. Org. Chem. 2006, 71, 3859–3862. [Google Scholar] [CrossRef] [PubMed]
- Gorja, D.R.; Batchu, V.R.; Ettam, A.; Pal, M. Pd/C-mediated synthesis of α-pyrone fused with a five-membered nitrogen heteroaryl ring: A new route to pyrano[4,3-c]pyrazol-4(1H)-ones. Beilstein J. Org. Chem. 2009, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Anastasia, L.; Xu, C.; Negishi, E.-I. Catalytic and selective conversion of (Z)-2-en-4-ynoic acids to either 2H-pyran-2-ones in the presence of ZnBr2 or (Z)-5-alkylidenefuran-2(5H)-ones in the presence of Ag2CO3. Tetrahedron Lett. 2002, 43, 5673–5676. [Google Scholar] [CrossRef]
- Cherry, K.; Parrain, J.L.; Thibonnet, J.; Duchene, A.; Abarbri, M. Synthesis of isocoumarins and alpha-pyrones via tandem Stille reaction/heterocyclization. J. Org. Chem. 2005, 70, 6669–6675. [Google Scholar] [CrossRef] [PubMed]
- Thibonnet, J.; Abarbri, M.; Parrain, J.L.; Duchene, A. One-step synthesis of alpha-pyrones from acyl chlorides by the Stille reaction. J. Org. Chem. 2002, 67, 3941–3944. [Google Scholar] [CrossRef] [PubMed]
- Liebeskind, L.S.; Wang, J. A synthesis of substituted 2-pyrones by carbonylative cross-coupling-thermolysis of 4-halocyclobutenones with alkenyl-, aryl-, and heteroarylstannanes. Tetrahedron 1993, 49, 5461–5470. [Google Scholar] [CrossRef]
- Larock, R.C.; Doty, M.J.; Han, X. Synthesis of isocoumarins and alpha-pyrones via palladium-catalyzed annulation of internal alkynes. J. Org. Chem. 1999, 64, 8770–8779. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, C.; Almqvist, F. A selective intramolecular 5-exo-dig or 6-endo-dig cyclization en route to 2-furanone or 2-pyrone containing tricyclic scaffolds. J. Org. Chem. 2011, 76, 9817–9825. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, L.; Wu, W.; Jiang, H. Palladium-catalyzed oxidative annulation of acrylic acid and amide with alkynes: A practical route to synthesize α-pyrones and pyridones. Org. Lett. 2014, 16, 2146–2149. [Google Scholar] [CrossRef] [PubMed]
- Praveen, C.; Ayyanar, A.; Perumal, P.T. Gold(III) chloride catalyzed regioselective synthesis of pyrano[3,4-b]indol-1(9H)-ones and evaluation of anticancer potential towards human cervix adenocarcinoma. Bioorg. Med. Chem. Lett. 2011, 21, 4170–4173. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Schreiber, S.L. Complex α-pyrones synthesized by a gold-catalyzed coupling reaction. Angew. Chem. Int. Ed. 2007, 46, 8250–8253. [Google Scholar] [CrossRef]
- Dombray, T.; Blanc, A.; Weibel, J.M.; Pale, P. Gold(I)-catalyzed cycloisomerization of beta-alkynylpropiolactones to substituted alpha-pyrones. Org. Lett. 2010, 12, 5362–5365. [Google Scholar] [CrossRef] [PubMed]
- Chaladaj, W.; Corbet, M.; Furstner, A. Total synthesis of neurymenolide a based on a gold-catalyzed synthesis of 4-hydroxy-2-pyrones. Angew. Chem. Int. Ed. 2012, 51, 6929–6933. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, J.; Shin, H.J.; Lee, H.-S.; Lee, Y.-J.; Lee, H.-S.; Won, H. Total synthesis and configurational validation of (+)-violapyrone C. Eur. J. Org. Chem. 2014, 2014, 4472–4476. [Google Scholar] [CrossRef]
- Luo, T.; Dai, M.; Zheng, S.L.; Schreiber, S.L. Syntheses of alpha-pyrones using gold-catalyzed coupling reactions. Org. Lett. 2011, 13, 2834–2836. [Google Scholar] [CrossRef] [PubMed]
- Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. Synthesis of functionalized alpha-pyrone and butenolide derivatives by rhodium-catalyzed oxidative coupling of substituted acrylic acids with alkynes and alkenes. J. Org. Chem. 2009, 74, 6295–6298. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-catalyzed decarboxylative and dehydrogenative coupling of maleic acids with alkynes and alkenes. J. Org. Chem. 2013, 78, 11427–11432. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Versatile synthesis of isocoumarins and α-pyrones by ruthenium-catalyzed oxidative C-H/O-H bond cleavages. Org. Lett. 2012, 14, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, R.; Jeganmohan, M. Ruthenium-catalyzed dimerization of propiolates: A simple route to alpha-pyrones. Org. Lett. 2014, 16, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, T.; Higashibeppu, Y.; Yamaura, R.; Ryu, I. Ru-catalyzed intermolecular [3 + 2+ 1] cycloaddition of α,β-unsaturated ketones with silylacetylenes and carbon monoxide leading to alpha-pyrones. Org. Lett. 2007, 9, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.; Gibby, J.E.; Farnworth, M.V.; Tekavec, T.N. Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J. Am. Chem. Soc. 2002, 124, 15188–15189. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.-P.; Daniels, D.S.B.; Cordes, D.B.; Slawin, A.M.Z.; Smith, A.D. Isothiourea-mediated one-pot synthesis of trifluoromethyl substituted 2-pyrones. Org. Lett. 2014, 16, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-F.; Schaffner, A.-P.; Li, R.C.; Kwon, O. Phosphine-catalyzed synthesis of 6-substituted 2-pyrones: Manifestation of E/Z-isomerism in the zwitterionic intermediate. Org. Lett. 2005, 7, 2977–2980. [Google Scholar] [CrossRef] [PubMed]
- Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R. Selective synthesis of natural and unnatural 5,6-disubstituted 2(2H)-pyranones via iodolactonization of 5-substituted (Z)-2-en-4-ynoic acids. Tetrahedron 2001, 57, 2857–2870. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, Y.-X.; Li, J.-H. Cy2NH·HX-promoted cyclizations of o-(alk-1-ynyl)benzoates and (Z)-alk-2-en-4-ynoate with copper halides to synthesize isocoumarins and α-pyrone. Synthesis 2007, 400–406. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.S.; Kim, J.N. Synthesis of 3,5,6-trisubstituted α-pyrones from Baylis–Hillman adducts. Tetrahedron Lett. 2007, 48, 1069–1072. [Google Scholar] [CrossRef]
- Mingo, P.; Zhang, S.; Liebeskind, L.S. One-step synthesis of substituted alpha-pyrones from cyclobutenediones and lithiated o-silyl cyanohydrins. J. Org. Chem. 1999, 64, 2145–2148. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.E.; Novack, A.R. Formation of 3,4-dimethyl-2-pyrones from allene carboxylates and 2-silyloxydienes via 3-carboethoxyethylidene cyclobutanols. Tetrahedron Lett. 2005, 46, 8237–8240. [Google Scholar] [CrossRef]
- Ma, S.; Yu, S.; Yin, S. Studies on K2CO3-catalyzed 1,4-addition of 1,2-allenic ketones with diethyl malonate: Controlled selective synthesis of β,γ-unsaturated enones and α-pyrones. J. Org. Chem. 2003, 68, 8996–9002. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yin, S.; Li, L.; Tao, F. K2CO3-catalyzed Michael addition-lactonization reaction of 1,2-allenyl ketones with electron-withdrawing group substituted acetates. An efficient synthesis of alpha-pyrone derivatives. Org. Lett. 2002, 4, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Mizota, I.; Shimizu, M. Tandem N-alkylation/vinylogous aldol reaction of β,γ-alkenyl α-iminoester. Org. Lett. 2014, 16, 2276–2279. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, I.; Shibuya, H.; Shimizu, M. Novel 2-pyrone synthesis via the nucleophilic addition of active methine compounds to 2-alkynone. Tetrahedron Lett. 2003, 44, 2061–2063. [Google Scholar] [CrossRef]
- Akué-Gédu, R.; Hénichart, J.-P.; Couturier, D.; Rigo, B.T. Synthesis of 2-pyrone-4-carboxaldehydes from acetylene dicarboxaldehyde monoacetal. Tetrahedron Lett. 2004, 45, 9197–9201. [Google Scholar] [CrossRef]
- Barroso, S.; Blay, G.; Fernández, I.; Pedro, J.R. Novel 2-pyrone synthesis via Michael addition of mandelic acid enolate to trans-1,2-diaroylethenes. Tetrahedron Lett. 2004, 45, 8583–8586. [Google Scholar] [CrossRef]
- Gerus, I.I.; Tolmachova, N.A.; Vdovenko, S.I.; Fröhlich, R.; Haufe, G. A convenient synthesis and chemical properties of 3-acylamino-6-polyfluoroalkyl-2H-pyran-2-ones. Synthesis 2005, 1269–1278. [Google Scholar] [CrossRef]
- Sheibani, H.; Islami, M.R.; Khabazzadeh, H.; Saidi, K. A convenient one-pot synthesis of substituted 2-pyrone derivatives. Tetrahedron 2004, 60, 5931–5934. [Google Scholar] [CrossRef]
- Usachev, B.I.; Obydennov, D.L.; Röschenthaler, G.-V.; Sosnovskikh, V.Y. Convenient synthesis of ethyl 4-aryl-6-(trifluoromethyl)-2-oxo-2H-pyran-3-carboxylates and 4-aryl-6-(trifluoromethyl)-2H-pyran-2-ones: Novel highly reactive CF3-containing building blocks. Org. Lett. 2008, 10, 2857–2859. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, T.; Takaguchi, Y.; Gubaidullin, A.T.; Mamedov, V.A.; Litvinov, I.A.; Tsuboi, S. Novel synthesis of 4-halo-3-hydroxy-2-pyrone: One pot rearrangement–cyclization reaction by magnesium halide. Tetrahedron 2005, 61, 2541–2547. [Google Scholar] [CrossRef]
- Baran, P.S.; Burns, N.Z. Total synthesis of (±)-haouamine A. J. Am. Chem. Soc. 2006, 128, 3908–3909. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kuramochi, K.; Suzuki, T.; Nakazaki, A.; Kobayashi, S. The second generation synthesis of (+)-pseudodeflectusin. Tetrahedron Lett. 2011, 52, 626–629. [Google Scholar] [CrossRef]
- Cho, C.G.; Park, J.S.; Jung, I.H.; Lee, H. One-step preparation of bromo-2-pyrones via bromo-decarboxylation of 2-pyrone-carboxylic acids. Tetrahedron Lett. 2001, 42, 1065–1067. [Google Scholar] [CrossRef]
- Cho, C.-G.; Kim, Y.-W.; Lim, Y.-K.; Park, J.-S.; Lee, H.; Koo, S. Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone: A new ambident diene. J. Org. Chem. 2002, 67, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Min, S.-H.; Kim, Y.-W.; Choi, S.; Park, K.B.; Cho, C.-G. Expedient syntheses of unsymmetrical 4-bromo-2-carboxyl-biaryls via Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone with vinylarenes, followed by one pot, three step aromatization reactions. Bull. Korean Chem. Soc. 2002, 23, 1021–1022. [Google Scholar] [CrossRef]
- Cho, C.-G.; Kim, Y.-W.; Kim, W.-K. Diels-Alder cycloadditions of 3,5-dibromo-2-pyrone with cycloalkenyl silyl ethers for the synthesis of bicarbocycles. Tetrahedron Lett. 2001, 42, 8193–8195. [Google Scholar] [CrossRef]
- Shin, J.-T.; Shin, S.; Cho, C.-G. IMDA cycloadditions of 3-alkynyl tethered 2-pyrones for the synthesis of medium-sized macrocycles. Tetrahedron Lett. 2004, 45, 5857–5860. [Google Scholar] [CrossRef]
- Shin, J.-T.; Hong, S.-C.; Shin, S.; Cho, C.-G. Highly diastereoselective type-I IMDA reaction forming medium-sized macrolactones. Org. Lett. 2006, 8, 3339–3341. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-I.; Seo, J.; Cho, C.-G. Tandem Diels-Alder cycloadditions of 2-pyrone-5-acrylates for the efficient synthesis of novel tetracyclolactones. J. Org. Chem. 2006, 71, 6701–6704. [Google Scholar] [CrossRef] [PubMed]
- Delaney, P.M.; Moore, J.E.; Harrity, J.P.A. An alkynylboronic ester cycloaddition route to functionalized aromatic boronic esters. Chem. Commun. 2006, 3323–3325. [Google Scholar] [CrossRef]
- Reus, C.; Liu, N.-W.; Bolte, M.; Lerner, H.-W.; Wagner, M. Synthesis of bromo-, boryl-, and stannyl-functionalized 1,2-bis(trimethylsilyl)benzenes via Diels-Alder or C-H activation reactions. J. Org. Chem. 2012, 77, 3518–3523. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.-M.; Gupta, A.K.; Han, J.W.; Oh, C.H.; Cho, C.-G. Regiocontrolled Suzuki-Miyaura couplings of 3,5-dibromo-2-pyrone. Synlett 2004, 2197–2199. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, W.-S.; Lee, Y.Y.; Cho, C.-G. Stille couplings of 3-(trimethylstannyl)-5-bromo-2-pyrone for the syntheses of 3-aryl-5-bromo-2-pyrones and their ambident dienyl characters. Tetrahedron Lett. 2002, 43, 5779–5782. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, H.-J.; Cho, C.-G. Regioselective Stille coupling reactions of 3,5-dibromo-2-pyrone with various aryl and vinyl stannanes. Tetrahedron Lett. 2002, 43, 9015–9017. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, H.-J.; Cho, C.-G. Regioselectivity in the Stille coupling reactions of 3,5-dibromo-2-pyrone. J. Am. Chem. Soc. 2003, 125, 14288–14289. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Cho, C.-G. Regioselective palladium-catalyzed aminations of 3,5-dibromo-2-pyrone with various aryl and alkyl amines. Tetrahedron Lett. 2003, 44, 65–67. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, J.-S.; Cho, C.-G. Regioselective synthesis of 3-alkynyl-5-bromo-2-pyrones via Pd-catalyzed couplings on 3,5-dibromo-2-pyrone. Org. Lett. 2002, 4, 1171–1173. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Knochel, P. Preparation and reactions of functionalized organocopper reagents. Synthesis 2006, 2618–2623. [Google Scholar] [CrossRef]
- Shin, I.-J.; Choi, E.-S.; Cho, C.-G. Total synthesis of (±)-trans-dihydronarciclasine through a highly endo-selective Diels-Alder cycloaddition of 3,5-dibromo-2-pyrone. Angew. Chem. Int. Ed. 2007, 46, 2303–2305. [Google Scholar] [CrossRef]
- Cho, Y.-S.; Cho, C.-G. Improved total synthesis of (±)-trans-dihydronarciclasine, devised for large-scale preparation. Tetrahedron 2008, 64, 2172–2177. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Chang, J.; Jung, E.-J.; Cho, C.-G. Total syntheses of (±)-crinine, (±)-crinamine, and (±)-6a-epi-crinamine via the regioselective synthesis and Diels-Alder reaction of 3-aryl-5-bromo-2-pyrone. J. Org. Chem. 2008, 73, 6258–6264. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.T.; Cho, C.-G. Total synthesis of (±)-crinine via the regioselective Stille coupling and Diels-Alder reaction of 3,5-dibromo-2-pyrone. Org. Lett. 2008, 10, 601–603. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-G.; Kang, H.-U.; Cho, H.-K.; Cho, C.-G. β-Silyl styrene as a dienophile in the cycloaddition with 3,5-dibromo-2-pyrone for the total synthesis of (±)-pancratistatin. Org. Lett. 2011, 13, 5890–5892. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-K.; Lim, H.-Y.; Cho, C.-G. (E)-β-Borylstyrene in the Diels-Alder reaction with 3,5-dibromo-2-pyrone for the syntheses of (±)-1-epi-pancratistatin and (±)-pancratistatin. Org. Lett. 2013, 15, 5806–5809. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Kang, H.-U.; Jung, I.-H.; Cho, C.-G. Total synthesis of (±)-galanthamine via a C3-selective Stille coupling and IMDA cycloaddition cascade of 3,5-dibromo-2-pyrone. Org. Lett. 2010, 12, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-K.; Nguyen, T.T.; Cho, C.-G. Total synthesis of (±)-aspidospermidine starting from 3-ethyl-5-bromo-2-pyrone. Bull. Korean Chem. Soc. 2010, 31, 3382–3384. [Google Scholar] [CrossRef]
- Tam, N.T.; Cho, C.-G. Total synthesis of (±)-joubertinamine from 3-(3,4-dimethoxyphenyl)-5-bromo-2-pyrone. Org. Lett. 2007, 9, 3391–3392. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-G.; Lee, S.-C.; Cho, H.-K.; Darvatkar, N.B.; Song, J.-Y.; Cho, C.-G. Total syntheses of (±)-α-lycorane and (±)-1-deoxylycorine. Org. Lett. 2013, 15, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Jung, Y.-G.; Cho, H.-K.; Park, Y.-G.; Cho, C.-G. Total synthesis of (±)-lycorine from the endo-cycloadduct of 3,5-dibromo-2-pyrone and (E)-β-borylstyrene. Org. Lett. 2014, 16, 5718–5720. [Google Scholar] [CrossRef] [PubMed]
- Cervera, M.; Moreno-mañas, M.; Pleixats, R. 4-Amino-6-methyl-2H-pyran-2-one. Preparation and reactions with aromatic aldehydes. Tetrahedron 1990, 46, 7885–7892. [Google Scholar] [CrossRef]
- Marrison, L.R.; Dickinson, J.M.; Ahmed, R.; Fairlamb, I.J.S. An efficient synthesis of 4-alkenyl/alkynyl-6-methyl-2-pyrones via Pd-catalyzed coupling on 4-bromo-6-methyl-2-pyrone. Tetrahedron Lett. 2002, 43, 8853–8857. [Google Scholar] [CrossRef]
- Marrison, L.R.; Dickinson, J.M.; Fairlamb, I.J.S. Bioactive 4-substituted-6-methyl-2-pyrones with promising cytotoxicity against A2780 and K562 cell lines. Bioorg. Med. Chem. Lett. 2002, 12, 3509–3513. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, I.J.S.; Lu, F.J.; Schmidt, J.P. Palladium-catalyzed alkynylations of 2-pyrone (pyran-2-one) halides. Synthesis 2003, 2564–2570. [Google Scholar] [CrossRef]
- Fairlamb, I.J.S.; Marrison, L.R.; Dickinson, J.M.; Lu, F.-J.; Schmidt, J.P. 2-Pyrones possessing antimicrobial and cytotoxic activities. Bioorg. Med. Chem. 2004, 12, 4285–4299. [Google Scholar] [CrossRef] [PubMed]
- Niemela, E.H.; Lee, A.F.; Fairlamb, I.J.S. Important consequences for gas chromatographic analysis of the Sonogashira cross-coupling reaction. Tetrahedron Lett. 2004, 45, 3593–3595. [Google Scholar] [CrossRef]
- Fairlamb, I.J.S.; Lee, A.F.; Loe-Mie, F.E.M.; Niemelae, E.H.; O’Brien, C.T.; Whitwood, A.C. Halogenated-2-pyrones in Sonogashira cross-coupling: Limitations, optimization and consequences for GC analysis of Pd-mediated reactions. Tetrahedron 2005, 61, 9827–9838. [Google Scholar] [CrossRef]
- Chaignon, N.M.; Fairlamb, I.J.S.; Kapdi, A.R.; Taylor, R.J.K.; Whitwood, A.C. Bis(triphenylphosphine)palladium(II) phthalimide–An easily prepared precatalyst for efficient Suzuki-Miyaura coupling of aryl bromides. J. Mol. Catal. A Chem. 2004, 219, 191–199. [Google Scholar] [CrossRef]
- Shah, P.; Santana, M.D.; Garcia, J.; Serrano, J.L.; Naik, M.; Pednekar, S.; Kapdi, A.R. [Pd(PPh3)2(saccharinate)2]-general catalyst for Suzuki-Miyaura, Negishi cross-coupling and C-H bond functionalization of coumaryl and pyrone substrates. Tetrahedron 2013, 69, 1446–1453. [Google Scholar] [CrossRef]
- Rieke, R.D.; Kim, S.-H. A facile synthetic route for the preparation of 4-substituted 6-methyl-2-pyrone derivatives via organozinc reagents. Synlett 2011, 2867–2871. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.S. Recent Advances in the Synthesis of 2-Pyrones. Mar. Drugs 2015, 13, 1581-1620. https://doi.org/10.3390/md13031581
Lee JS. Recent Advances in the Synthesis of 2-Pyrones. Marine Drugs. 2015; 13(3):1581-1620. https://doi.org/10.3390/md13031581
Chicago/Turabian StyleLee, Jong Seok. 2015. "Recent Advances in the Synthesis of 2-Pyrones" Marine Drugs 13, no. 3: 1581-1620. https://doi.org/10.3390/md13031581
APA StyleLee, J. S. (2015). Recent Advances in the Synthesis of 2-Pyrones. Marine Drugs, 13(3), 1581-1620. https://doi.org/10.3390/md13031581